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Abstract

In this paper, we have completely succeeded in the true understanding
of the phenomena of spectra of hydrogen atoms.

This problem is the motivation of quantum mechanics 100 years ago.
But we know that the quantum mechanics is a curious theory.
In order to clear this problem, I create the theory of natural statistical

physics.
In the present time, we know that we must not use the quantum

mechanics.
The new age of physics starts just now.

2000 Mathematics Subject Classification. Primary 81v45.

Introduction

In this paper, we show the new discovery of the spectral phenomena of
hydrogen atoms.

This year 2025 is the 100th anniversary of the birth of quantum mechanics.
It is the motivation of quantum mechanics that we wish to understand the

phenomena of spectra of hydrogen atoms.
Then, Schrödinger discovered the Schrödinger equation.
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Nevertheless, as for the spectral phenomena of hydrogen atoms, many prob-
lems were left in the framework of the quantum mechanics.

I succeeded in the true physical understanding of the spectral phenomena
of hydrogen atoms by creating the theory of natural statistical physics. We
have succeeded in the complete solution of this problem after 100 years.

In each hydrogen atom constructing a system of hydrogen atoms, an electron
is rotating around the nucleus by virtue of the Newtonian equation under the
Coulomb interaction.

Thereby, each hydrogen atom radiates and absorbs the electro-magnetic
waves. Thereby, the spectra of hydrogen atoms are observed.

We have only this as a real physical phenomenon .
As for the results in this paper, we refer to Ito [1], chapter 15 and Ito [2],

chapter 7.
Here I am most grateful to my wife Mutuko for her help of typesetting of

this manuscript.

1　Physical system of hydrogen atoms

In this section, we study and understand the observed data of spectra of
hydrogen atoms on the basis of the laws of natural statistical physics.

Here we consider the system of hydrogen atoms. Here we may neglect the
influence of their spins.

These are the cases where there is not the influence of the outer electro-
magnetic field or where we can neglect those influence.

One hydrogen atom is the combined system of one proton and one electron.
In a hydrogen atom, one electron is rotating around this proton.

Then, the problem is the study of the natural statistical phenomena of
this physical system. We study this problem by using the theory of natural
statistical physics.

The physical system is the set of such hydrogen atoms. This is an example
of the system of two particles.

Each hydrogen atom is moving in the 3-dimensional space.
We assume that the masses of a proton and an electron are m1 and m2

respectively.
Then we assume that the electric charges of a proton and an electron are e

and −e respectively.
Then, we express the position variables of a proton and an electron as r1 and

r2 respectively. Then the position variable of the hydrogen atom is expressed
as

r = (r1, r2).

2

We express the momentum variables of a proton and an electron as p1 and p2

respectively. Then the momentum variable of a hydrogen atom is expressed as

p = (p1,p2).

Here we neglect the interaction of force among the different hydrogen atoms.
The interaction of force is acting on the proton and the electron of one

hydrogen atom by virtue of the Coulomb potential

V (r) = − e2

|r1 − r2|
.

Since the masses of a proton and an electron are small, we assume that we can
neglect their gravitational interaction.

Then each hydrogen atom is moving by virtue of Newtonian equation

dp

dt
= −gradV(r).

Therefore, the mechanical energy of one hydrogen atom is equal to

2∑
i=1

1

2mi
|pi|2 + V (r).

Here the first term is the kinetic energy of the hydrogen atom and the sec-
ond term is its potential energy. Namely we have the conservation law of the
mechanical energy of each hydrogen atom.

2　Setting of the mathematical model

In this section, we set the mathematical model for the natural statistical
phenomena of the spectra of hydrogen atoms.

We assume that the physical system is the set of hydrogen atoms. This
physical system Ω = Ω(B, P ) is assumed to be the probability space.

Its elementary event ρ is one hydrogen atom. This hydrogen atom is the
combined system of one proton and one electron.

Therefore, the considered physical system is an example of the system of
two particles.

