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Abstract

In this paper, we define the concept of the length of a plane curve
C. Then we define the measure space (C,BC , ν) as the image measure
space on the curve C of the Jordan measure space (I,B, µ) on the interval
I. These measure spaces are the measure spaces of Jordan type．

Then we define the curvilinear R-integral of a measurable function
on C and we study its fundamental properties by using the axiomatic
method of measure and integration.

The result is a new and exact formulation.

2000 Mathematics Subject Classification. Primary, 28Axx.

Introduction

This paper is the part IX of the series of papers on the axiomatic method
of measure and integration on the Euclidean space. As for the details, we refer
to Ito [15]. Further we refer to Ito [1] ∼ [14], [16] ∼ [29].
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34 Yoshifumi Ito

In this paper, we define the concept of the length of a plane curve.
Then we define the curvilinear integral of the Riemann type on the curve

C. We happen to say that the curvilinear integral of the Riemann type is the
curvilinear R-integral.

Since the curvilinear R-integral is a special case of the RS-integral, the
properties of the RS-integral are still true for the curvilinear R-integral.

Then we study their fundamental properties.
Here I am most grateful to my wife Mutuko for her help of typesetting of

the file of this manuscript．

1 Length of a plane curve

In this section, we study the concept of the length of a plane curve of
Riemann type and its fundamental properties.

In the parameter expression of a plane curve C, we have a formula

C : x = x(t), y = y(t), (a ≤ t ≤ b).

Here a and b are two real numbers so that a < b holds. Here we assume
that the plane curve C is a continuous curve.

Then the plane curve C has the length if and only if the coordinate functions
x(t) and y(t) are two functions of bounded variation. In this case, the plane
curve C is said to be rectifiable.

1.1 Function of bounded variation

In this subsection, we define the concept of a function of bounded variation
and study its fundamental properties.

Now we assume that a function y = f(x) is defined on a closed interval
I = [a, b]. Here we have a < b. Then a finite division ∆ defined by the
subintervals of the closed interval I = [a, b] is given by the dividing points

a = x0 < x1 < x2 < · · · < xn = b.

Here, for this division ∆, we define the sum

V∆ =

n∑
j=1

|f(xj)− f(xj−1)|.

We say that V∆ is the variation corresponding to the finite division ∆ of the
closed interval I .

2

Then we say that the function y = f(x) is of bounded variation on the
closed interval I if the set of V∆ is bounded for all finite divisions ∆ of the
closed interval I. We say that such a function y = f(x) is a function of
bounded variation.

Here we put
V = sup

∆
V∆.

Here V∆’s are defined for all finite divisions ∆ of the closed interval I. Then
we say that this supremum V is the total variation of the function y = f(x)
on the closed interval I.

Then we have the following proposition.

Proposition 1.1 A function y = f(x) of bounded variation defined on a
closed interval I = [a, b] is bounded on the closed interval I.

Here, in the defining formula of the variation V∆ of y = f(x) for a finite
division ∆ of I = [a, b], we denote the partial sum of the nonnegative terms
f(xj) − f(xj−1) as P∆ and the partial sum of the nonpositive terms f(xj) −
f(xj−1) as −N∆. Then we have the equalities

V∆ = P∆ +N∆, f(b)− f(a) = P∆ −N∆.

Therefore, if y = f(x) is of bounded variation on I = [a, b], {P∆}∆ denotes
the set of P∆ corresponding to all finite divisions ∆ of I = [a, b]. As for {N∆}∆,
we have the same as above. Then {P∆}∆ and {N∆}∆ are bounded.

Since {P∆}∆ and {N∆}∆ are bounded, we denote their supremum as

P = sup
∆

P∆, N = sup
∆

N∆.

Then we have the equality

V = P +N, f(b)− f(a) = P −N.

Then we say that, P, N and V are the positive variation, the negative
variation and the total variation of y = f(x) on I = [a, b] respectively.

We assume that a function y = f(x) is of bounded variation on the closed
interval I = [a, b]. Then, for an arbitrary point x in [a, b], y = f(x) is of
bounded variation on the closed interval [a, x]. Therefore, since V, P and N
for the interval [a, x] are three functions of x respectively. Then we have the
equalities

V (x) = P (x) +N(x), f(x)− f(a) = P (x)−N(x).

Then we say that P (x), N(x) and V (x) are the positive variation, the
negative variation and the total variation of y = f(x) on each interval
[a, x] respectively.

3
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By virtue of the definitions, we have the following proposition.

Proposition 1.2 We use the notation in the above. Then P (x) and N(x)
are two monotone increasing functions in the wider sense on [a, b].

In general, we happen to say that a monotone increasing function in the
wider sense on [a, b] is a monotone nondecreasing function.

By virtue of the definitions of P (x) and N(x), we have Theorem in the
following.

Theorem 1.1 A function of bounded variation defined on the closed in-
terval [a, b] is equal to the difference of two monotone increasing functions in
the wider sense.

The inverse of Theorem 1.1 in the above is also true. Namely we have
Theorem 1.2 in the following.

Theorem 1.2 We assume that a function y = f(x) is equal to a difference
of two monotone increasing functions in the wider sense defined on the closed
interval [a, b]. Then the function y = f(x) is of bounded variation on the
interval [a, b].

Theorem 1.3 If two functions f(x) and g(x) are of bounded variation on
the closed interval [a, b], the following functions (1)∼(4) are also of bounded
variation on the interval [a, b]:

(1) αf(x). Here α is a nonzero real constant. (2) f(x)± g(x).

(3) f(x)g(x). (4) f(x)/g(x). Here there exists a positive constant m > 0
such that we have the condition |g(x)| ≥ m > 0, (x ∈ [a, b]).

Here, if a function f(x) is of bounded variation on [a, b], we denote its total
variation as V (a, b). Then we have the following Theorem 1.4. 　

Theorem 1.4 We use the notation in the above. Then, for c ∈ [a, b], we
have the equality

V (a, b) = V (a, c) + V (c, b).

Here, if a function y = f(x) is of bounded variation on [a, b], we denote the
positive variation and the negative variation of y = f(x) on [a, b] as P (a, b)
and N(a, b) respectively.

Then we have the following Corollary 1.1.

Corollary 1.1 We use the notation in the above. Then, for c ∈ [a, b], we
have the equalities:

P (a, b) = P (a, c) + P (c, b),

4

N(a, b) = N(a, c) +N(c, b).

Theorem 1.5 If a function y = f(x) is continuous and of bounded vari-
ation on the closed interval [a, b], P (x), N(x) and V (x) are also continuous
on [a, b].

Example 1.1 A piece-wise monotone function on a closed interval [a, b]
is of bounded variation.

Example 1.2 The function

f(x) =

{
x sin

1

x
, (0 < x ≤ 1

π
),

0, (x = 0)

is not of bounded variation on the closed interval [0,
1

π
].

By virtue of Example 1.1, a function of bounded variation need not be
continuous.

Further, by virtue of Example 1.2, a continuous function need not be of
bounded variation.

Therefore, the conditions such as the continuity and the property of bounded
variation for some functions do not have any direct relation.

