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Abstract

We consider an ordinary differential system which is a so-called
Lanchester type model with time dependent coefficients. We study
on asymptotic forms of solutions that decay to the origin (0,0).
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1 Introduction

In this paper we investigate on the ordinary differential system of the form :

{ @/ (t) = —a(t)y(t) (1.1)

where a(t) and b(t) are positive continuous functions on [0, 00), and satisfy

A(t) = /Ot a(s)ds — oo and B(t) = /Ot b(s)ds — oo (1.2)

as t — oo.
Throughout this paper we will consider non-negative solutions for (1.1) with
positive initial data

2(0) =29 >0 and y(0)=yo>0. (1.3)
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System (1.1) is known as one of Lanchester type models, which describes
many phenomena appearing in economics, logistics, biology, and so on.

F.W.Lanchester [5] first proposed system (1.1) to describe combat situations
(see [2], [3], [11] for a review). Although the equations were never directly listed,
Taylor and others suggest that Lanchester could mathematically represent his
statements of the linear ancient battle as system (1.1) (see [4], [10], [12], [13]
for Lanchester linear law models, and also see [1], [6], [7], [8], [9] for Lanchester
square law models and generalized Lanchester models).

First we consider the system with constant coefficients a(t) = a > 0 and
b(t) = B > 0, that is,

(1) = ()

with initial data (1.3) (see [10]).
Since it holds that

{wwz—wm )

(1.5)

we can see easily that (x(t)? — Ey(t)?)’ = 0 by using the exchange radio E =
a/B of (1.1), and hence, ()% — Ey(t)? is a constant value which is denoted by
symbol M, that is,

2(t)? - By(t)? = 2 — Eyd = M (1.6)
Thus, we have from (1.4) and (1.6) that
(1) = —ay(t) = —VaB/u(t)? = M, (1.7)

and moreover, by fundamental calculation we obtain the following representa-
tion formula of solution (x(t),y(t)) :

(i) When M =0 (i.e. 29 = VEyo),
x(t) = zoe~ VPt and y(t) = yoe_mt (1.8)
for t > 0.

(ii) When M # 0 (ie. zq # VEvyo), putting z — x = /22 — M, since it
follows from (1.7) that (z — 2)(2" + v/aBz) = 0, function z(t) satisfies
Z'(t) = —v/aBz(t) and then

2(t) = zpe VP, Z0=$o+\/$3—M=l‘0+\/Ey0,
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that is,
z(t) —-% (zoe—va5t+-i§evﬁﬁt) (1.9)
% ((900 + \/>y0) VBt + (w0 — \/Eyo)emt)
and
y(t) = ﬁ (zoe_mt - Zemt> (1.10)
ﬁ ((950 +VEyo)e” — (2o — \/Eyo)emt)
for t > 0.

Remark. When the time dependent coefficients a(t) and b(t) satisfy a(t)/b(t) =
const. > 0 for t > 0, we can obtain the similar representatlon formula of solu-

tion (z(t),y(t)) of (1 1) replaced /a3t in (1.8)—(1.10) by fO Va s)ds.

The notations we use in this paper are standard. Positive constants will be
denoted by C and will change from line to line.

2 Non-negative solutions

It is easy to see that (z(t),y(t)) = (0,0) is a solutions of (1.1) and the
initial value problem (1.1)—(1.3) has the uniqueness of solutions. Moreover,
there exists 0 < T' < oo such that one of the followings holds:

th—>H11“ x(t) >0 and }LH% y(t) =0;
tlggo xz(t)=0 and tlggo y(t) =0;

th_)rr% xz(t) =0 and th_{% y(t) > 0.

Indeed, if it holds that lim; o 2(t) = Too > 0 and lim;_,o y(t) = yoo > 0, then
from 2’ = —a(t)y < 0 and ' = —b(t)x < 0 we obtain that

x> —x(t) + 2o = /Ol a(s)y(s) ds > yoo A(t)

yo > —y(t) +yo = /0 b(s)d(s)ds > xooB(t)

which is a contradiction because of assumption (1.2).

