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1 Introduction

In this paper we investigate on the ordinary differential system of the form :

{
x′(t) = −a(t)y(t)

y′(t) = −b(t)x(t)
(1.1)

where a(t) and b(t) are positive continuous functions on [0,∞), and satisfy

A(t) =

∫ t

0

a(s) ds → ∞ and B(t) =

∫ t

0

b(s) ds → ∞ (1.2)

as t → ∞.
Throughout this paper we will consider non-negative solutions for (1.1) with

positive initial data

x(0) = x0 > 0 and y(0) = y0 > 0 . (1.3)
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System (1.1) is known as one of Lanchester type models, which describes
many phenomena appearing in economics, logistics, biology, and so on.

F.W.Lanchester [5] first proposed system (1.1) to describe combat situations
(see [2], [3], [11] for a review). Although the equations were never directly listed,
Taylor and others suggest that Lanchester could mathematically represent his
statements of the linear ancient battle as system (1.1) (see [4], [10], [12], [13]
for Lanchester linear law models, and also see [1], [6], [7], [8], [9] for Lanchester
square law models and generalized Lanchester models).

First we consider the system with constant coefficients a(t) = α > 0 and
b(t) = β > 0, that is,

{
x′(t) = −αy(t)

y′(t) = −βx(t)
(1.4)

with initial data (1.3) (see [10]).
Since it holds that

{
(x(t)2)′ = −2αx(t)y(t)

(y(t)2)′ = −2βx(t)y(t) ,
(1.5)

we can see easily that (x(t)2 − Ey(t)2)′ = 0 by using the exchange radio E =
α/β of (1.1), and hence, x(t)2−Ey(t)2 is a constant value which is denoted by
symbol M , that is,

x(t)2 − Ey(t)2 = x2
0 − Ey20 = M (1.6)

Thus, we have from (1.4) and (1.6) that

x′(t) = −αy(t) = −
√
αβ

√
x(t)2 −M , (1.7)

and moreover, by fundamental calculation we obtain the following representa-
tion formula of solution (x(t), y(t)) :

(i) When M = 0 (i.e. x0 =
√
Ey0),

x(t) = x0e
−
√
αβt and y(t) = y0e

−
√
αβt (1.8)

for t ≥ 0.

(ii) When M ̸= 0 (i.e. x0 ̸=
√
Ey0), putting z − x =

√
x2 −M , since it

follows from (1.7) that (z − x)(z′ +
√
αβz) = 0, function z(t) satisfies

z′(t) = −
√
αβz(t) and then

z(t) = z0e
−
√
αβt , z0 = x0 +

√
x2
0 −M = x0 +

√
Ey0 ,

2

that is,

x(t) =
1

2

(
z0e

−
√
αβt +

M

z0
e
√
αβt

)
(1.9)

=
1

2

(
(x0 +

√
Ey0)e

−
√
αβt + (x0 −

√
Ey0)e

√
αβt

)

and

y(t) =
1

2
√
E

(
z0e

−
√
αβt − M

z0
e
√
αβt

)
(1.10)

=
1

2
√
E

(
(x0 +

√
Ey0)e

−
√
αβt − (x0 −

√
Ey0)e

√
αβt

)

for t ≥ 0.

Remark. When the time dependent coefficients a(t) and b(t) satisfy a(t)/b(t) =
const. > 0 for t ≥ 0, we can obtain the similar representation formula of solu-
tion (x(t), y(t)) of (1.1) replaced

√
αβt in (1.8)–(1.10) by

∫ t

0

√
a(s)b(s)ds.

The notations we use in this paper are standard. Positive constants will be
denoted by C and will change from line to line.

2 Non-negative solutions

It is easy to see that (x(t), y(t)) ≡ (0, 0) is a solutions of (1.1) and the
initial value problem (1.1)–(1.3) has the uniqueness of solutions. Moreover,
there exists 0 < T ≤ ∞ such that one of the followings holds:

lim
t→T

x(t) > 0 and lim
t→T

y(t) = 0 ;

lim
t→∞

x(t) = 0 and lim
t→∞

y(t) = 0 ;

lim
t→T

x(t) = 0 and lim
t→T

y(t) > 0 .