Then the position variable r(ρ) of one hydrogen atom ρ is the combined
system r(ρ) = (r1(ρ), r2(ρ)) of the position variable r1(ρ) of one proton and
the position variable r2(ρ) of one electron.

Corresponding to this, the momentum variable p(ρ) of one hydrogen atom ρ
is the combined system p(ρ) = (p1(ρ),p2(ρ)) of the momentum variable p1(ρ)
of one proton and the momentum variable p2(ρ) of one electron.
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Then, the variable r changes in the space R6 and the variable p changes in
the dual space R6.

Further, the variables r1 and r2 change in the space R3 and the variables
p1 and p2 change in the dual space R3.

Here, since the 3-dimensional Euclidean space R3 is self-dual, we identify
the space R3 and its dual space R3. Then we denote the 3-dimensional Eu-
clidean space and its dual space with the same symbol R3.

A proton and an electron interact by virutue of the Coulomb potential

V (r) = − e2

|r1 − r2|
.

Then the mechanical energy of each hydrogen atom ρ is determined by virtue
of Newtonian mechanics.

Its value is equal to

2∑
i=1

1

2mi
(pi(ρ))

2 + V (r(p)).

Here, the masses of the proton and the electron are m1 and m2 respectively and
the electric charges of the proton and the electron are e and −e respectively.

We consider that this energy variable is a natural random variable on the
probability space Ω. This is a continuous random variable.

Then r = r(ρ) and p = p(ρ) obtain the values corresponding to every
hydrogen atom respectively.

Thus, in general, we can consider that their values are distributed in the
random manner.

In these senses, we may consider that r = r(ρ) and p = p(ρ) are random
variables.

Further, since, especially, they are the natural random variables defined
on the physical system Ω, these are the forms of phenomena as the natural
statistical phenomena.

Then, as the natural statistical phenomena, the dependence on the space
and the time of the position variable and the momentum variable of hydrogen
atoms and, thereby, the probability distribution laws of the position variable
and the momentum variable are determined legally.

This is why the motion of the proton and the electron of a hydrogen atom
is determined by virtue of the law of Newtonian equation of motion.

Here we consider that the hydrogen atoms are usually in the bound state.
Therefore, the Schrödinger operator has only the negative discrete eigen-

values. They are determined afterward.
Then, by virtue of the law II in Ito[1], section 2.2, the natural probability

distribution law of r = r(ρ) is determined by the L2-density ψ(r) and the
natural probability distribution law of p = p(ρ) is determined by its Fourier

transform ψ̂(p).

4

Then, as the expectation value E of the energy variable of the total physical
system is obtained in the following :

E = E
[ 2∑

i=1

1

2mi
|pi(ρ)|2 + V (r(ρ))

]

= E
[ 2∑

i=1

1

2mi
|pi(ρ)|2

]
+E

[
V (r(ρ))

]

=

∫ ( 2∑
i=1

1

2mi
|pi|2

)
|ψ̂(p)|2 dp+

∫
V (r)|ψ(r)|2dr

=

∫ ( 2∑
i=1

ℏ2

2mi
|∇riψ(r)|2 + V (r)|ψ(r)|2

)
dr.

Here we use the Planeherel formula for the Fourier transformation. Further,
we consider that the integration domain is the total space.

Then, we denote this energy expectation value as

J [ψ] =

∫ ( 2∑
i=1

ℏ2

2mi
|∇ri

ψ(r)|2 + V (r)|ψ(r)|2
)
dr.

We also say that J [ψ] is the energy functional.
Here, in order to choose the L2-density ψ(r) determined really in the equi-

librium state or the stationary state among the admissible L2- densities ψ(r)
which determine the natural probability distribution law of the position vari-
able r = r(ρ) of the hydrogen atom ρ, we consider the variational principle
and the variational problem in the following.

Principle I (variational principle)
The L2-density ψ(r) realized really in the equilibrium state is the stationary

function of the energy functional J [ψ].

In order to determine the stationary function in the principle, we consider
the variational problem in the following.

