J. Math. Tokushima Univ.
Vol. 59 (2025), 13- 19

On Compare of Two Types of Battles in
Lanchester’s Classic Aimed-fire Model

By
Kosuke ONO

Department of Mathematical Sciences,
Tokushima University, Tokushima 770-8502, JAPAN
e-mail : k.ono@tokushima-u.ac.jp

(Received March 31, 2025)

Abstract

Consider two types of battles in Lanchester’s classic aimed-fired
model of warfare. In one battle, the initial combatants of one force
are divided into n parts. We analyze the conditions for victory and
compare the battles’ end times.
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1 Introduction

In this paper, we consider Lanchester’s classic aimed-fire model of warfare :

{ 2! (t) = —ay(t)

y/(t) = —Ba(t) .

which describes combat between X and Y forces, where x and y represent the
number of engaged X and Y combatants, respectively. The parameters a and
[ are the individual fighting values of Y and X forces, respectively, and are
positive constants. The ratio E = «/f is called the exchange ratio (see [2] and
5)).

Throughout this paper we consider only non-negative solutions. The initial
value problem (1.1) for ¢t > ¢y with initial conditions x(ty) = z¢ > 0 and
y(to) = yo > 0 satisfies the well-known Lanchester’s square law :

2(t)® — Ey(t)? = 23 — By (1.2)
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Furthermore, through fundamental calculations, we derive the following repre-
sentation formula for solutions x = z(t) and y = y(t) :

1
x(t) = 5 {(xo +VEy)e VAPt 4 (g — \/Eyo)e\/@(t—to)} (1.3)

and
1
y(t) = B {(:Eo + VEy)e VaBt=to) _ (4, — \/Eyo)em(tft(’)} (1.4)

(see [3] and [4]).

For simplicity, we assume this battle to be a battle of annihilation, meaning
it ends when the number of Y force’s combatants reaches zero at which point
X force achieves victory.

2 Results

We compare the following two types of battles where the initial number of
combatants for X and Y forces are x¢g > 0 and yg > 0, respectively.

Type I : We consider the initial value problem (1.1) for 0 < ¢ < T with initial
conditions x(0) = z¢ and y(0) = yo. In this scenario, X force wins the battle
at time ¢ = T, meaning y(T') = 0 (while z(T") > 0).

Type II : X force divides Y force’s initial combatants into n parts and engages
them sequentially. X force ultimately wins the battle (see [1] for n = 2). Let
the proportion of each division be 64,60s,--- ,6,, where 61 + 65 +---+6,, =1
and 0 < 0, < 1. For each k =1,2,--- ,n, we consider the initial value problem
(1.1) for Ty—1 <t < T} (where Ty = 0) with initial conditions x(Tk_1) = Tx—1
and y(Tk—1) = Oryo, and y(T) = 0 (while 2, = x(T}) > 0). In this scenario,
X force wins the battle at t = T),, meaning y(7},) = 0 (while z(T},) > 0), and in
addition, X force’s aim is to achieve victory with the smallest possible number
of initial combatants

Our main results are as follows.
Theorem 1 (1) For the battle of Type I, the victory condition for X force is
o > \/Eyo . (21)

The end time T of the battle is given by

T

1 log To + \/Eyo
2vap zo—VEy |’

where the remaining X force at time T is x(T) = \/x3 — Ey3.
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(2) For the battle of Type II (with n divisions), the optimal victory condition

for X force is
E
To >4/ —Yo- (2.3)
n

The end time T,, of the battle is given by

1 1 "1:[1 xf — k(@yo)2 + @yo (2.4)
0 , )
2v/as o 22 — k(YEyp)2 — VB
= 0 n Yo) Yo

T, =

=l
5

where the remaining X force at time T, is z(T,) = \/23 — £42.

(3) Furthermore, under condition (2.1), the following inequality holds
T>T, (2.5)
form > 2.

Proof. (1) We consider the initial value problem (1.1) for 0 < ¢t < T with
initial conditions x(0) = z and y(0) = yo. When X force wins against Y force
at time t = T (i.e. y(T) = 0 while 2(T") > 0), we obtain from (1.2) with tg =0
that =(T) = /22 — Ey2. Thus, the victory condition of X force is zg > v Eyo
which implies (2.1).

When y(T) = 0, using the representation formula (1.4) with ¢, = 0 for
solution y, we have

(z0 + VEyo)e VBT — (2o — VEyo)eV*PT = 0.

Solving for the end time T of the battle, we obtain

To + \/Ey0>

1
T=—=log| ———
2\/075 (J)O — \/Eyo

which implies (2.2).