Indeed, if it holds that limt→∞ x(t) = x∞ > 0 and limt→∞ y(t) = y∞ > 0, then
from x′ = −a(t)y < 0 and y′ = −b(t)x < 0 we obtain that

x0 ≥ −x(t) + x0 =

∫ t

0

a(s)y(s) ds ≥ y∞A(t)

y0 ≥ −y(t) + y0 =

∫ t

0

b(s)d(s) ds ≥ x∞B(t)

which is a contradiction because of assumption (1.2).
In [8], they have derived about relations between behavior of solutions of

(1.1) and their initial data.
For each x0 > 0, we define the set Sx0

⊂ R2 by

Sx0
= {(x, 0) | 0 < x < x0} ∪ {(0, 0)} ∪ {(0, y) | y > 0} .

3
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System (1.1) is known as one of Lanchester type models, which describes
many phenomena appearing in economics, logistics, biology, and so on.

F.W.Lanchester [5] first proposed system (1.1) to describe combat situations
(see [2], [3], [11] for a review). Although the equations were never directly listed,
Taylor and others suggest that Lanchester could mathematically represent his
statements of the linear ancient battle as system (1.1) (see [4], [10], [12], [13]
for Lanchester linear law models, and also see [1], [6], [7], [8], [9] for Lanchester
square law models and generalized Lanchester models).

First we consider the system with constant coefficients a(t) = α > 0 and
b(t) = β > 0, that is,

{
x′(t) = −αy(t)

y′(t) = −βx(t)
(1.4)

with initial data (1.3) (see [10]).
Since it holds that

{
(x(t)2)′ = −2αx(t)y(t)

(y(t)2)′ = −2βx(t)y(t) ,
(1.5)

we can see easily that (x(t)2 − Ey(t)2)′ = 0 by using the exchange radio E =
α/β of (1.1), and hence, x(t)2−Ey(t)2 is a constant value which is denoted by
symbol M , that is,

x(t)2 − Ey(t)2 = x2
0 − Ey20 = M (1.6)

Thus, we have from (1.4) and (1.6) that

x′(t) = −αy(t) = −
√
αβ

√
x(t)2 −M , (1.7)

and moreover, by fundamental calculation we obtain the following representa-
tion formula of solution (x(t), y(t)) :

(i) When M = 0 (i.e. x0 =
√
Ey0),

x(t) = x0e
−
√
αβt and y(t) = y0e

−
√
αβt (1.8)

for t ≥ 0.

(ii) When M ̸= 0 (i.e. x0 ̸=
√
Ey0), putting z − x =

√
x2 −M , since it

follows from (1.7) that (z − x)(z′ +
√
αβz) = 0, function z(t) satisfies

z′(t) = −
√
αβz(t) and then

z(t) = z0e
−
√
αβt , z0 = x0 +

√
x2
0 −M = x0 +

√
Ey0 ,

2

that is,

x(t) =
1

2

(
z0e

−
√
αβt +

M

z0
e
√
αβt

)
(1.9)

=
1

2

(
(x0 +

√
Ey0)e

−
√
αβt + (x0 −

√
Ey0)e

√
αβt

)

and

y(t) =
1

2
√
E

(
z0e

−
√
αβt − M

z0
e
√
αβt

)
(1.10)

=
1

2
√
E

(
(x0 +

√
Ey0)e

−
√
αβt − (x0 −

√
Ey0)e

√
αβt

)

for t ≥ 0.

Remark. When the time dependent coefficients a(t) and b(t) satisfy a(t)/b(t) =
const. > 0 for t ≥ 0, we can obtain the similar representation formula of solu-
tion (x(t), y(t)) of (1.1) replaced

√
αβt in (1.8)–(1.10) by

∫ t

0

√
a(s)b(s)ds.

The notations we use in this paper are standard. Positive constants will be
denoted by C and will change from line to line.

2 Non-negative solutions

It is easy to see that (x(t), y(t)) ≡ (0, 0) is a solutions of (1.1) and the
initial value problem (1.1)–(1.3) has the uniqueness of solutions. Moreover,
there exists 0 < T ≤ ∞ such that one of the followings holds:

lim
t→T

x(t) > 0 and lim
t→T

y(t) = 0 ;

lim
t→∞

x(t) = 0 and lim
t→∞

y(t) = 0 ;

lim
t→T

x(t) = 0 and lim
t→T

y(t) > 0 .