Problem I (variational problem)
Among the admissible L2-densities ψ, determine the L2-density ψ so that

the energy functional J [ψ] has its stationary value.

The L2-density ψ(r) obtained as the solution of the variational problem in
the above determines the natural statistical phenomena observed really.
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3　Mathematical analysis

In this section, we consider the mathematical analysis for the mathematical
model considered in section 2. By solving the variational problem in section
2, we solve the Schrödinger equation in the stationary state for the system of
hydrogen atoms and the time-evolving Schrödinger equation . 　

As the Euler equation for the variation problem in Problem I in section 2,
we obtain the Schödinger equation

(
− ℏ2

2m1
∆1 −

ℏ2

2m2
∆2 −

e2

|r1 − r2|

)
ψ = Eψ. (3.1)

Here E is the Lagrange’s indeterminate multiplier. Further, ∆1 = ∆r1

and ∆2 = ∆r2
are Laplace operators with respect to the variables r1 and r2

respectively.
The L2-density ψ, which is a solution of Problem I, is obtained as a solution

of the Schödinger equation in the above.
By the similar consideration as the discussion until now, we can derive the

time- evolving Schrödinger equation

iℏ
∂ψ(r, t)

∂t
= (− ℏ2

2m1
∆1 −

ℏ2

2m2
∆2 −

e2

|r1 − r2|
)ψ(r, t).

When we consider the mecanical motion of the system of two particles, we
happen to consider the motion of the center of gravity by its separation.

Then the motion of the center of gravity is the linear uniform motion.
Corresponding to this, the relative motion of the system of two particles is

considered as the motion of one particle with the converted mass

µ =
m1m2

m1 +m2

under the action of the potential V (r) of the central force. Corresponding to
this, we can consider the separation of the motion of center of gravity in the
Schödinger equation.

Then, the motion of the center of gravity is considered as the motion of
the system of free particles with the mass M = m1 +m2. Against to this, the
relative motion of the system of two particles is considered as the motion of
the system of one particle with the converted mass µ under the action of the
potential V (r) of the central force.

Really, the observation of the spectra of the hydrogen atom is the effect of
this relative motion. The effect of the motion of the center of gravity can be
neglected.

Therefore, in the real fact, we may consider that the center of gravity is
stationary.

6

Then, since the converted mass µ is nearly equal to the mass m of the
electron, we may consider the approximation in the following in order to solve
the Schödinger equation (3.1) really.

In the first approximation, we consider that the proton is infinitely heavy
and we consider that the hydrogen atom is the system of one particle of one
electron in the field of Coulonb force.

Therefore, we consider that the physical system considered here is the prob-
ability space

Ω = Ω(B, P )

composed of electrons moving under the condition in the above.
This is the system of one particle.
Then, we consider the position variable of one electron ρ as r = r(ρ) and

the momentum variable of ρ as p = p(ρ).
Then, the variable r moves in the space R3 and the variable p moves in its

dual space R3.
Then, each electron moves under the action of the potential

V (r) = −e2

r
, (r = |r|).

Then the Schrödinger equation describing the stationary states of the sys-
tem of free electrons is given by the formula

(
− ℏ2

2m
∆− e2

r

)
ψ(r) = Eψ(r).

Here ∆ = ∆r denotes the Laplacian operator with respect to r and we put
r = |r|. We denote the mass of an electron as m.

Then, by solving the Schrödinger equation in the stationary state, we de-
termine the eigenvalues En and the system of the corresponding eigenfunctions
ψnlm.

In the sequel, we prepare the symbols in order to solve this eigenvalue
problem. We write the results in the theorem. Then, the eigenvalue E is equal
to

En = −|En| = − me4

2ℏ2n2
, (n = 1, 2, · · · ).

Now, we define the polynomial functions L
(m)
n (z) by the formulas

L(m)
n (z) =

1

n!
z−mez

dn

dzn
(zn+me−z), (n = 1, 2, · · · ,m = 1, 2, · · · ).

We say this function L
(m)
n (z) as Laguerre’s bi-polynomial.