(2) First, we consider the initial value problem (1.1) for 0 < ¢ < Ty with
initial conditions z(0) = x¢ and y(0) = 61yg. When X force wins against Y
force at time t = T (i.e. y(71) = 0 while 2(77) > 0), we obtain from (1.2) with

to = 0 that
1 =x(Ty) = \/22 — EO3y? . (2.6)

When y(T1) = 0, using (1.4) with tp = 0 and initial conditions x(0) = xg
and y(0) = 61yo, we have

(zo + \/Eelyo)e_mTl — (zo — \/Eﬁlyo)emTl =0.



16 Kosuke Ono

Solving for T3, we obtain

T

LI <x0+\/E91y0) . (2.7)

= Og
2vap zo — V' Eb1y0
Next, we consider the initial value problem (1.1) for T} <t < Ty with initial

conditions x(T1) = x1 and y(T1) = O2y0. When X force wins against Y force
at time ¢t = Ty (i.e. y(T3) = 0 while 2(T3) > 0), we obtain from (1.2) with

to = T1 that
zy = 2(Tz) = \/ 23 — E03y}

=\/af — B0} + 63)y3 , (2.8)

where we used (2.6).
When y(T3) = 0, using (1.4) with ¢, = T3 and initial conditions z(T}) = 23
and y(T1) = 0210, we have
(21 + VEbOyyo)e VP10 _ (1) — VEfyyo)eV P21 —

Solving for T5, we obtain

Ty =T +

1 log x1 + VEbyo
2V ap x1 — VEbyo

_ 1 log zo + VEb1yo 1+ VEf2y0
2Vap Ty — \/Eglyo Ty — \/E92y0 ’

where we used (2.7).

By repeating a similar argument, we finally consider the initial value prob-
lem (1.1) for T,y < t < T, with initial conditions z(T;,,—1) = x,-1 and
y(Tn—l) = enyO

When X force wins against Y force at time ¢t = T,, (i.e. y(T,,) = 0 while
z(T,) > 0), we obtain from (1.2) with to = T}, that

1= (Ty) = \J22_, — 623

=22 —E0?+03+ - +02)y2 (2.10)

(2.9)

(see (2.8)).
When y(T,,) = 0, using (1.4) with tg = T,,—; and initial conditions z(7T},_1) =
Tpn—1 and y(T,,—1) = 0,y0, we have

(Tn_1 4+ VEbOyo)e VoPTn=To=1) _ (g, | — VEB,ye)eV*PTn=Tn-1) —
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Solving for T;,, we obtain

L +VE
T =Tos + SR \Fe”y‘))

1
lo
2\/ Oéﬁ & (xn—l - \/Eenyo

_ 1 log ﬁ zr + VEOk 10
2v/ap o Tk — VEOg 190
where we used (2.7) and (2.9).
Noting the relationship between the arithmetic and geometric means, we

see that 62 4603+ - - +602 becomes the smallest when 6 =y = --- = 0,, = 1/n.
Then, we have from (2.10) with ¢; = 0 = --- = 0,, = 1/n that

/ E
z, =2(Th) = x(%_gy?) >0,

and hence, we see that the optimal victory condition of X force is

|E
To > {\/ —Yo (2.12)
n
which implies (2.3).

Moreover, when ¢y =0y = --- =6, = 1/n, from (2.11) and

e

for k=1,2,--- ,n—1 (see (2.6), (2.8) and (2.10)), we obtain the end time T,

Of the batlle Such that
\/ z k Yo Yo

n—1
1
=——1log
2vap k[[o 2§ — k(¥Ey0)? — YEyo

(2.11)

=

T,

which implies (2.4).

(3) Lastly, we will investigate the relationship between T given by (2.2) and
T, given by (2.4).

When n > 2 and x > ny > 0, the following inequality holds

[[VEfrt st (2.14)
oo Va2 —ky?—y Ty
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To verify this, note that for k =0,1,2,--- ;n—1,
\/:c2—ky2+y_:c+ky Va? —ky*+y - ky? +ky
Vi — k2 —y T ky \/7ky—y \/7@/—/@

22 + (k+1)y/22 — ky?y

—(k+1)\/2? — ky?y
22+ (k+ 1)y
<—
—(k+1)ay
Cw+(k+1)y
x—(k+1)y
Applying this inequality iteratively, we obtain
H\/ —ky*+y
—ky*—y
H\/ —ky*+y \/ —y*+y Tty
—ky*—y PoyPoy Ty
n—1 2 B)
2 —ky’+y x+2
<H _ y2 Yy 29
oo VIE—kyr—y T —2Y
n—1 2—](12 3
<H x2 y2+y_x+ Y
oy vVt —ky? —y r—3y
- <m+y z+(n—1y
22— (n-1)y2—y v—(n-1)y
< Thny
T —ny

Thus, from inequality (2.14) with z = z¢ and y = @ym we obtain

nl \V .’IT% - k(@QO)Q + @yo o + \/Eyo
log H < log —_— |,

k=0 \/ag — k(¥Eyp)2 — XEy, 70 = VEyo

and hence, we conclude that T;, < T which implies (2.5). O
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