Proposition 1.3 We assume that a function f(x) is R-integrable on a
closed interval [a, b]. Then the integral function

F (x) =

∫ x

a

f(t)dt, (x ∈ [a, b])

is of bounded variation on [a, b].

Corollary 1.2 If a function f(x) is a C1-function on [a, b], f(x) is of
bounded variation on [a, b].

At last, we show that we can construct a RS-measure space on [a, b] by
using a left-continuous function of bounded variation or a right-continuous
function of bounded variation. Therefore we can define the RS-integral for a
RS-measurable function on [a, b].

As for the details of the RS-integral, we refer to Ito [14].

5



37
Axiomatic Method of Measure and Integration (IX). 

Definition of Curvilinear R-integral and its Fundamental Properties

By virtue of the definitions, we have the following proposition.

Proposition 1.2 We use the notation in the above. Then P (x) and N(x)
are two monotone increasing functions in the wider sense on [a, b].

In general, we happen to say that a monotone increasing function in the
wider sense on [a, b] is a monotone nondecreasing function.

By virtue of the definitions of P (x) and N(x), we have Theorem in the
following.

Theorem 1.1 A function of bounded variation defined on the closed in-
terval [a, b] is equal to the difference of two monotone increasing functions in
the wider sense.

The inverse of Theorem 1.1 in the above is also true. Namely we have
Theorem 1.2 in the following.

Theorem 1.2 We assume that a function y = f(x) is equal to a difference
of two monotone increasing functions in the wider sense defined on the closed
interval [a, b]. Then the function y = f(x) is of bounded variation on the
interval [a, b].

Theorem 1.3 If two functions f(x) and g(x) are of bounded variation on
the closed interval [a, b], the following functions (1)∼(4) are also of bounded
variation on the interval [a, b]:

(1) αf(x). Here α is a nonzero real constant. (2) f(x)± g(x).

(3) f(x)g(x). (4) f(x)/g(x). Here there exists a positive constant m > 0
such that we have the condition |g(x)| ≥ m > 0, (x ∈ [a, b]).

Here, if a function f(x) is of bounded variation on [a, b], we denote its total
variation as V (a, b). Then we have the following Theorem 1.4. 　

Theorem 1.4 We use the notation in the above. Then, for c ∈ [a, b], we
have the equality

V (a, b) = V (a, c) + V (c, b).

Here, if a function y = f(x) is of bounded variation on [a, b], we denote the
positive variation and the negative variation of y = f(x) on [a, b] as P (a, b)
and N(a, b) respectively.

Then we have the following Corollary 1.1.

Corollary 1.1 We use the notation in the above. Then, for c ∈ [a, b], we
have the equalities:

P (a, b) = P (a, c) + P (c, b),

4

N(a, b) = N(a, c) +N(c, b).

Theorem 1.5 If a function y = f(x) is continuous and of bounded vari-
ation on the closed interval [a, b], P (x), N(x) and V (x) are also continuous
on [a, b].

Example 1.1 A piece-wise monotone function on a closed interval [a, b]
is of bounded variation.

Example 1.2 The function

f(x) =

{
x sin

1

x
, (0 < x ≤ 1

π
),

0, (x = 0)

is not of bounded variation on the closed interval [0,
1

π
].

By virtue of Example 1.1, a function of bounded variation need not be
continuous.

Further, by virtue of Example 1.2, a continuous function need not be of
bounded variation.

Therefore, the conditions such as the continuity and the property of bounded
variation for some functions do not have any direct relation.

Proposition 1.3 We assume that a function f(x) is R-integrable on a
closed interval [a, b]. Then the integral function

F (x) =

∫ x

a

f(t)dt, (x ∈ [a, b])

is of bounded variation on [a, b].

Corollary 1.2 If a function f(x) is a C1-function on [a, b], f(x) is of
bounded variation on [a, b].

At last, we show that we can construct a RS-measure space on [a, b] by
using a left-continuous function of bounded variation or a right-continuous
function of bounded variation. Therefore we can define the RS-integral for a
RS-measurable function on [a, b].

As for the details of the RS-integral, we refer to Ito [14].

5



38 Yoshifumi Ito

1.2 Definition of the length of a plane curve

In this subsection, we define the concept of the length of a plane curve.
As for the length of a plane curve, we construct the measure space of Jordan

type on the plane curve as a mathematical model of the length of Jordan type
of a plane curve.

Now we fix a standard basis {i, j} on the plane R2. Thereby we determine
the orthogonal coordinates r = t(x, y) of a point r.

We consider a continuous plane curve

C : x = x(t), y = y(t), (a ≤ t ≤ b).

Namely, if two functions x = x(t) and y = y(t) are the continuous functions
defined on the closed interval [a, b], we say that the locus C of a point r =
r(t) = t(x(t), y(t)) in R2 for t ∈ [a, b] is a continuous curve.

We happen to say that this continuous curve is simply a curve. We say
that the variable t is the parameter of the curve C.

We say that the curve C is a closed curve if we have the condition r(a) =
r(b). Further we say that the curve C is an open curve if it is not a closed
curve. We say that, for certain t1, t2 ∈ [a, b] such as t1 ̸= t2 holds, the point
r(t1) = r(t2) is a double point if we have the condition r(t1) = r(t2). We say
that a curve C is a simple curve or a Jordan curve if it does not contain
any double point other than both end points r(a) and r(b).

In the sequel, for the simplicity of the statement, we assume that a consid-
ered curve is a Jordan curve.

Here, if a finite division ∆ of the closed interval [a, b] is defined by the
dividing points

a = t0 < t1 < t2 < · · · < tn = b,

we obtain the dividing points on the curve C

r0 = r(a), r1, r2 · · · , rn = r(b),

(
rj = r(tj), j = 0, 1, 2, · · ·n

)

and we define the length of the line graph obtained by combining these dividing
points by some line segments by virtue of the formula

L∆ =

n∑
j=1

rj−1rj

=
n∑

j=1

√
(x(tj)− x(tj−1))2 + (y(tj)− y(tj−1))2.

.

If L∆’s for all finite divisions ∆ of [a, b] is bounded, we define that its supremum

6

L = sup
∆

L∆

is the length of the curve C.
Then we have the following Theorem.

Theorem 1.6 A plane curve

C : r = r(t) = t(x(t), y(t)), (a ≤ t ≤ b)

has the length if and only if two coordinate functions x = x(t) and y = y(t) are
of bounded variation on [a, b].

Theorem 1.7 We assume that a plane curve

C : r = r(t) = t(x(t), y(t)), (a ≤ t ≤ b)

has the length. Then, the lengths L∆ of the line graphs corresponding for all
finite divisions ∆ of the closed interval [a, b] are bounded and we have its
supremum

L = sup
∆

L∆.

Then we have the limit
L = lim

∆
L∆

in the sense of Moore-Smith limit．

In Theorem 1.7 in the above, we can prove that the set ∆ of all direct sum
division

[a, b] = [a, t1) + [t1, t2) + · · ·+ [tn−1, b) + {b}

by using the subintervals of the closed interval [a, b] is a direct set with respect
to the subdivision ≤.