Then we have the normalization conditions in the following:

∫ ∞

0

e−zz2l
[
L
(2l+1)
n+l (z)

]2
z2dz =

2n[(n+ l)!]3

(n− l − 1)!
.

7
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Thereby, we define the solution

R(r) = Rnl(r)

by the formula

Rnl(r) = −{
(
(

2

na0
)3

(n− l − 1)!

2n[(n+ l)!]3
)
}1/2e−s/2slL2l+1

n+l (s),

a0 =
ℏ2

me2
, s =

2

na0
r.

Then the function Rnl(r) satisfies the orthonormalization condition in the
following.

Theorem 3.1(Orthonormalization condition)
In the notation in the above, we have the equalities in the following:

∫ ∞

0

Rn′l(r)
∗Rnl(r)r

2dr = δnn′ , (n, n′ = 1, 2, · · · ).

In the next, we define the spherical function Y m
l (θ, ϕ) by the formulas

Y m
l (θ, ϕ) =

√
(2l + 1)

4π

(l − |m|)!
(l + |m|)!

Pn
l (cos θ)e

imθ, (l = 0, 1, · · · , n− 1, |m| ≤ l).

Then we call that Pl(x) and Pm
l (x), (|x| < 1)) are Laguerre’s polynomial

and Laguerre’s bi-polynomial and we define them by the formulas in the fol-
lowing:

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l,

Pm
l (x) =

1

2ll!
(1− x2)

|m|
2

dl+|m|

dx|+|m| (x
2 − 1)l = (1− x2)

|m|
2

d|m|

dx|m|Pl(x), (|m| ≤ l).

As for these, we have two orthonormalization conditions in the following.

Theorem 3.2 (orthonormalization condition). In the notation in the
above, we have the equalities in the following:

∫ 1

−1

Pm
l (x)Pm

l′ (x)dx =
2

(2l + 1)

l + |m|
(l − |m|)!

δll′ .

Theorem 3.3 (Orthonormalization condition) In the notation in the
aboves, we have the equalities in the following:

∫ 2π

0

dϕ

∫ π

0

Y m′

l′ (θ, ϕ)∗Y m
l (θ, ϕ) sin θdθ = δll′δmm′ .

8

Then n is said to be a principal index. If we have the principal index n,
the directional index l can attain the n values of l such as 0, 1, 2, · · · , n− 1.
Further, for each value of l, the magnetic index m can attain the (2l + 1)
values of m such as −l,−l + 1, · · · , l − 1, l.

Here it is ordinary to use m as the magnetic index. Although we denote m
for the mass of an electron, it is a convention to venture to use the same letter.
Therefore, for a fixed value of n, we have the number

n−1∑
l=0

(2l + 1) = n2

of the linearly independent eigenfunctions and they attach to the same eigen-
value En.

For one l, the (2l + 1)-eigenfunctions are degenerated because we have the
special reason why the potential is spherically symmetric.

The eigenvalue En is determined by only one principal index n and inde-
pendent of l since the potential is the Coulomb potential especially.

Then the eigenfunctions in the stationary state of the system of hydrogen
atoms are determined in the following.

Namely, the eigenfunction corresponding to the indices n, l and m is deter-
mined in the following:

ψnlm(r, θ, ϕ) = Rnl(r)Y
m
l (θ, ϕ),

Rnl(r) = −{( 2

nao
)3

(n− l + 1)!

2n[(n+ l)!]3
}1/2e−s/2slL

(2l+1)
n+l (s),

Y m
l (θ, ϕ) =

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

Pm
l (cos θ)limϕ,

by considering the normalization conditions. Here we assume

n ≥ 1, 0 ≤ l ≤ n− 1, |m| ≤ l.

Here we put

a0 =
ℏ2

me2
, s =

2

na0
r.

By virtue of the above, we can solve the eigenvalue problem of the Schrödinger
equations for the system of hydrogen atoms.

Namely, we have the following.

