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Since m1 and m0 are coprime,

(
(2d)m1 − 1

2d − 1

)
and

(
(2d)m0 − 1

2d − 1

)
are coprime.

Therefore,

(2r+s − 1)(2r − 1) =

(
(2d)m1 − 1

2d − 1

)(
(2d)m0 − 1

2d − 1

)
(2d − 1)2 = □,

implies both

(
(2d)m1 − 1

2d − 1

)
= □ and

(
(2d)m0 − 1

2d − 1

)
= □.

Then, m1 = (r + s)/d > m0 = r/d ≥ 1. From Nagell-Ljunggren’s results for

m > 2, (m1,m0) must be (2, 1). Since

(
(2d)2 − 1

2d − 1

)
= 2d + 1 = □, we have

d = 3 by virtue of the Mihăilescu’s theorem. Thus (r, s) = (2d, d) = (6, 3)
and K(6, 3)(2) = 33 · 72 = 212. Therefore, K(6, 3)(2) is the only one square
K(r, s)(2) for the case s > 0.

Remark 7.4 The 2nd Kaprekar’s constant K2(r)(2) = (2r+1)2 − 3(2r+1) + 1
is never square for r ≥ 2.
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Abstract

Consider two types of battles in Lanchester’s classic aimed-fired
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compare the battles’ end times.
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1 Introduction

In this paper, we consider Lanchester’s classic aimed-fire model of warfare :

{
x′(t) = −αy(t)

y′(t) = −βx(t)
(1.1)

which describes combat between X and Y forces, where x and y represent the
number of engaged X and Y combatants, respectively. The parameters α and
β are the individual fighting values of Y and X forces, respectively, and are
positive constants. The ratio E = α/β is called the exchange ratio (see [2] and
[5]).

Throughout this paper we consider only non-negative solutions. The initial
value problem (1.1) for t ≥ t0 with initial conditions x(t0) = x0 > 0 and
y(t0) = y0 > 0 satisfies the well-known Lanchester’s square law :

x(t)2 − Ey(t)2 = x2
0 − Ey20 . (1.2)
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Furthermore, through fundamental calculations, we derive the following repre-
sentation formula for solutions x = x(t) and y = y(t) :

x(t) =
1

2

{
(x0 +

√
Ey0)e

−
√
αβ(t−t0) + (x0 −

√
Ey0)e

√
αβ(t−t0)

}
(1.3)

and

y(t) =
1

2

{
(x0 +

√
Ey0)e

−
√
αβ(t−t0) − (x0 −

√
Ey0)e

√
αβ(t−t0)

}
(1.4)

(see [3] and [4]).
For simplicity, we assume this battle to be a battle of annihilation, meaning

it ends when the number of Y force’s combatants reaches zero at which point
X force achieves victory.

2 Results

We compare the following two types of battles where the initial number of
combatants for X and Y forces are x0 > 0 and y0 > 0, respectively.

Type I : We consider the initial value problem (1.1) for 0 ≤ t ≤ T with initial
conditions x(0) = x0 and y(0) = y0. In this scenario, X force wins the battle
at time t = T , meaning y(T ) = 0 (while x(T ) > 0).

Type II : X force divides Y force’s initial combatants into n parts and engages
them sequentially. X force ultimately wins the battle (see [1] for n = 2). Let
the proportion of each division be θ1, θ2, · · · , θn, where θ1 + θ2 + · · · + θn = 1
and 0 < θk < 1. For each k = 1, 2, · · · , n, we consider the initial value problem
(1.1) for Tk−1 ≤ t ≤ Tk (where T0 = 0) with initial conditions x(Tk−1) = xk−1

and y(Tk−1) = θky0, and y(Tk) = 0 (while xk ≡ x(Tk) > 0). In this scenario,
X force wins the battle at t = Tn, meaning y(Tn) = 0 (while x(Tn) > 0), and in
addition, X force’s aim is to achieve victory with the smallest possible number
of initial combatants

Our main results are as follows.

Theorem 1 (1) For the battle of Type I, the victory condition for X force is

x0 >
√
Ey0 . (2.1)

The end time T of the battle is given by

T =
1

2
√
αβ

log

(
x0 +

√
Ey0

x0 −
√
Ey0

)
, (2.2)

where the remaining X force at time T is x(T ) =
√
x2
0 − Ey20.