Therefore, {L∆; ∆ ∈ ∆} is a direct family and we can consider the limit

lim
∆

L∆

in the sense of Moor-Smith. Then we have the equality

L = lim
∆

L∆

by virtue of Theorem 1.7.
Here we remark that the length of the curve in the above does not change

by the transformation of parameter of the curve.
Namely, when the parameter t is expressed by a monotone continuous func-

tion
t = t(τ), (α ≤ τ ≤ β)
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of an another parameter τ , the length of the curve is invariant even if we express
the curve C as the formula

C : r = r(t(τ)), (α ≤ τ ≤ β).

We say that a plane curve is a rectifiable if it has the length.
In the sequel, we consider a rectifiable plane curve.
Therefore, in the curve

C : r(t) = t(x(t), y(t)), (a ≤ t ≤ b),

we assume that two coordinate functions x = x(t) and y = y(t) are the contin-
uous functions of bounded variation on the closed interval [a, b].

Then, for t and t′ such as a ≤ t ≤ t′ ≤ b, we express the arc of the curve
combining two points r(t) and r(t′) as C(t, t′). Then it is evident that the
curve C(t, t′) is rectifiable.

We denote the length of this curve as s(t, t′). Then, for t, t′, t′′ such as
a ≤ t < t′ < t′′ ≤ b, we have evidently the equality

s(t, t′) + s(t′, t′′) = s(t, t′′).

Further, we assume that, by the orientation of the arc of the curve, the
arc length measured in the positive direction is positive and the arc length
measured in the negative direction is negative. Then we have the equality

s(t, t′) = −s(t′, t)

for t and t′ such as a ≤ t < t′ ≤ b.
Therefore we have the equality

s(t, t′) + s(t′, t′′) = s(t, t′′)

independent to the order relation of t, t′, t′′ ∈ [a, b].
Here, if we put

s = s(t) = s(a, t)

for a ≤ t ≤ b, we have the equality

s(t, t′) = s(t′)− s(t)

for [t, t′] ⊂ [a, b]. Therefore s = s(t) is a continuous monotone increasing
function on [a, b]. Therefore, it is a continuous function of bounded variation.

Then the length s = s(t) of the arc C(a, t) of the curve is expressed by the
RS-integral

s =

∫ t

0

ds(t).

Its value belongs to the closed interval [0, L].

8

Next we study the construction of the image measure space (C, BC , ν)
on the curve C of the Jordan measure space (I, B, µ) on the closed interval
I = [a, b].

Then we have Theorem 1.8 in the following.

Theorem 1.8 Put I = [a, b]. Let (I, B, µ) be the Jordan measure space
on I. Then we have the statements (1)∼(4) in the following:

(1) If A ∈ B holds, we have 0 ≤ µ(A) ≤ b− a.

(2) If at most countable number of Ap ∈ B, (p = 1, 2, · · · ) are mutually
disjoint and we have the condition

A =

(∞)⋃
p=1

Ap ∈ B,

we have the formula

µ(A) =

(∞)∑
p=1

µ(Ap).

(3) For arbitrary c and d such as a ≤ c ≤ d ≤ b holds, we have the equality
µ([c, d]) = d− c.

(4) If A and B in B are congruent, we have the equality

µ(A) = µ(B).

In Theorem 1.8, the symbols

(∞)⋃
p=1

Ap and

(∞)∑
p=1

µ(Ap) show either one of the

finite sum or the countable sum.
In the sequel, we do not always give the similar remark.
We assume that the plane curve C is rectifiable. Then the continuous

mapping
φ : I −→ C

is defined by the formula

φ(t) = r(t) = t(x(t), y(t)), (a ≤ t ≤ b).

Then we can define the measure space (C, BC , ν) of Jordan type on the curve
C by using the Jordan measure space (I, B, µ).

This measure space (C, BC , ν) is constructed so that it is the image mea-
sure space on the curve C of the Jordan measure space (I, B, µ) on the interval
I.

Thereby, we construct the mathematical model of the concept of the length
of Jordan type on C.
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of an another parameter τ , the length of the curve is invariant even if we express
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0

ds(t).

Its value belongs to the closed interval [0, L].
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Namely we have Theorem 1.9 in the following.

Theorem 1.9 There exists a measure space (C, BC , ν) of Jordan type
on the curve C and we have the statements (1)∼(3) in the following:

(1) If E ∈ BC holds, we have 0 ≤ ν(E) ≤ L. Here L denotes the length of
the curve C.

(2) If at most countable number of Ep ∈ BC , (p = 1, 2, · · · ) are mutually
disjoint and we have the condition

E =

(∞)⋃
p=1

Ep ∈ BC ,

we have the formula

ν(E) =

(∞)∑
p=1

ν(Ep).

(3) E ∈ BC if and only if φ−1(E) ∈ B. Then we have the formula

ν(E) =

∫

φ−1(E)

ds(t).

The integral on the right hand side denotes the RS-integral. Here s = s(t)
is the function which is the arc length of the arc C(a, t) of the curve C.

　
Therefore, for [t, t′] ⊂ [a, b], we have the equality

ν([t, t′]) = s(t′)− s(t) = s(t, t′)

by virtue of Theorem 1.9.

Theorem 1.10 A C1-curve on the plane

C : r = r(t) = t(x(t), y(t)), (a ≤ t ≤ b)

is rectifiable. Its length L is given by the equality

L =

∫ b

a

∥ṙ(t)∥dt.

Here we have the equality

∥ṙ(t)∥ =
√
ẋ(t)2 + ẏ(t)2.
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Assume that a simple C1-curve is defined by the formula

C : x = x(t), y = y(t), (a ≤ t ≤ b).

We denote the arc length s(a, t) of the arc C(a, t) of the curve C as
s = s(t).

Then, by virtue of Theorem 1.10, we have the equality

s(t) =

∫ t

a

√
ẋ(t)2 + ẏ(t)2dt.

Therefore we have the equality

ds

dt
=

√
ẋ(t)2 + ẏ(t)2 =

√( dx

dt

)2

+
( dx

dt

)2

.

Here, if a curve
C : x = x(t), y = y(t), (a ≤ t ≤ b)

is a regular C1-curve, we have the formula

ẋ(t)2 + ẏ(t)2 > 0.

Therefore, since
ds

dt
> 0 holds, the function s = s(t) has the inverse function

t = t(s). Then the function t = t(s) is of class C1. Then we can obtain the
arc length s as a parameter of the curve C. Therefore, when we take s as a
parameter of the curve C, we have the equality

( dx

ds

)2

+
( dy

ds

)2

= 1.

This is proved by the formula

( dx

ds

)2

+
( dy

ds

)2

=
{( dx

dt

)2
+

( dy

dt

)2}( dt

ds

)2

= 1

by the calculation by using the method of differentiation of a composite func-
tion.

Then we have the following Theorem.

Theorem 1.11 In a regular C1-curve

C : x = x(t), y = y(t), (a ≤ t ≤ b),

the ratio of the length of the chord combining the both end points P (x, y) and
Q(x+∆x, y +∆y) of the arc C(t, t+∆t) of the curve and the arc length ∆s
converges to 1 when ∆s → 0 holds. Namely we have the limit

the chord

the arc length
=

√
∆x2 +∆y2

∆s
→ 1, (∆s → 0).