Theorem 3.4 (Eigenvalue problem)
The function ψnlm(x, y, z) = ψnlm(r, θ, ϕ) defined in the above is the eigen-

function of the Schrödinger operator

H = − ℏ2

2m
∆− e2

r

9
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Thereby, we define the solution
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2

na0
)3

(n− l − 1)!

2n[(n+ l)!]3
)
}1/2e−s/2slL2l+1

n+l (s),

a0 =
ℏ2

me2
, s =

2

na0
r.

Then the function Rnl(r) satisfies the orthonormalization condition in the
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∫ ∞

0
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√
(2l + 1)

4π

(l − |m|)!
(l + |m|)!

Pn
l (cos θ)e
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1

2ll!

dl

dxl
(x2 − 1)l,
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l (x) =

1

2ll!
(1− x2)

|m|
2

dl+|m|

dx|+|m| (x
2 − 1)l = (1− x2)

|m|
2

d|m|

dx|m|Pl(x), (|m| ≤ l).
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2
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(l − |m|)!
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0
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0

Y m′
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l (θ, ϕ) sin θdθ = δll′δmm′ .
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associated to the eigenvalue

En = − me4

2ℏ2n2
.

Namely, we have the equalities

(
− ℏ2

2m
∆− e2

r

)
ψnlm = Enψnlm,

(n = 1, 2, · · · ; l = 0, 1, · · · , n− 1; |m| ≤ l).

Then the eigenfunction

ψnlm(r) = ψnlm(x, y, z) = ψnlm(r, θ, ϕ)

of Theorem 3.4 satisfies the orthonomality condition.

Theorem 3.5 By virtue of the notation in the above, we have the equal-
ities; 　 ∫

ψn′l′m′(r)∗ψnlm(r)dr = δnn′δll′δmm′ .

Further the system of eigenfunctions {ψnlm(r)} in the above satisfies the
completeness condition in the following.

Theorem 3.6 (Completeness) By virtue of the notation in the above,
we have the equality in the following: 　

∞∑
n=1

n−1∑
l=0

l∑
m=−l

ψnlm(r′)∗ψnlm(r) = δ(r′ − r), (r′, r ∈ R3).

Theorem 3.7 (Theorem of eigenfunction expansion) We consider
the system of eigenfunctions {ψnlm(r)} in the above.

Then, for a square integrable function ψ(r) on R3, we have the equality in
the following:

ψ(r) =

∞∑
n=1

n−1∑
l=0

l∑
m=−l

cnlmψnlm(r).

Here the Fourier coefficient cnlm is defined by the formula

cnlm =

∫
ψnlm(r)∗ψ(r)dr.

Here we assume that the integration domain is the entire space. Then the
series in the right hand side converges in the sense of L2-convergence.
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Especially we assume that ψ(r) is a L2-density. Then we have the equality

∫
|ψ(r)|2dr = 1.

The Fourier coefficients {cnlm} defined in Theorem 3.7 satisfy the condition

∞∑
n=1

n−1∑
l=0

l∑
m=−l

|cnlm|2 = 1.

Here we follow the inverse of the method of separation of variables. Then, we
deduce the time-evolving Schrödinger equation.

At first, we consider the function

ψnlm(r, t) = ψnlm(r)exp
[
−i

En
ℏ
t
]
.

By differentiating partially both sides of this equation by t partially, we have
the equality

iℏ
∂ψnlm(r, t)

∂t
= Enψnlm(r)exp

[
−i

En
ℏ
t
]
.

Here we define the Schrödinger operatorH for the system of hydrogen atoms
as

H = − ℏ2

2m
∆− e2

r
.

Then we have the equality

Hψnlm(r) = Enψnlm(r).

Therefore we have the equality

iℏ
∂ψnlm(r, t)

∂t
= Enψnlm(r)exp

[
−i

En
ℏ
t
]
= Hψnlm(r, t).

Now we put

ψ(r, t) =

∞∑
n=1

n−1∑
l=0

l∑
m=−l

cnlmψnlm(r, t)

by using the Fourier coefficients {cnlm} of the initial condition ψ(r).
Then ψ(r, t) satisfies the equation

iℏ
∂ψ(r, t)

∂t
= Hψ(r, t).