Indeed, if it holds that limt→∞ x(t) = x∞ > 0 and limt→∞ y(t) = y∞ > 0, then
from x′ = −a(t)y < 0 and y′ = −b(t)x < 0 we obtain that

x0 ≥ −x(t) + x0 =

∫ t

0

a(s)y(s) ds ≥ y∞A(t)

y0 ≥ −y(t) + y0 =

∫ t

0

b(s)d(s) ds ≥ x∞B(t)

which is a contradiction because of assumption (1.2).
In [8], they have derived about relations between behavior of solutions of

(1.1) and their initial data.
For each x0 > 0, we define the set Sx0

⊂ R2 by

Sx0
= {(x, 0) | 0 < x < x0} ∪ {(0, 0)} ∪ {(0, y) | y > 0} .
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Proposition 2.1 ([8]) Suppose that a(t) and b(t) satisfy (1.2) and

0 < inf
t≥0

a(t)

b(t)
≤ sup

t≥0

a(t)

b(t)
< ∞ .

Then for any (C1, C2) ∈ Sx0
, there is one and only one solution (x(t), y(t)) of

(1.1) satisfying x(0) = x0 and

lim
t→T

(x(t), y(t)) = (C1, C2) ,

where T is some positive number or T = ∞.

Remark. In Appendix, we will give another simple proof of a so-called com-
parison principle for solutions which plays an important rule in the proof of
Proposition 2.1.

In the following section we discuss how solutions decaying to the origin
(0, 0) behave at +∞.

3 Asymptotic forms of solutions

In what follows, “f(t) ∼ g(t) as t → ∞” means that limt→∞ f(t)/g(t) = 1
for positive functions f(t) and g(t) defined near ∞. Similarly, for vector-valued
functions “(f1(t), f2(t)) ∼ (g1(t), g2(t)) as t → ∞” means that fi(t) ∼ gi(t) as
t → ∞, i = 1, 2.

Theorem 3.1 Suppose that a(t) and b(t) satisfy (1.2) and

lim
t→∞

a(t)

b(t)
= const. > 0 . (3.1)

Then every solution (x(t), y(t)) of (1.1) decaying to the origin (0, 0) has the
asymptotic form

(log x(t) , log y(t)) ∼
(
−
∫ t

0

√
a(s)b(s) ds , −

∫ t

0

√
a(s)b(s) ds

)
(3.2)

as t → ∞.

Proof. Let limt→∞ a(t)/b(t) = E > 0 and limt→∞(x(t), y(t)) = (0, 0). By
L’Hospital’s rule together with (1.5), we have

lim
t→∞

x(t)2

y(t)2
= lim

t→∞

(x(t)2)′

(y(t)2)′
= lim

t→∞

a(t)

b(t)
= E . (3.3)

Thus, since (log x)′ = x′/x = −a(t)y/x, we have

lim
t→∞

log x(t)

−
∫ t

0

√
a(s)b(s) ds

= lim
t→∞

(log x(t))′√
a(t)b(t)

= lim
t→∞

√
a(t)

b(t)

y(t)

x(t)
= 1 , (3.4)

4

which implies that log x(t) ∼ −
∫ t

0

√
a(s)b(s) ds as t → ∞.

On the other hand, since (log y)′ = y′/y = −b(t)x/y, we have from (3.3)
that

lim
t→∞

log x(t)

log y(t)
= lim

t→∞

(log x(t))′

(log y(t))′
= lim

t→∞

a(t)

b(t)

y(t)2

x(t)2
= 1 . (3.5)

Thus, we obtain from (3.3)–(3.5) that

lim
t→∞

log y(t)

−
∫ t

0

√
a(s)b(s) ds

= lim
t→∞

log x(t)

−
∫ t

0

√
a(s)b(s) ds

log x(t)

log y(t)
= 1 ,

which implies that log y(t) ∼ −
∫ t

0

√
a(s)b(s) ds as t → ∞. □

Theorem 3.2 Suppose that a(t) and b(t) are of class C1 and satisfy (1.2) and

(
a(t)

b(t)

)′

≤ 0 for large t. (3.6)

Then every solution (x(t), y(t)) of (1.1) decaying to (0, 0) has

x(t) = O
(
e−

∫ t
0

√
a(s)b(s) ds

)
. (3.7)

In addition, if

lim
t→∞

a(t)

b(t)
= const. > 0 , (3.8)

then

y(t) = O
(
e−

∫ t
0

√
a(s)b(s) ds

)
. (3.9)

Proof. Since x(t) → 0 as t → ∞ and (−x(t)2)′ = (a(t)/b(t))(−y(t)2)′ and
y(t) → 0 as t → ∞, it follows that

x(t)2 =

∫ ∞

t

(−x(s)2)′ ds =

∫ ∞

t

a(s)

b(s)
(−y(s)2)′ ds

=
a(t)

b(t)
y(t)2 +

∫ ∞

t

(
a(s)

b(s)

)′

y(s)2 ds

for large t, and from (3.6) that there exists t1 > 0 such that

y(t) ≥

√
b(t)

a(t)
x(t) for t ≥ t1.