11



43
Axiomatic Method of Measure and Integration (IX). 

Definition of Curvilinear R-integral and its Fundamental Properties

Namely we have Theorem 1.9 in the following.

Theorem 1.9 There exists a measure space (C, BC , ν) of Jordan type
on the curve C and we have the statements (1)∼(3) in the following:

(1) If E ∈ BC holds, we have 0 ≤ ν(E) ≤ L. Here L denotes the length of
the curve C.

(2) If at most countable number of Ep ∈ BC , (p = 1, 2, · · · ) are mutually
disjoint and we have the condition

E =

(∞)⋃
p=1

Ep ∈ BC ,

we have the formula

ν(E) =

(∞)∑
p=1

ν(Ep).

(3) E ∈ BC if and only if φ−1(E) ∈ B. Then we have the formula

ν(E) =

∫

φ−1(E)

ds(t).

The integral on the right hand side denotes the RS-integral. Here s = s(t)
is the function which is the arc length of the arc C(a, t) of the curve C.

　
Therefore, for [t, t′] ⊂ [a, b], we have the equality

ν([t, t′]) = s(t′)− s(t) = s(t, t′)

by virtue of Theorem 1.9.

Theorem 1.10 A C1-curve on the plane

C : r = r(t) = t(x(t), y(t)), (a ≤ t ≤ b)

is rectifiable. Its length L is given by the equality

L =

∫ b

a
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Corollary 1.3 Assume that a function y = f(x) is of class C1 on the
closed interval [a, b]. Then the curve

C : y = f(x), (a ≤ x ≤ b)

is rectifiable and its length is given by the formula

s =

∫ b

a

√
1 + ḟ(x)2dx.

Corollary 1.4 Assume that a function f(θ) is of class C1 on the closed
interval [α, β]. Then the curve

C : r = f(θ), (α ≤ θ ≤ β)

defined by the polar coordinates is rectifiable and its length s is given by the
formula

s =

∫ β

α

√
r2+

( dr

dθ

)2
dθ.

Example 1.3 The lengths of the quadratic curves are given in the follow-
ing :

(1) Parabola. In the parabola y2 = 4lx, (l > 0), the arc length from the
vertex (0, 0) to an arbitrary points (x, y) is given by the formula

s =
√
x(x+ l)− l log

( √
x+ l

l
−
√

x

l

)
.

Here assume y > 0.

(2) Ellipse. The ellipse
x2

a2
+

y2

b2
= 1 is expressed by the formula

x = a sin θ, y = b cos θ, (0 ≤ θ ≤ 2π)

assuming that the point (0, b) is the starting point. Then the arc length
s of the ellipse is given by the formula

s = a

∫ θ

0

√
1− e2 sin2 θdθ =

∫ x

0

√
a2 − e2x2

a2 − x2
dx.

Here we assume that a ≥ b > 0 holds and e =

√
a2 − b2

a
denotes the

eccentricity.

12

(3) Hyperbola. The hyperbola
x2

a2
− y2

b2
= 1 is expressed by the formula

x = a sec θ, y = b tan θ, (−π

2
< θ <

π

2
)

assuming that the point (a, 0) is the starting point. Then the arc length
s of the hyperbola is given by the formula

s =

∫ θ

0

√
(a2 + b2) sec4 θ − a2 sec2 θdθ =

∫ x

a

√
a2 − e2x2

a2 − x2
dx.

Here we assume that 0 < θ <
π

2
holds and e =

√
a2 + b2

a
denotes the eccen-

tricity.

Remark 1.1 When k2 ̸= 0, 1 holds, we say that the three types of the
integrals ∫

dx√
(1− x2)(1− k2x2)

,

∫ √
1− k2x2

1− x2
dx,

∫
dx

(1− a2x2)
√
(1− x2)(1− k2x2)

are the elliptic integral of the first, second, third kind respectively.
If we put x = sin θ in these integrals, they are expressed in the following

three kind of integrals

∫
dθ√

1− k2 sin2 θ
,

∫ √
1− k2 sin2 θdθ,

∫
dθ

(1− a2 sin2 θ)
√
1− k2 sin2 θ

respectively.
These three kind of elliptic integrals are not expressed as the elementary

functions.

We see that the length of quadratic curves obtained in Example 1.3 are
expressed by using the elliptic integrals in the other cases than the circles and
the parabolas.
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2 Length of a space curve

In this section, we construct a measure space of Jordan type on a curve as
a mathematical model for the length of Jordan type of a curve in the space Rd.
Here we assume d ≥ 2.

In this section, we obtain a standard basis {i1, i2, · · · , id} on the space Rd

and fix it. Thus we assume that the orthogonal coordinate r = t(x1, x2, · · · , xd)
of a point r is determined.

In general, we assume that a considered curve in Rd is a continuous curve.
Then we give the definition of the length of a curve in Rd and the condition

that a curve in Rd has the length in the similar way as in the case of the plane
curve.

Here, when a finite division ∆ of a closed interval [a, b] is given by the
dividing points

a = t0 < t1 < t2 < · · · < tn = b,

we take the dividing points on the curve C:

r0 = r(a), r1, r2, · · · , rn = r(b),

(
rj = r(tj), j = 0, 1, 2, · · · , n

)
.

Then, we define the length of the polygonal line obtained by combining these
dividing points by the line segment by the formula:

L∆ =

n∑
j=1

rj−1rj =

n∑
j=1

√√√√ d∑
i=1

(xi(tj)− xi(tj−1))
2.

If the set of all L∆’s corresponding to all finite divisions ∆ of [a, b] is
bounded, we define that its supremum

L = sup
∆

L∆

is the length of the curve C.
Then we have the following Theorem.

Theorem 2.1 A space curve

C : r = r(t) = t(x1(t), x2(t), · · · , xd(t)), (a ≤ t ≤ b)

has the length if and only if the d coordinate functions x1 = x1(t), x2 =
x2(t), · · · , xd = xd(t) are of bounded variation on [a, b].

Theorem 2.2 We assume that a space curve

C : r = r(t) = t(x1(t), x2(t), · · · , xd(t)), (a ≤ t ≤ b)

14

has the length. Then the set of all lengths L∆’s of the polygonal lines corre-
sponding to all finite divisions ∆ of the closed interval [a, b] is bounded and we
have its supremum

L = sup
∆

L∆.

Then we have the limit
L = lim

∆
L∆

in the sense of Moore-Smith limit.

In Theorem 2.2 in the above, the limit in the sense of Moor-Smith is con-
sidered in the similar way to Theorem 1.7.

Here we remark that the length of the curve in the above is independent of
the transformation of the parameter of the curve.

Namely, when the parameter t is expressed by the monotone increasing
continuous function of another parameter τ , the length of the curve C does not
change even if we express the curve C by the formula

C : r = r(t(τ)), (α ≤ τ ≤ β).