2

(2) For the battle of Type II (with n divisions), the optimal victory condition
for X force is

x0 >

√
E

n
y0 . (2.3)

The end time Tn of the battle is given by

Tn =
1

2
√
αβ

log




n−1∏
k=0

√
x2
0 − k(

√
E
n y0)2 +

√
E
n y0√

x2
0 − k(

√
E
n y0)2 −

√
E
n y0


 , (2.4)

where the remaining X force at time Tn is x(Tn) =
√
x2
0 − E

n y
2
0.

(3) Furthermore, under condition (2.1), the following inequality holds

T > Tn (2.5)

for n ≥ 2.

Proof. (1) We consider the initial value problem (1.1) for 0 ≤ t ≤ T with
initial conditions x(0) = x0 and y(0) = y0. When X force wins against Y force
at time t = T (i.e. y(T ) = 0 while x(T ) > 0), we obtain from (1.2) with t0 = 0
that x(T ) =

√
x2
0 − Ey20 . Thus, the victory condition of X force is x0 >

√
Ey0

which implies (2.1).
When y(T ) = 0, using the representation formula (1.4) with t0 = 0 for

solution y, we have

(x0 +
√
Ey0)e

−
√
αβT − (x0 −

√
Ey0)e

√
αβT = 0 .

Solving for the end time T of the battle, we obtain

T =
1

2
√
αβ

log

(
x0 +

√
Ey0

x0 −
√
Ey0

)

which implies (2.2).
(2) First, we consider the initial value problem (1.1) for 0 ≤ t ≤ T1 with

initial conditions x(0) = x0 and y(0) = θ1y0. When X force wins against Y
force at time t = T1 (i.e. y(T1) = 0 while x(T1) > 0), we obtain from (1.2) with
t0 = 0 that

x1 ≡ x(T1) =
√
x2
0 − Eθ21y

2
0 . (2.6)

When y(T1) = 0, using (1.4) with t0 = 0 and initial conditions x(0) = x0

and y(0) = θ1y0, we have

(x0 +
√
Eθ1y0)e

−
√
αβT1 − (x0 −

√
Eθ1y0)e

√
αβT1 = 0 .

3
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Furthermore, through fundamental calculations, we derive the following repre-
sentation formula for solutions x = x(t) and y = y(t) :

x(t) =
1

2

{
(x0 +

√
Ey0)e

−
√
αβ(t−t0) + (x0 −

√
Ey0)e

√
αβ(t−t0)

}
(1.3)

and

y(t) =
1

2

{
(x0 +

√
Ey0)e

−
√
αβ(t−t0) − (x0 −

√
Ey0)e

√
αβ(t−t0)

}
(1.4)

(see [3] and [4]).
For simplicity, we assume this battle to be a battle of annihilation, meaning

it ends when the number of Y force’s combatants reaches zero at which point
X force achieves victory.

2 Results

We compare the following two types of battles where the initial number of
combatants for X and Y forces are x0 > 0 and y0 > 0, respectively.

Type I : We consider the initial value problem (1.1) for 0 ≤ t ≤ T with initial
conditions x(0) = x0 and y(0) = y0. In this scenario, X force wins the battle
at time t = T , meaning y(T ) = 0 (while x(T ) > 0).

Type II : X force divides Y force’s initial combatants into n parts and engages
them sequentially. X force ultimately wins the battle (see [1] for n = 2). Let
the proportion of each division be θ1, θ2, · · · , θn, where θ1 + θ2 + · · · + θn = 1
and 0 < θk < 1. For each k = 1, 2, · · · , n, we consider the initial value problem
(1.1) for Tk−1 ≤ t ≤ Tk (where T0 = 0) with initial conditions x(Tk−1) = xk−1

and y(Tk−1) = θky0, and y(Tk) = 0 (while xk ≡ x(Tk) > 0). In this scenario,
X force wins the battle at t = Tn, meaning y(Tn) = 0 (while x(Tn) > 0), and in
addition, X force’s aim is to achieve victory with the smallest possible number
of initial combatants

Our main results are as follows.