5
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Proposition 2.1 ([8]) Suppose that a(t) and b(t) satisfy (1.2) and

0 < inf
t≥0

a(t)

b(t)
≤ sup

t≥0

a(t)

b(t)
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Then for any (C1, C2) ∈ Sx0
, there is one and only one solution (x(t), y(t)) of

(1.1) satisfying x(0) = x0 and

lim
t→T

(x(t), y(t)) = (C1, C2) ,

where T is some positive number or T = ∞.

Remark. In Appendix, we will give another simple proof of a so-called com-
parison principle for solutions which plays an important rule in the proof of
Proposition 2.1.

In the following section we discuss how solutions decaying to the origin
(0, 0) behave at +∞.

3 Asymptotic forms of solutions

In what follows, “f(t) ∼ g(t) as t → ∞” means that limt→∞ f(t)/g(t) = 1
for positive functions f(t) and g(t) defined near ∞. Similarly, for vector-valued
functions “(f1(t), f2(t)) ∼ (g1(t), g2(t)) as t → ∞” means that fi(t) ∼ gi(t) as
t → ∞, i = 1, 2.

Theorem 3.1 Suppose that a(t) and b(t) satisfy (1.2) and

lim
t→∞

a(t)

b(t)
= const. > 0 . (3.1)

Then every solution (x(t), y(t)) of (1.1) decaying to the origin (0, 0) has the
asymptotic form

(log x(t) , log y(t)) ∼
(
−
∫ t

0

√
a(s)b(s) ds , −

∫ t

0

√
a(s)b(s) ds

)
(3.2)

as t → ∞.

Proof. Let limt→∞ a(t)/b(t) = E > 0 and limt→∞(x(t), y(t)) = (0, 0). By
L’Hospital’s rule together with (1.5), we have

lim
t→∞

x(t)2

y(t)2
= lim

t→∞

(x(t)2)′

(y(t)2)′
= lim

t→∞

a(t)

b(t)
= E . (3.3)

Thus, since (log x)′ = x′/x = −a(t)y/x, we have

lim
t→∞

log x(t)

−
∫ t

0

√
a(s)b(s) ds

= lim
t→∞

(log x(t))′√
a(t)b(t)

= lim
t→∞

√
a(t)

b(t)

y(t)

x(t)
= 1 , (3.4)

4

which implies that log x(t) ∼ −
∫ t

0

√
a(s)b(s) ds as t → ∞.

On the other hand, since (log y)′ = y′/y = −b(t)x/y, we have from (3.3)
that

lim
t→∞

log x(t)
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= lim

t→∞

(log x(t))′

(log y(t))′
= lim

t→∞

a(t)

b(t)

y(t)2

x(t)2
= 1 . (3.5)

Thus, we obtain from (3.3)–(3.5) that

lim
t→∞

log y(t)
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∫ t

0

√
a(s)b(s) ds

= lim
t→∞

log x(t)

−
∫ t

0

√
a(s)b(s) ds

log x(t)

log y(t)
= 1 ,

which implies that log y(t) ∼ −
∫ t

0

√
a(s)b(s) ds as t → ∞. □

Theorem 3.2 Suppose that a(t) and b(t) are of class C1 and satisfy (1.2) and

(
a(t)

b(t)

)′

≤ 0 for large t. (3.6)

Then every solution (x(t), y(t)) of (1.1) decaying to (0, 0) has

x(t) = O
(
e−

∫ t
0

√
a(s)b(s) ds

)
. (3.7)

In addition, if

lim
t→∞

a(t)

b(t)
= const. > 0 , (3.8)

then

y(t) = O
(
e−

∫ t
0

√
a(s)b(s) ds

)
. (3.9)

Proof. Since x(t) → 0 as t → ∞ and (−x(t)2)′ = (a(t)/b(t))(−y(t)2)′ and
y(t) → 0 as t → ∞, it follows that

x(t)2 =

∫ ∞

t

(−x(s)2)′ ds =

∫ ∞

t

a(s)

b(s)
(−y(s)2)′ ds

=
a(t)

b(t)
y(t)2 +

∫ ∞

t

(
a(s)

b(s)

)′

y(s)2 ds

for large t, and from (3.6) that there exists t1 > 0 such that

y(t) ≥

√
b(t)

a(t)
x(t) for t ≥ t1.
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Then we have

(x(t)2)′ = −2a(t)x(t)y(t) ≤ −2
√

a(t)b(t)x(t)2 for t ≥ t1.