In the sequel, we consider the rectifiable space curve. Therefore, on the curve

C : r = r(t) = t(x1(t), x2(t), · · · , xd(t)), (a ≤ t ≤ b),

the d coordinate functions x1 = x1(t), x2 = x2(t), · · · , xd = xd(t) are assumed
to be the continuous functions of bounded variation on the closed interval [a, b].

Here we denote the arc of the curve combining two points r(t) and r(t′) for
a ≤ t < t′ ≤ b as C(t, t′).

Then it is evident that the curve C(t, t′) has the length. We denote the
length of this curve as s(t, t′).

Then it is evident that, for a ≤ t < t′ < t′′ ≤ b, we have the equality

s(t, t′) + s(t′, t′′) = s(t′, t′′).

Further, by orienting the arc of the curve, we assume that the arc length
measured in the positive direction is positive and the arc length measured in
the negative direction is negative. Then, for a ≤ t < t′ ≤ b, we have the
equality

s(t, t′) = −s(t′, t).

Therefore we have the equality

s(t, t′) + s(t′, t′′) = s(t, t′′)

independent of the order of t, t′, t′′ ∈ [a, b].

15
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Here we denote the arc of the curve combining two points r(t) and r(t′) for
a ≤ t < t′ ≤ b as C(t, t′).

Then it is evident that the curve C(t, t′) has the length. We denote the
length of this curve as s(t, t′).

Then it is evident that, for a ≤ t < t′ < t′′ ≤ b, we have the equality

s(t, t′) + s(t′, t′′) = s(t′, t′′).

Further, by orienting the arc of the curve, we assume that the arc length
measured in the positive direction is positive and the arc length measured in
the negative direction is negative. Then, for a ≤ t < t′ ≤ b, we have the
equality

s(t, t′) = −s(t′, t).

Therefore we have the equality

s(t, t′) + s(t′, t′′) = s(t, t′′)

independent of the order of t, t′, t′′ ∈ [a, b].

15



48 Yoshifumi Ito

we have the equality

ν(E) =

(∞)∑
p=1

ν(Ep).

(3) We have E ∈ BC if and only if we have φ−1(E) ∈ B. Then we have the
equality

ν(E) =

∫

φ−1(E)

ds(t).

Here the integral on the right hand side of the equality in the above denotes the
RS-integral. Here s = s(t) is the arc length of the arc C(a, t) of the curve C.

Therefore, by virtue of Theorem 2.3, we have the equality

ν([t, t′]) = s(t′)− s(t) = s(t, t′)

for [t, t′] ⊂ [a, b].
Next, as a special case, we consider a certain C1-curve

C : r = r(t) = t
(
x1(t), x2(t), · · · , xd(t)

)
, (a ≤ t ≤ b)

in the space Rd.
Now we assume that we have the Jordan measure space (I, B, µ) on an

interval I = [a, b] in R.
Here we construct a measure space of Jordan type on C.
We construct this measure space as the image measure space on the curve

C of the Jordan measure space on the interval I.
Thereby we can construct naturally the mathematical model of the concept

of the length of Jordan type on C.
Then, since the C1-mapping φ : I → C is defined by the formula

φ(t) = r(t) = t
(
x1(t), x2(t), · · · , xd(t)

)
, (a ≤ t ≤ b),

we can define the measure space (C, BC , ν) of Jordan type on the curve C by
using the measure space (I, B, µ) and we have Theorem 2.4 in the following.

Theorem 2.4 There exists the measure space (C, BC , ν) of Jordan type
on a C1-curve C such that we have the statements (1) ∼ (3) in the following:

(1) If we have E ∈ BC , we have 0 ≤ ν(E) ≤ L. Here L denotes the length
of the curve C.

(2) If at most countable number of Ep ∈ BC , (p = 1, 2, · · · ) are mutually
disjoint and we have the condition

E =

(∞)⋃
p=1

Ep ∈ BC ,
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Here, for a ≤ t ≤ b, we put

s = s(t) = s(a, t).

Then, for [t, t′] ⊂ [a, b], we have the equality

s(t, t′) = s(t′)− s(t).

Therefore s = s(t) is a monotone increasing continuous function.
Thus it is a continuous function of bounded variation.
Then the length s = s(t) of the arc of the curve C(a, t) is expressed as the

RS-integral

s =

∫ t

0

ds(t).

Its value is included in the closed interval [0, L].
Next we consider the construction of the image measure space (C, BC , ν)

on the curve C of the Jordan measure space (I, B, µ) on the closed interval
I = [a, b].

Now, by virtue of Theorem 1.8, we assume that we have the Jordan measure
space (I, B, µ) on the closed interval I = [a, b].

We assume that the space curve C is rectifiable. Then, since a continuous
mapping φ : I → C is defined by the formula

φ(t) = r(t) = t(x1(t), x2(t), · · · , xd(t)), (a ≤ t ≤ b),

we can define the measure space (C, BC , ν) of Jordan type on the curve C by
using the measure space (I, B, µ).

This measure space is constructed so that it is the image measure space on
the curve C of the Jordan measure space on the interval I.

Thereby, we construct the mathematical model of the concept of the length
of Jordan type of the curve C.

Namely we have Theorem 2.3 in the following.

Theorem 2.3 There exists the measure space (C, BC , ν) of Jordan type
on a rectifiable curve C such that it satisfies the following statements (1) ∼ (3):

(1) If we have E ∈ BC , we have 0 ≤ ν(E) ≤ L. Here L denotes the length of
the curve C.

(2) If at most countable number of Ep ∈ BC , (p = 1, 2, · · · ) are mutually
disjoint and we have the condition

E =

(∞)⋃
p=1

Ep ∈ BC ,

16
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we have the equality
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, (a ≤ t ≤ b)

in the space Rd.
Now we assume that we have the Jordan measure space (I, B, µ) on an

interval I = [a, b] in R.
Here we construct a measure space of Jordan type on C.
We construct this measure space as the image measure space on the curve

C of the Jordan measure space on the interval I.
Thereby we can construct naturally the mathematical model of the concept
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Then, since the C1-mapping φ : I → C is defined by the formula

φ(t) = r(t) = t
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x1(t), x2(t), · · · , xd(t)

)
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using the measure space (I, B, µ) and we have Theorem 2.4 in the following.
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(2) If at most countable number of Ep ∈ BC , (p = 1, 2, · · · ) are mutually
disjoint and we have the condition

E =
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Ep ∈ BC ,
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Here, for a ≤ t ≤ b, we put

s = s(t) = s(a, t).

Then, for [t, t′] ⊂ [a, b], we have the equality

s(t, t′) = s(t′)− s(t).

Therefore s = s(t) is a monotone increasing continuous function.
Thus it is a continuous function of bounded variation.
Then the length s = s(t) of the arc of the curve C(a, t) is expressed as the

RS-integral

s =

∫ t

0

ds(t).

Its value is included in the closed interval [0, L].
Next we consider the construction of the image measure space (C, BC , ν)

on the curve C of the Jordan measure space (I, B, µ) on the closed interval
I = [a, b].

Now, by virtue of Theorem 1.8, we assume that we have the Jordan measure
space (I, B, µ) on the closed interval I = [a, b].