In [8], they have derived about relations between behavior of solutions of
(1.1) and their initial data.

For each xy > 0, we define the set S,, C R? by

Szo = {(2,0)[0 <z <z} U{(0,0)} U{(0,9) |y > 0}.
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Proposition 2.1 ([8]) Suppose that a(t) and b(t) satisfy (1.2) and

. a(t) a(t)
f 2 < —
<8050 =S e <
Then for any (Cy,Cs) € Sy,, there is one and only one solution (x(t),y(t)) of
(1.1) satisfying ©(0) = z¢ and
lim (z(t),y(t)) = (C1, Ca),

t—T

where T is some positive number or T = oo.

Remark. In Appendix, we will give another simple proof of a so-called com-
parison principle for solutions which plays an important rule in the proof of
Proposition 2.1.

In the following section we discuss how solutions decaying to the origin
(0,0) behave at +oo.

3 Asymptotic forms of solutions

In what follows, “f(t) ~ g(t) as t — 00” means that lim;_, f(¢)/g(t) =1
for positive functions f(t) and g(t) defined near co. Similarly, for vector-valued
functions “(f1(t), f2(t)) ~ (g1(t),g2(t)) as t — oo” means that f;(t) ~ g;(t) as
t s o00,i=1,2

Theorem 3.1 Suppose that a(t) and b(t) satisfy (1.2) and
tiglo Z((g = const. > 0. (3.1)

Then every solution (z(t),y(t)) of (1.1) decaying to the origin (0,0) has the
asymptotic form

(oga(t) loga(e) ~ ([ VGGl — [ VaGiias)  (32)
ast — oo.

Proof. Let lim; o a(t)/b(t) = E > 0 and lim; o (z(t),y(t)) = (0,0). By
L’Hospital’s rule together with (1.5), we have

x(t)? o (x(t)?) . alt) B (3.3)

200 g2 moo (y(H)2) oo b(t)

Thus, since (logz) = 2'/x = —a(t)y/z, we have

log z(t) i (logz(t))" lim a(t) y(t) 1 (3.4)

s - fot Va(s)b(s)ds RS Vab(t) e\ b(t) x(t)
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which implies that log z(t) ~ — fg Va(s)b(s)ds as t — co.
On the other hand, since (logy)’ = v'/y = —b(¢)x/y, we have from (3.3)
that

loga(t) _ | (loga(t) _ . a(t) y(®)® _
A% Togy(®) ~ A% Gogy(®0y ~ b a? Y

Thus, we obtain from (3.3)—(3.5) that

log y(t) : log z(t) logz(t) _

lim = lim =1,
t—oo f; Va(s)b(s)ds —te — fot Va(s)b(s) ds log y(t)
which implies that logy(t) ~ — fot Va(s)b(s)ds as t — co. O

Theorem 3.2 Suppose that a(t) and b(t) are of class C* and satisfy (1.2) and

a(t) /<0 for large t (3.6)
W) S ge t. .
Then every solution (z(t),y(t)) of (1.1) decaying to (0,0) has
z(t) =0 (e— Js V/a()b () dS) . (3.7)
In addition, if
tlggo Zg; = const. >0, (3.8)
then
y(t) =0 (e_ Jo Va(s)b(s) ds) . (3.9)

Proof. Since z(t) — 0 as t — oo and (—z(t)?) = (a(t)/b(t))(—y(t)?)" and
y(t) — 0 as t — oo, it follows that

otf = [ ety ds = [ 5 uloPy ds

for large ¢, and from (3.6) that there exists ¢; > 0 such that

b(t)

y(t) > | —=x(t) fort >t.

a(t)
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Then we have
(x(t)?) = —2a(t)x(t)y(t) < =2/ a(t)b(t)z(t)? for t > t;.
Solving this differential inequality on [t1,t], we obtain

2(t)? < 2 2Jo Va@b()ds o ¢ > ¢ (3.10)
where 22 = z(t;)%e? Jot Va(s)b(s) ds > 0, which gives (3.7).