Solving this differential inequality on [t1, t], we obtain

x(t)2 ≤ x2
1e

−2
∫ t
0

√
a(s)b(s) ds for t ≥ t1 , (3.10)

where x2
1 = x(t1)

2e2
∫ t1
0

√
a(s)b(s) ds ≥ 0, which gives (3.7).

Moreover, since y(t) → 0 as t → ∞ and (−y(t)2)′ = (b(t)/a(t))(−x(t)2)′

and x(t) → 0 as t → ∞, it follows that

y(t)2 =

∫ ∞

t

(−y(s)2)′ ds =

∫ ∞

t

b(s)

a(s)
(−x(s)2)′ ds

=
b(t)

a(t)
x(t)2 +

∫ ∞

t

(
b(s)

a(s)

)′

x(s)2 ds (3.11)

for large t. Here, since it follows from (3.8) that

0 ≤ b(t)

a(t)
e−2

∫ t
0

√
a(s)b(s) ds ≤ Ce−2

∫ t
0

√
a(s)b(s) ds (3.12)

for large t, and from (b(t)/a(t))′ = −(b(t)/a(t))2(a(t)/b(t))′ ≥ 0 for large t and
(3.8) that

0 ≤
∫ ∞

t

(
b(s)

a(s)

)′

e−2
∫ s
0

√
a(r)b(r) drds

= − b(t)

a(t)
e−2

∫ t
0

√
a(s)b(s) ds −

∫ ∞

t

b(s)

a(s)

(
−2

√
a(s)b(s)e−2

∫ s
0

√
a(r)b(r) dr

)
ds

≤ − b(t)

a(t)
e−2

∫ t
0

√
a(s)b(s) ds + C

∫ ∞

t

(
−e−2

∫ s
0

√
a(r)b(r) dr

)′
ds

≤ Ce−2
∫ t
0

√
a(s)b(s) ds for large t, (3.13)

we obtain from (3.10)–(3.13) that

y(t)2 ≤ Ce−2
∫ t
0

√
a(s)b(s) ds for large t,

which gives (3.9). □

Remark. By (3.1) or (3.6), we see that
√
a(t)b(t) ≥ Ca(t) with some positive

constant C for large t.
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4 Appendix

It is easy to see that a vector function (x(t), y(t)) is the solution of initial
value problem (1.1)–(1.3) if and only if it solves the system of integral equations




x(t) = x0 −
∫ t

0

a(s)y(s) ds

y(t) = y0 −
∫ t

0

b(s)x(s) ds ,

(4.1)

or



x(t) = x0 −
∫ t

0

a(s)

(
y0 −

∫ s

0

b(r)x(r) dr

)
ds

y(t) = y0 −
∫ t

0

b(s)

(
x0 −

∫ s

0

a(r)y(r) dr

)
ds .

(4.2)

We discuss a comparison principle of solutions which plays an important
rule in the proof of Proposition 2.1, and we will give another simple proof.

Proposition 4.1 (Comparison principle) Let (x1(t), y1(t)) and (x2(t), y2(t))
be solutions of initial value problem (1.1) with initial data (x1(0), y1(0)) and
(x2(0), y2(0)), respectively.

(i) If x1(0) ≥ x2(0) and y1(0) ≤ y2(0), then x1(t) ≥ x2(t) and y1(t) ≤ y2(t)
for t ≥ 0.
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then x1(t) > x2(t) and y1(t) < y2(t) for t > 0.

Proof. Let x1(0) ≥ x2(0) and y1(0) < y2(0). We will show that y1(t) < y2(t)
for t > 0 by a contradiction.

If there exists a number T such that y1(t) < y2(t) (0 ≤ t < T ) and y1(T ) =
y2(T ), then we have from (4.2) that
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∫ T
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a(r)y1(r) dr

)
ds
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∫ T
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x2(0)−
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which is a contradiction, and hence we obtain that y1(t) < y2(t) for t ≥ 0.
Moreover, we have from (4.1) that

x1(t) = x1(0)−
∫ t

0

a(s)y1(s) ds

> x2(0)−
∫ t

0

a(s)y2(s) ds = x2(t)
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for t ≥ 0.
By the similar way, if x1(0) > x2(0) and y1(0) ≤ y2(0), we can also show

that x1(t) > x2(t) and y1(t) < y2(t) for t ≥ 0, and hence, we conclude the
claim (ii).

Moreover, by uniqueness of solutions and the claim (ii), we obtain the claim
(i). □
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