We assume that the space curve C is rectifiable. Then, since a continuous
mapping φ : I → C is defined by the formula

φ(t) = r(t) = t(x1(t), x2(t), · · · , xd(t)), (a ≤ t ≤ b),

we can define the measure space (C, BC , ν) of Jordan type on the curve C by
using the measure space (I, B, µ).

This measure space is constructed so that it is the image measure space on
the curve C of the Jordan measure space on the interval I.

Thereby, we construct the mathematical model of the concept of the length
of Jordan type of the curve C.

Namely we have Theorem 2.3 in the following.

Theorem 2.3 There exists the measure space (C, BC , ν) of Jordan type
on a rectifiable curve C such that it satisfies the following statements (1) ∼ (3):

(1) If we have E ∈ BC , we have 0 ≤ ν(E) ≤ L. Here L denotes the length of
the curve C.
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we have the equality

ν(E) =

(∞)∑
p=1

ν(Ep).

(3) We have E ∈ BC if and only if we have φ−1(E) ∈ B. Then we have the
equality:

ν(E) =

∫

φ−1(E)

∥ṙ(t)∥dt.

Here we have the formula

∥ṙ(t)∥ =
√
ẋ1(t)2 + ẋ2(t)2 + · · ·+ ẋd(t)2.

3 Definition of the curvilinear R-integral and
its fundamental properties

In this section, we define the curvilinear R-integral as the integral of Rie-
mann type of a scalar function defined on a curve C in the space Rd and we
study its fundamental properties. Here we assume d ≥ 2.

In this section, we say the curvilinear R-integral as the integral for simplic-
ity.

In general, we assume that the curve C in Rd is a rectifiable continuous
curve.

Here, by virtue of Theorem 2.4, we assume that the measure space (C, BC , ν)
of Jordan type is defined on the curve C.

Then, at first, we define that a scalar function defined on C is measurable.
At first, we define a simple function.
Namely we say that a scalar function f(r) = f(x1, x2, · · · , xd) defined on

C is a simple function if it is expressed as

f(r) =

∞∑
p=1

apχEp(r)

for an arbitrary countable division of C

∆ : C = E1 + E2 + · · · , (Ep ∈ BC , p = 1, 2, · · · ).

Here ap denotes a real number and they are not necessarily different each
other. χEp

(r) denotes the defining function of the set Ep. Then we denote the
simple function f(r) as f∆(r).

18

Here we define that ∆C is the set of all countable divisions ∆ of the curve
C by using the measurable sets in BC . Then we remark that ∆C is a direct
set with respect to the relation of the subdivision ≤.

Definition 3.1 We define that a scalar function f(r) defined on a recti-
fiable curve C is measurable if there exists a direct family {f∆(r); ∆ ∈ ∆C}
of simple functions defined on C such that we have the limit

lim
∆

f∆(r) = f(r)

uniformly on C in the sense of Moore-Smith limit.
Namely, for an arbitrary ε > 0, there exists a certain division ∆0 ∈ ∆C

such that, for an arbitrary division ∆ ∈ ∆C such as ∆0 ≤ ∆, we have the
condition

|f∆(r)− f(r)| < ε,
(
r = t(x1, x2, · · · , xd) ∈ C

)
.

Example 3.1 A simple function and a continuous function defined on a
rectifiable curve C are measurable.

Next we define the integral of Riemann type of a measurable function f(r)
defined on a rectifiable curve C.

We define this integral in the two steps.

(1) In the case where a function f(r) is a simple function
Here we assume that f(r) is expressed as

f(r) =

∞∑
p=1

apχEp
(r), (ap ∈ R, p ≥ 1)

for a countable division of C.
Then we define the integral of Riemann type on C of f(r) by the formula

R =

∫

C

f(r)dν =

∞∑
p=1

apν(Ep).

Here we assume that the sum of the series in the right hand side of the equality
in the above converges absolutely. The value of this integral is determined
independently to the choice of the expression of f(r) as a simple function.

(2) In the case where a function f(r) is a general measurable
function

Then, by virtue of Definition 3.1, there exists a direct family {f∆(r) : ∆ ∈
∆C} of simple functions such that it converges to f(r) uniformly on C.

19
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we have the equality

ν(E) =

(∞)∑
p=1

ν(Ep).

(3) We have E ∈ BC if and only if we have φ−1(E) ∈ B. Then we have the
equality:

ν(E) =

∫

φ−1(E)

∥ṙ(t)∥dt.

Here we have the formula

∥ṙ(t)∥ =
√
ẋ1(t)2 + ẋ2(t)2 + · · ·+ ẋd(t)2.

3 Definition of the curvilinear R-integral and
its fundamental properties

In this section, we define the curvilinear R-integral as the integral of Rie-
mann type of a scalar function defined on a curve C in the space Rd and we
study its fundamental properties. Here we assume d ≥ 2.

In this section, we say the curvilinear R-integral as the integral for simplic-
ity.

In general, we assume that the curve C in Rd is a rectifiable continuous
curve.

Here, by virtue of Theorem 2.4, we assume that the measure space (C, BC , ν)
of Jordan type is defined on the curve C.

Then, at first, we define that a scalar function defined on C is measurable.
At first, we define a simple function.
Namely we say that a scalar function f(r) = f(x1, x2, · · · , xd) defined on

C is a simple function if it is expressed as

f(r) =

∞∑
p=1

apχEp(r)

for an arbitrary countable division of C

∆ : C = E1 + E2 + · · · , (Ep ∈ BC , p = 1, 2, · · · ).

Here ap denotes a real number and they are not necessarily different each
other. χEp

(r) denotes the defining function of the set Ep. Then we denote the
simple function f(r) as f∆(r).

18

Here we define that ∆C is the set of all countable divisions ∆ of the curve
C by using the measurable sets in BC . Then we remark that ∆C is a direct
set with respect to the relation of the subdivision ≤.

Definition 3.1 We define that a scalar function f(r) defined on a recti-
fiable curve C is measurable if there exists a direct family {f∆(r); ∆ ∈ ∆C}
of simple functions defined on C such that we have the limit

lim
∆

f∆(r) = f(r)

uniformly on C in the sense of Moore-Smith limit.
Namely, for an arbitrary ε > 0, there exists a certain division ∆0 ∈ ∆C

such that, for an arbitrary division ∆ ∈ ∆C such as ∆0 ≤ ∆, we have the
condition

|f∆(r)− f(r)| < ε,
(
r = t(x1, x2, · · · , xd) ∈ C

)
.

Example 3.1 A simple function and a continuous function defined on a
rectifiable curve C are measurable.

Next we define the integral of Riemann type of a measurable function f(r)
defined on a rectifiable curve C.

We define this integral in the two steps.

(1) In the case where a function f(r) is a simple function
Here we assume that f(r) is expressed as

f(r) =

∞∑
p=1

apχEp
(r), (ap ∈ R, p ≥ 1)

for a countable division of C.
Then we define the integral of Riemann type on C of f(r) by the formula

R =

∫

C

f(r)dν =

∞∑
p=1

apν(Ep).