Theorem 1 (1) For the battle of Type I, the victory condition for X force is

x0 >
√
Ey0 . (2.1)

The end time T of the battle is given by

T =
1

2
√
αβ

log

(
x0 +

√
Ey0

x0 −
√
Ey0

)
, (2.2)
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2
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√
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√
E
n y0)2 +

√
E
n y0√

x2
0 − k(

√
E
n y0)2 −

√
E
n y0


 , (2.4)

where the remaining X force at time Tn is x(Tn) =
√

x2
0 − E
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0 . (2.6)
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(x0 +
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Eθ1y0)e

−
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αβT1 − (x0 −
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√
αβT1 = 0 .

3
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Solving for T1, we obtain

T1 =
1

2
√
αβ

log

(
x0 +

√
Eθ1y0

x0 −
√
Eθ1y0

)
. (2.7)

Next, we consider the initial value problem (1.1) for T1 ≤ t ≤ T2 with initial
conditions x(T1) = x1 and y(T1) = θ2y0. When X force wins against Y force
at time t = T2 (i.e. y(T2) = 0 while x(T2) > 0), we obtain from (1.2) with
t0 = T1 that

x2 ≡ x(T2) =
√

x2
1 − Eθ22y

2
0

=
√
x2
0 − E(θ21 + θ22)y

2
0 , (2.8)

where we used (2.6).
When y(T2) = 0, using (1.4) with t0 = T1 and initial conditions x(T1) = x1

and y(T1) = θ2y0, we have

(x1 +
√
Eθ2y0)e

−
√
αβ(T2−T1) − (x1 −

√
Eθ2y0)e

√
αβ(T2−T1) = 0 .

Solving for T2, we obtain

T2 = T1 +
1

2
√
αβ

log

(
x1 +

√
Eθ2y0

x1 −
√
Eθ2y0

)

=
1

2
√
αβ

log

(
x0 +

√
Eθ1y0

x0 −
√
Eθ1y0

· x1 +
√
Eθ2y0

x1 −
√
Eθ2y0

)
, (2.9)

where we used (2.7).
By repeating a similar argument, we finally consider the initial value prob-

lem (1.1) for Tn−1 ≤ t ≤ Tn with initial conditions x(Tn−1) = xn−1 and
y(Tn−1) = θny0.

When X force wins against Y force at time t = Tn (i.e. y(Tn) = 0 while
x(Tn) > 0), we obtain from (1.2) with t0 = Tn−1 that

xn ≡ x(Tn) =
√

x2
n−1 − Eθ2ny

2
0

=
√
x2
0 − E(θ21 + θ22 + · · ·+ θ2n)y

2
0 (2.10)

(see (2.8)).
When y(Tn) = 0, using (1.4) with t0 = Tn−1 and initial conditions x(Tn−1) =

xn−1 and y(Tn−1) = θny0, we have

(xn−1 +
√
Eθny0)e

−
√
αβ(Tn−Tn−1) − (xn−1 −

√
Eθny0)e

√
αβ(Tn−Tn−1) = 0 .

4

Solving for Tn, we obtain

Tn = Tn−1 +
1

2
√
αβ

log

(
xn−1 +

√
Eθny0

xn−1 −
√
Eθny0

)

=
1

2
√
αβ

log

(
n−1∏
k=0

xk +
√
Eθk+1y0

xk −
√
Eθk+1y0

)
, (2.11)

where we used (2.7) and (2.9).
Noting the relationship between the arithmetic and geometric means, we

see that θ21+θ22+ · · ·+θ2n becomes the smallest when θ1 = θ2 = · · · = θn = 1/n.
Then, we have from (2.10) with θ1 = θ2 = · · · = θn = 1/n that

xn ≡ x(Tn) =

√
x2
0 −

E

n
y20 > 0 ,

and hence, we see that the optimal victory condition of X force is

x0 >

√
E

n
y0 (2.12)

which implies (2.3).
Moreover, when θ1 = θ2 = · · · = θn = 1/n, from (2.11) and

xk =

√
x2
0 − k

(√E

n
y0

)2

for k = 1, 2, · · · , n− 1 (see (2.6), (2.8) and (2.10)), we obtain the end time Tn

of the battle such that

Tn =
1

2
√
αβ

log
n−1∏
k=0

√
x2
0 − k(

√
E
n y0)2 +

√
E
n y0√

x2
0 − k(

√
E
n y0)2 −

√
E
n y0

(2.13)

which implies (2.4).
(3) Lastly, we will investigate the relationship between T given by (2.2) and