This equation is the Schrödinger equation for the certain system of hydrogen
atoms in the stationary state.

11
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Namely we have the following .

Theorem 3.8 Assume that the functions ψ(r) and ψ(r, t) as above.
Then, ψ(r, t) is the solution of the initial value problem

iℏ
∂ψ(r, t)

∂t
=
(
− ℏ2

2m
∆− e2

r

)
ψ(r, t),

ψ(r, 0) = ψ(r), (initial condition),

(r ∈ R3, 0 < t < ∞)

for the time-evolving Schrödinger equation.

By using the Plancherel equality for the Fourier transformation, the energy
functional J [ψ] is expressed in the following:

J [ψ] =

∫
ψ(r)∗

(
− ℏ2

2m
∆− e2

r

)
ψ(r)dr.

Therefore, by virtue of Theorem 3.4, we have the equalities

J [ψnlm] = En, (n = 1, 2, · · · ; l = 0, 1, · · · , n− 1; |m| ≤ l).

Then, by virtue of Theorem 3.7, we have the equality

J [ψ] =

∞∑
n=1

n−1∑
ψ=0

l∑
m=−l

|cnlm|2J [ψnlm]

=

∞∑
n=1

n−1∑
l=0

l∑
m=−l

|cnlm|2 En

= −me4

2ℏ2
∞∑

n=1

n−1∑
l=0

l∑
m=−l

1

n2
|cnlm|2.

Here, we put

pn =

n−1∑
l=0

l∑
m=−l

|cnlm|2, (n = 1, 2, · · · ).

Then we have the equalities

J [ψ] = −me4

2ℏ2
∞∑

n=1

1

n2
pn,

0 ≤ pn ≤ 1, (n = 1, 2, · · · ),
∞∑

n=1

pn = 1.
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4　Phenomena of the spectra of hydrogen atoms

In this section, by using the theory of natural statistical physics, we study
the natural statistical meaning of the phenomena of the spectra of hydrogen
atoms.

By virtue of the study in sections 1∼ 3, we have the fundamental proposition
4.1 in the following.

Here the fundamental proposition is the statement on the physical phe-
nomena concerning the system of hydrogen atoms.

Fundamental Proposition 4.1
We can see that the physical system Ω of hydrogen atoms has the following

structure in the stationary state.
Namely Ω is the direct decomposition in the following:

Ω =
∞∑

n=1

Ωn. (4.1)

Here we have the formulas

p(Ωn) = pn, (n = 1, 2, · · · ),
∞∑

n=1

pn = 1.

Further each Ωn is decomposed as the direct sum in the following:

Ωn =

n−1∑
l=0

l∑
m=−l

Ωnlm.

Then we have the formulas in the following:

P (Ωnlm) = |cnlm|2,

pn =

n−1∑
l=0

l∑
m=−l

|cnlm|2, (n = 1, 2, · · · ),

∞∑
n=1

pn =

∞∑
n=1

n−l∑
l=0

l∑
m=−l

|cnlm|2 = 1.

Then we have the fundamental proposition 4.2 in the following.

Fundamental Proposition 4.2

13
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For every A ∈ B, we have the equality

P (A) =
∞∑

n=1

P (Ωn)PΩn
(A) =

∞∑
n=1

n−1∑
l=0

l∑
m=−l

P (Ωnlm)PΩnlm
(A).

Here PΩn(A) and PΩnlm
(A) denote the conditional probabilities.

Here, since we study the spectra of hydrogen atoms, we consider only the
principal index n. Therefore we consider the direct sum decomposition(4.1) of
Ω,

Then, for the domains A and B of R3, we have the equalities:

PΩnlm

(
{ρ ∈ Ωnlm; r(ρ) ∈ A}

)
=

∫

A

|ψnlm(r)|2 dr,

PΩnlm

(
{ρ ∈ Ωnlm;p(ρ) ∈ B}

)
=

∫

B

|ψ̂nlm(p)|2 dp.