Moreover, since y(t) — 0 as t — oo and (—y(t)?) = (b(t)/a(t))(—z(t)?)’
and z(t) — 0 as t — oo, it follows that

ip = [ a2y ds = / TS sy ds

t a(s)
b(t) 2 /°° (b(8)>/ 2
= —x(t)" + — ] x(s)*ds 3.11
et [ ()« (311)
for large t. Here, since it follows from (3.8) that
0< bi?)e—Q fot v a(s)b(s)ds < Ce™2 fot \/a(s)b(s)ds (312)
a

for large ¢, and from (b(t)/a(t))’ = —(b(t)/a(t))?(a(t)/b(t))’ > 0 for large ¢ and
(3.8) that

/
0< /oo (b(s)) o2 Ji /alrb(r) dr g
t

a(s)
b(t) ot \Jals)bis) d /OO b(s) YK
_ _\") . a(s)b(s)ds 22 (9 b ) a(r)b(r)dr d
a(t)e 0 k) ( Va(s)b(s)e =Jo ) s
< —@6_2 I3 A/ a(s)b(s) ds + C/oo (—6_2 Jo A/ a(r)b(r) dr)/ds
a(t) t
< Ce2Jo Valo)b(s)ds  for Jarge ¢, (3.13)

we obtain from (3.10)—(3.13) that
y(t)? < Ce™? Jo Val)b(s)ds g1 Jarge ¢,

which gives (3.9). O

Remark. By (3.1) or (3.6), we see that y/a(t)b(t) > Ca(t) with some positive
constant C for large ¢.
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4 Appendix

It is easy to see that a vector function (z(t),y(t)) is the solution of initial
value problem (1.1)—(1.3) if and only if it solves the system of integral equations

z(t) = a9 — -/0 a(s)y(s)ds
) == [ ble)a(s)ds.

2(t) = wo — /0 : a(s) (yo - /0 b(r)z(r) dr) ds .
vy == [ o9 (0= [ty ar) as.

We discuss a comparison principle of solutions which plays an important
rule in the proof of Proposition 2.1, and we will give another simple proof.

(4.1)

or

Proposition 4.1 (Comparison principle) Let (v:1(t),y1(t)) and (x5(t), y(t))
be solutions of initial value problem (1.1) with initial data (x1(0),y1(0)) and
(22(0), y2(0)), respectively.

(i) If 1(0) > x2(0) and y1(0) < y2(0), then x1(t) > xo(t) and y1(t) < ya(t)
fort>0.

(ii) If 21(0) > 22(0) and y1(0) < y2(0) and (21(0),31(0)) # (22(0),92(0)),
then x1(t) > x2(t) and y1(t) < y2(t) fort > 0.

Proof. Let x1(0) > x2(0) and y1(0) < y2(0). We will show that y1(¢) < y2(t)
for t > 0 by a contradiction.

If there exists a number T such that y1(¢) < y2(¢) (0 <t <T) and y,(T) =
y2(T'), then we have from (4.2) that

1 (T) =y1(0) — /OT b(s) <x1(0) — /OS a(r)y: (r) dr) ds
<~ [ Cige) (2200 = [ atrha(r) ) ds = ()

which is a contradiction, and hence we obtain that y1(t) < y2(¢) for ¢ > 0.
Moreover, we have from (4.1) that

21 (1) = 21(0) — /O a(s)yn () ds
> x9(0) — /0 a(s)ya2(s) ds = zo(t)
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for t > 0.

By the similar way, if z1(0) > 22(0) and y;(0) < y2(0), we can also show

that x1(t) > z2(t) and y1(t) < y2(t) for ¢ > 0, and hence, we conclude the
claim (ii).

Moreover, by uniqueness of solutions and the claim (ii), we obtain the claim

(i). O
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