Here we assume that the sum of the series in the right hand side of the equality
in the above converges absolutely. The value of this integral is determined
independently to the choice of the expression of f(r) as a simple function.

(2) In the case where a function f(r) is a general measurable
function

Then, by virtue of Definition 3.1, there exists a direct family {f∆(r) : ∆ ∈
∆C} of simple functions such that it converges to f(r) uniformly on C.
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Then, if we have the limit

R = lim
∆

∫

C

f∆(r)dν

in the sense of Moore-Smith limit, we say that this limit R is the integral of
Riemann type of the measurable function f(r) on C and denote it as

R =

∫

C

f(r)dν.

This value does not depend on the choice of the direct family {f∆(r); ∆ ∈
∆C} of simple functions which coverges to f(r) uniformly on C.

We say that this integral is a curvilinear R-integral on C and we denote
it as

R =

∫

C

f(r)ds.

Here ds denotes the line element.
This integral on the right hand side of the equality in the above is considered

to be a Riemann-Stieltjes integral.
Further, we can define the curvilinear integral of a measurable vector func-

tion a = t(a1, a2, · · · , ad) on C is the similar way. This is equivalent to the
definitions of the curvilinear integrals of the scalar functions corresponding to
each one of d components a1, a2, · · · , ad of a.

We obtain the formulas in the following directly from the definition of the
curvilinear integral.

Theorem 3.1 We use the notation in the above for a rectifiable curve C.
Then we have the statements (1) and (2) in the following :

(1) For two measurable vector functions a1 and a2, we have the formula in
the following :

∫

C

(a1 + a2)dν =

∫

C

a1dν +

∫

C

a2dν.

(2) For a measurable vector function a on C and a real constant λ, we have
the formula in the following :

∫

C

λadν = λ

∫

C

adν.

Further we have Theorem 3.2 in the following.

Theorem 3.2 Assume that a rectifiable curve C is divided into two arcs

C1 : r = r(t) = t
(
x1(t), x2(t), · · · , xd(t)

)
, (a ≤ t ≤ c),
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C2 : r = r(t) = t
(
x1(t), x2(t), · · · , xd(t)

)
, (c ≤ t ≤ b).

Then, for a measurable vector function a, we have the equality

∫

C

adν =

∫

C1

adν +

∫

C2

adν.

Especially, in the case where a curve C in Rd is C1-curve, we can express
the curvilinear integral in the following.

(3) In the case where f(r) is a simple function
Here f(r) is expressed by the formula

f(r) =
∞∑
p=1

apχEp
(r), (ap ∈ R, p ≥ 1)

for a countable division of C

∆ : C = E1 + E2 + · · · , (Ep ∈ BC , p ≥ 1).

Then, by virtue of Theorem 2.4, (B), we have the equality

∫

C

f(r)dν =

∞∑
p=1

ap

∫

φ−1(Ep)

∥ṙ(t)∥dt

=

∫ b

a

f(r(t))∥ṙ(t)∥dt.

(4) In the case where f(r) is a general measurable function
The curvilinear integral of a measurable function f(r) on C is expressed as

R =

∫

C

f(r)dν =

∫ b

a

f(r(t))∥ṙ(t)∥dt.

In the similar way, as the curvilinear integral, we can define the curvilinear
integrals as follows:

∫

C

f(r)dxj =

∫ b

a

f(r(t))ẋj(t)dt, (1 ≤ j ≤ d).

Every type of the expression of these curvilinear integrals depends on the choice
of a parameter of the curve C. In general, it is known that the value of the
curvilinear integral on C does not depend on the choice of a parameter of the
curve C.
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Then, if we have the limit

R = lim
∆

∫

C

f∆(r)dν

in the sense of Moore-Smith limit, we say that this limit R is the integral of
Riemann type of the measurable function f(r) on C and denote it as

R =

∫

C

f(r)dν.

This value does not depend on the choice of the direct family {f∆(r); ∆ ∈
∆C} of simple functions which coverges to f(r) uniformly on C.

We say that this integral is a curvilinear R-integral on C and we denote
it as

R =

∫

C

f(r)ds.

Here ds denotes the line element.
This integral on the right hand side of the equality in the above is considered

to be a Riemann-Stieltjes integral.
Further, we can define the curvilinear integral of a measurable vector func-

tion a = t(a1, a2, · · · , ad) on C is the similar way. This is equivalent to the
definitions of the curvilinear integrals of the scalar functions corresponding to
each one of d components a1, a2, · · · , ad of a.

We obtain the formulas in the following directly from the definition of the
curvilinear integral.

Theorem 3.1 We use the notation in the above for a rectifiable curve C.
Then we have the statements (1) and (2) in the following :

(1) For two measurable vector functions a1 and a2, we have the formula in
the following :

∫

C

(a1 + a2)dν =

∫

C

a1dν +

∫

C

a2dν.

(2) For a measurable vector function a on C and a real constant λ, we have
the formula in the following :

∫

C

λadν = λ

∫

C

adν.

Further we have Theorem 3.2 in the following.

Theorem 3.2 Assume that a rectifiable curve C is divided into two arcs

C1 : r = r(t) = t
(
x1(t), x2(t), · · · , xd(t)

)
, (a ≤ t ≤ c),
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C2 : r = r(t) = t
(
x1(t), x2(t), · · · , xd(t)

)
, (c ≤ t ≤ b).

Then, for a measurable vector function a, we have the equality

∫

C

adν =

∫

C1

adν +

∫

C2

adν.

Especially, in the case where a curve C in Rd is C1-curve, we can express
the curvilinear integral in the following.

(3) In the case where f(r) is a simple function
Here f(r) is expressed by the formula

f(r) =
∞∑
p=1

apχEp
(r), (ap ∈ R, p ≥ 1)

for a countable division of C

∆ : C = E1 + E2 + · · · , (Ep ∈ BC , p ≥ 1).

Then, by virtue of Theorem 2.4, (B), we have the equality

∫

C

f(r)dν =

∞∑
p=1

ap

∫

φ−1(Ep)

∥ṙ(t)∥dt

=

∫ b

a

f(r(t))∥ṙ(t)∥dt.

(4) In the case where f(r) is a general measurable function
The curvilinear integral of a measurable function f(r) on C is expressed as

R =

∫

C

f(r)dν =

∫ b

a

f(r(t))∥ṙ(t)∥dt.

In the similar way, as the curvilinear integral, we can define the curvilinear
integrals as follows:

∫

C

f(r)dxj =

∫ b

a

f(r(t))ẋj(t)dt, (1 ≤ j ≤ d).

Every type of the expression of these curvilinear integrals depends on the choice
of a parameter of the curve C. In general, it is known that the value of the
curvilinear integral on C does not depend on the choice of a parameter of the
curve C.
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Especially, for a measurable vector function a = t(a1, a2, · · · , ad) on C,
we have the formula of a curvilinear integral in the following :

∫

C

a1dx1 + a2dx2 + · · ·+ addxd

=

∫ b

a

(a1ẋ1 + a2ẋ2 + · · ·+ adẋd)dt.