Therefore, we have the fundamental proposition 4.3 in the following.

Fundamental Proposition 4.3
The energy expectation value of the excited state Ωnlm is equal to

EΩnlm

[ 1

2m
p(ρ)2 − e2

r

]
= J

[
ψnlm

]
= En,

(n = 1, 2, · · · ; l = 0, 1, · · · , n− 1; |m| ≤ l).

Then, by virtue of the relation of the physical system Ω and the excited
states Ωnlm, the energy expectation value of the physical system Ω is equal to

E = E
[ 1

2m
p(p)2 − e2

r

]
=

∞∑
n=1

n−1∑
l=0

l∑
m=−l

|cnlm|2En

=

∞∑
n=l

Enpn = −me4

2ℏ2
∞∑

n=1

1

n2
pn.

Therefore we have the fundamental proposition 4.4.

Fundamental Proposition 4.4
The physical system Ω of hydrogen atoms in the stationary state is realized

as the mixed state of the excited states. The excited state Ωn of the energy
expectation value En is the mixed states of the n2 excited states Ωnlm, (l =
0, 1, · · · , n− 1; |m| ≤ l).

The ratio of those exicited states Ωn is determined by the sequence {pn}∞n=1.

14

5　Consideration

By virtue of the analysis in this paper, we understood the phenomena of
the spectra of hydrogen atoms.

Then the L2-densities ψnlm(r, t) and ψ(r, t) are varying with time t by the
reason why an electron in the hydrogen atom is moving by virtue of Newtonian
equation of motion under the Coulomb force. Then the Fourier type coefficients
{cnlm} are varying with time, and thereby, the values {pn} are varying with
time.

Therefore, the mechanical energy of each hydrogen atom is varying with
time. At each time, the physical system Ω of the hydrogen atoms is the mixed
system of the excited systems Ωn, (n ≥ 1) as in the Fundamental Proposition
4.4.

Thus the belonging to each excited state Ωn is varying.
As for each electron in each hydrogen atom, the electron is rotating around

the proton by virtue of Coulomb force.
Thereby, the kinetic energy of the electron in the hydrogen atom is varying

by the absorption and the radiation of the electro-magnetic waves. The sys-
tem of hydrogen atoms with such electrons is the mixed system of the excited
systems with the energy expectation values each wise at every time. Thereby
the spectra are observed by virtue of Bohr’s law.

Then we do not say that each electron transits discontinuously from one
excited state to another excited state.

Since an electron in each hydrogen atom is rotating continuously by virtue
of Newtonian equation of motion, the energy of each electron is varying con-
tinuously.

At each time, the energy expectation values of the excited states are discrete
as a whole.

Then we have Bohr’s rule about the relations of the energy expectation
values and the spectra of hydrogen atoms.

Thereby, for the excited state Ωn with the mean energy En and the exited
state Ωm with the mean energy Em, we can observe the spectral line according
to the difference of these mean energies

En − Em.

This is well identified with the spectral distribution observed really for the
hydrogen atoms.

As the historical facts, we know that the spectra of the hydrogen atoms are
in the following.

Here we remember the Bohr’s law proposed in 1913.
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the proton by virtue of Coulomb force.
Thereby, the kinetic energy of the electron in the hydrogen atom is varying

by the absorption and the radiation of the electro-magnetic waves. The sys-
tem of hydrogen atoms with such electrons is the mixed system of the excited
systems with the energy expectation values each wise at every time. Thereby
the spectra are observed by virtue of Bohr’s law.

Then we do not say that each electron transits discontinuously from one
excited state to another excited state.

Since an electron in each hydrogen atom is rotating continuously by virtue
of Newtonian equation of motion, the energy of each electron is varying con-
tinuously.

At each time, the energy expectation values of the excited states are discrete
as a whole.

Then we have Bohr’s rule about the relations of the energy expectation
values and the spectra of hydrogen atoms.

Thereby, for the excited state Ωn with the mean energy En and the exited
state Ωm with the mean energy Em, we can observe the spectral line according
to the difference of these mean energies

En − Em.