Tn given by (2.4).
When n ≥ 2 and x > ny > 0, the following inequality holds

n−1∏
k=0

√
x2 − ky2 + y√
x2 − ky2 − y

<
x+ ny

x− ny
. (2.14)

5
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4
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√
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n−1∏
k=0

√
x2
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√
E
n y0)2 +

√
E
n y0√

x2
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√
E
n y0)2 −

√
E
n y0

(2.13)
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. (2.14)

5
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To verify this, note that for k = 0, 1, 2, · · · , n− 1,
√

x2 − ky2 + y√
x2 − ky2 − y

· x+ ky

x− ky
<

√
x2 − ky2 + y√
x2 − ky2 − y

·
√

x2 − ky2 + ky√
x2 − ky2 − ky

=
x2 + (k + 1)

√
x2 − ky2y

x2 − (k + 1)
√

x2 − ky2y

<
x2 + (k + 1)xy

x2 − (k + 1)xy

=
x+ (k + 1)y

x− (k + 1)y
.

Applying this inequality iteratively, we obtain

n−1∏
k=0

√
x2 − ky2 + y√
x2 − ky2 − y

=
n−1∏
k=2

√
x2 − ky2 + y√
x2 − ky2 − y

·
√

x2 − y2 + y√
x2 − y2 − y

· x+ y

x− y

<

n−1∏
k=2

√
x2 − ky2 + y√
x2 − ky2 − y

· x+ 2y

x− 2y

<

n−1∏
k=3

√
x2 − ky2 + y√
x2 − ky2 − y

· x+ 3y

x− 3y

< · · · <
√
x2 − (n− 1)y2 + y√
x2 − (n− 1)y2 − y

· x+ (n− 1)y

x− (n− 1)y

<
x+ ny

x− ny
.

Thus, from inequality (2.14) with x = x0 and y =
√
E
n y0, we obtain

log




n−1∏
k=0

√
x2
0 − k(

√
E
n y0)2 +

√
E
n y0√

x2
0 − k(

√
E
n y0)2 −

√
E
n y0


 < log

(
x0 +

√
Ey0

x0 −
√
Ey0

)
,

and hence, we conclude that Tn < T which implies (2.5). □
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To verify this, note that for k = 0, 1, 2, · · · , n− 1,
√
x2 − ky2 + y√
x2 − ky2 − y

· x+ ky

x− ky
<

√
x2 − ky2 + y√
x2 − ky2 − y

·
√
x2 − ky2 + ky√
x2 − ky2 − ky

=
x2 + (k + 1)

√
x2 − ky2y

x2 − (k + 1)
√
x2 − ky2y

<
x2 + (k + 1)xy

x2 − (k + 1)xy

=
x+ (k + 1)y

x− (k + 1)y
.

Applying this inequality iteratively, we obtain

n−1∏
k=0

√
x2 − ky2 + y√
x2 − ky2 − y

=
n−1∏
k=2

√
x2 − ky2 + y√
x2 − ky2 − y

·
√
x2 − y2 + y√
x2 − y2 − y

· x+ y

x− y

<
n−1∏
k=2

√
x2 − ky2 + y√
x2 − ky2 − y

· x+ 2y

x− 2y

<
n−1∏
k=3

√
x2 − ky2 + y√
x2 − ky2 − y

· x+ 3y

x− 3y

< · · · <
√
x2 − (n− 1)y2 + y√
x2 − (n− 1)y2 − y

· x+ (n− 1)y

x− (n− 1)y

<
x+ ny

x− ny
.

Thus, from inequality (2.14) with x = x0 and y =
√
E
n y0, we obtain

log




n−1∏
k=0

√
x2
0 − k(

√
E
n y0)2 +

√
E
n y0√

x2
0 − k(

√
E
n y0)2 −

√
E
n y0


 < log

(
x0 +

√
Ey0

x0 −
√
Ey0

)
,

and hence, we conclude that Tn < T which implies (2.5). □
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