This is the special combination of the curvilinear integrals of the components.
Here, if a curve C is regular, we have the condition

ẋ1(t)
2 + ẋ2(t)

2 + · · ·+ ẋd(t)
2 ̸= 0.

Therefore we can take the arc length s measured from the point t = a as a
parameter.

Then, since the unit vector of the curve C is t = t
(
x′
1(s), x

′
2(s), · · · , x′

d(s)
)
,

we have the formula
∫

C

a1dx1 + a2dx2 + · · ·+ addxd =

∫ L

0

a · tds.

Here L denotes the length of C, and we can express also in the form
∫

C

a · tds.

Here a · t denotes the inner product of two vectors a and t.
Further, when we express as dr = tds by using the vector r which express

the point r on C, we can express the curvilinear integral in the above as the
formulas ∫

C

a · dr

or ∫

C

(a, dr).

Here we remark that we have the symbol

dr = t(dx1, dx2, · · · , dxd).

Further the symbol (a, dr) denotes the inner product.
If, at each point on the curve C, we denote the angle of a and t as θ, we

have the equality ∫

C

a · dr =

∫ L

θ

∥a∥ cos θds.

By using the notation in the above, we have the formula of the curvilinear
integral.

Theorem 3.3 We use the notation in the above for a C1-class regular
curve C. Then we have the statements (1) and (2) in the following:
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(1) For two measurable vector functions a1 and a2 on C, we have the formula
in the following:

∫

C

(a1 + a2) · dr =

∫

C

a1 · dr +

∫

C

a2 · dr.

(2) For a measurable vector function a on C and a real constant λ, we have
the formula in the following:

∫

C

λa · dr = λ

∫

C

a · dr.

Further we have Theorem 3.4 in the following.

Theorem 3.4 If a C1-class regular curve C is divided into two arcs

C1 : r = r(t) = t
(
x1(t), x2(t), · · · , xd(t)

)
, (a ≤ t ≤ c),

C1 : r = r(t) = t
(
x1(t), x2(t), · · · , xd(t)

)
, (c ≤ t ≤ b),

we have the formula
∫

C

a · dr =

∫

C1

a · dr +

∫

C2

a · dr

for a measurable vector function a on C.

We can extend the definition of the curvilinear integral so that we have the
similar formula when the curve C in the above is continuous at t = c and it is
not differentiable at t = c.

Since the curvilinear R-integral is the special case of the RS-integral, as
for the details of the properties of the curvilinear R-integral, we refer to the
paragraph of the fundamental properties of the RS-integral in Ito [14].

At last, we show the example of the curvilinear R-integral on R2.

Example 3.1 If a rectifiable curve AB is devided into the arcs AA1, A1A2,
A2B and they are expressed as y = φ1(x), y = φ2(x) and y = φ3(x) respec-
tively, we have the equality

S =

∫

AA1

f(x, y)dx+

∫

A1A2

f(x, y)dx+

∫

A2B

f(x, y)dx

=

∫ a1

a

f(x, φ1(x))dx+

∫ a2

a1

f(x, φ2(x))dx+

∫ b

a2

f(x, φ3(x))dx

for the curvilinear R-integral on the curve C. Thus we have the equality

S =

∫

AB

f(x, y)dx.

23



55
Axiomatic Method of Measure and Integration (IX). 

Definition of Curvilinear R-integral and its Fundamental Properties

Especially, for a measurable vector function a = t(a1, a2, · · · , ad) on C,
we have the formula of a curvilinear integral in the following :

∫

C

a1dx1 + a2dx2 + · · ·+ addxd

=

∫ b

a

(a1ẋ1 + a2ẋ2 + · · ·+ adẋd)dt.

This is the special combination of the curvilinear integrals of the components.
Here, if a curve C is regular, we have the condition

ẋ1(t)
2 + ẋ2(t)

2 + · · ·+ ẋd(t)
2 ̸= 0.

Therefore we can take the arc length s measured from the point t = a as a
parameter.

Then, since the unit vector of the curve C is t = t
(
x′
1(s), x

′
2(s), · · · , x′

d(s)
)
,

we have the formula
∫

C

a1dx1 + a2dx2 + · · ·+ addxd =

∫ L

0

a · tds.

Here L denotes the length of C, and we can express also in the form
∫

C

a · tds.

Here a · t denotes the inner product of two vectors a and t.
Further, when we express as dr = tds by using the vector r which express

the point r on C, we can express the curvilinear integral in the above as the
formulas ∫

C

a · dr

or ∫

C

(a, dr).

Here we remark that we have the symbol

dr = t(dx1, dx2, · · · , dxd).

Further the symbol (a, dr) denotes the inner product.
If, at each point on the curve C, we denote the angle of a and t as θ, we

have the equality ∫

C

a · dr =

∫ L

θ

∥a∥ cos θds.

By using the notation in the above, we have the formula of the curvilinear
integral.

Theorem 3.3 We use the notation in the above for a C1-class regular
curve C. Then we have the statements (1) and (2) in the following:
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(1) For two measurable vector functions a1 and a2 on C, we have the formula
in the following:

∫

C

(a1 + a2) · dr =

∫

C

a1 · dr +

∫

C

a2 · dr.

(2) For a measurable vector function a on C and a real constant λ, we have
the formula in the following:

∫

C

λa · dr = λ

∫

C

a · dr.

Further we have Theorem 3.4 in the following.

Theorem 3.4 If a C1-class regular curve C is divided into two arcs

C1 : r = r(t) = t
(
x1(t), x2(t), · · · , xd(t)

)
, (a ≤ t ≤ c),

C1 : r = r(t) = t
(
x1(t), x2(t), · · · , xd(t)

)
, (c ≤ t ≤ b),

we have the formula
∫

C

a · dr =

∫

C1

a · dr +

∫

C2

a · dr

for a measurable vector function a on C.

We can extend the definition of the curvilinear integral so that we have the
similar formula when the curve C in the above is continuous at t = c and it is
not differentiable at t = c.

Since the curvilinear R-integral is the special case of the RS-integral, as
for the details of the properties of the curvilinear R-integral, we refer to the
paragraph of the fundamental properties of the RS-integral in Ito [14].

At last, we show the example of the curvilinear R-integral on R2.

Example 3.1 If a rectifiable curve AB is devided into the arcs AA1, A1A2,
A2B and they are expressed as y = φ1(x), y = φ2(x) and y = φ3(x) respec-
tively, we have the equality

S =

∫

AA1

f(x, y)dx+

∫

A1A2

f(x, y)dx+

∫

A2B

f(x, y)dx

=

∫ a1

a

f(x, φ1(x))dx+

∫ a2

a1

f(x, φ2(x))dx+

∫ b

a2

f(x, φ3(x))dx

for the curvilinear R-integral on the curve C. Thus we have the equality

S =

∫

AB

f(x, y)dx.
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Example 3.2 Assume that the xy-coordinate system has a positive ori-
entation. Assume that a Jordan closed curve C has a positive orientation so
that we see the inner side at the left hand side when we move along the curve.

Then, if the area of the inside of the curve C is S, we have the equality

S =

∫

C

xdy = −
∫

C

ydx =
1

2

∫

C

(xdy − ydx).
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