This is well identified with the spectral distribution observed really for the
hydrogen atoms.

As the historical facts, we know that the spectra of the hydrogen atoms are
in the following.

Here we remember the Bohr’s law proposed in 1913.
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Bohr’s law We use the notation in the above. Then, when we define the
frequency of the observed light as ν, we have the relation

hν = En − Em.

Here h denotes the Planck’s constant.

By virtue of the consideration until now, the value of ν is equal to

ν =
mee

4

4πℏ3
( 1

m2
− 1

n2

)
.

Here me denotes the mass of the electron. Here, in the case m = 2, this is
identified with the spectral lines of the visible light absorbes or radiates from
the hydrogen atoms.

This was discovered by Balmer in 1885．
This is, so called today, the sequence of Balmer’s type.
The spectral sequences known until now are as follows.
By expressing these by virtue of Rydberg’s expression, we have the follow-

ing.

(1) Lyman series (discovered in 1906);

ν = Rc
( 1

12
− 1

n2

)
, (n = 2, 3, · · · ).

(2) Balmer series (discovered in 1885);

ν = Rc
( 1

22
− 1

n2

)
, (n = 3, 4, · · · ).

(3) Paschen series (discovered in 1908);

ν = Rc
( 1

32
− 1

n2

)
, (n = 4, 5, · · · ).

(4) Brackett series (discovered in 1922);

ν = Rc
( 1

42
− 1

n2

)
, (n = 5, 6, · · · ).

(5) Pfund series (discovered in 1924);

ν = Rc
( 1

52
− 1

n2

)
, (n = 6, 7, · · · ).
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Here R denotes the Rydberg constant and its value is given as follows;

R = 1.09737× 105cm−1, (actual value),

Rch = 13.61eV, (dimension of energy).

By the study until now, R is equal to

R =
mee

4

4πcℏ3

as the theoretically calculated value.
By the study in the above, the theoretical value and the actual value for R

coincide well.
The Bohr’s law in the above was discovered as the hypothesis.
At first, in 1914, this was proved by Frank-Hertz’s experiment. By virtue

of the consideration of the observed data of Frank-Hertz’s experiment, it is
proved that we have the regularity such as Bohr’s hypothesis. Thereby, Bohr’s
hypothesis is established as Bohr’s law.

Thereby we can understand and explain reasonably the spectral lines of
hydrogen atoms known until now by virtue of the law of the natural statistical
physics.

As a result, it is only the fact that the electron is rotating around the
proton by virtue of Newtonian equation of motion by Coulomb interaction in
the hydrogen atom.

Thereby, in the system Ω of hydrogen atoms, each hydrogen atom radiates
or absorbs the electro-magnetic waves according the large or small quantity of
its kinetic energy.

This is the reason why, by virtue of the principle of balancing of the energy,
each hydrogen atom absorbs or radiates the electro-magnetic wave according
to the size of their energy.

This arises as the phenomena of acceleration or slowdown of the rotation
of the electron. Then we observe the spectra of hydrogen atoms by virtue of
Bohr’s law.

If we consider only one hydrogen atom, it continues to radiate the electro-
magnetic waves by virtue of rotation of the electron around the proton, and
finally, the rotation of the electron around the proton will stop. If it happens
to be so, the considered system of the proton and the electron cannot exist as
the hydrogen atom.

Nevertheless, when we really consider the system of hydrogen atoms, each
hydrogen atom radiates and absorbs the electro-magnetic waves between the
hydrogen atoms and the surroundings by virtue of the principle of balancing
of the energy. Thereby, its electron can continues the rotation.

Therefore, in the system of hydrogen atoms, the electron in each hydrogen
atom can continue the rotation without stopping.
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Thus, when we study the phenomena by using the natural statistical physics,
we can see clearly that the phenomena of the spectra of hydrogen atoms arise
by the rotation of the electrons around the protons.

It is the big discovery that we can see concretely the true phase of the
physical phenomena.
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