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Abstract

LetD be a non-square integer and C0 be the parabola
y = x2 − D. C0(Q) denotes the rational points of C0.
Adding the infinite point ∞ to C0(Q), we introduce
a new multiplicative group structure on C0(Q) ∪ {∞},
which is denoted by C0(Q). As an application of this
group structure, we shall give several formulae of the
covergents of the continued fraction expansions of

√
D.

C1 denotes the Pell conic x2 −Dy2 = 1 and C1(Q) de-

notes the rational points on C1. Then C0(Q) and C1(Q)
are isomorphic as rational points of two algebraic tori.
We will investigate the arithmetic of C0(Q) and C1(Q)
as the rational points of these algebraic tori.
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1 Introduction

Let D be a non-square integer. C0 denotes the parabola y =
x2 − D. C1 denotes the corresponding Pell conic x2 − Dy2 = 1.
We note that the Pell conic C1 is a hyperbola for the case D >
0 and is an ellipse for the case D < 0. Let C0(Q) and C1(Q)
be the rational points of the parabola C0 and the Pell conics C1,
respectively. Usually, C0(Q) has the additive group structure and
C1(Q) has the multiplicative group structure by so called chord and
tangent processes.

In the following, we shall introduce a new group structure on
C0(Q). Using this group structure, we shall give several formulae
of the convergents and the intermediate convergents of the simple
continued fraction expansions of

√
D.

We shall consider C0(Q)(or more precisely C0(Q)) as the ra-
tional points of certain algebraic torus. C1(Q) is also considered
as the rational points of another algebraic torus. Then these two
algebraic tori are isomorphic. We shall refer the class numbers of
these algebraic tori, which are considered as the geometrical ver-
sions of Gauss’s genus theory. We shall investigate the heights of
rational points of C0(Q) and C1(Q) and the canonical heights of
these rational points.

2 Multiplicative group structure of the

rational points on the parabola

2.1 The new group structure

Now we shall define a new group structure of C0(Q). Firstly
we consider ∞ = lim

t→∞
(t, t2 − D) = lim

t→−∞
(t, t2 − D) is a rational

point on C0. Take two rational points A =
(

a1
b1
,
a21
b21

−D
)
and B =(

a2
b2
,
a22
b22

−D
)
on C0. The line connecting two points A and B has

2

the slope a2
b2

+ a1
b1

and intersects x−axis at the point

(c, 0),where c =
a1a2 + b1b2D

a1b2 + a2b1
(1)

We call the rational point (c, c2 −D) ∈ C0(Q) is the product of A
and B and denote A ∗B, i.e.,

(
a1
b1
,
a1

2

b21
−D

)
∗
(
a2
b1
,
a2

2

b22
−D

)
= (c, c2 −D).

We note, for the cases D > 0, this procedure is nothing but the
secant method for

√
D.

We will add the above infinity point ∞ to C0(Q) and denote
C0 ∪ {∞} by C0(Q). Then C0(Q) is considered as a multiplicative
group by this new group law. Let K be the quadratic field Q(

√
D).

Let us consider the surjective map π from K× to C0(Q);

π : a− b
√
D −→

(
a

b
,
a2

b2
−D

)
.

Then one can easily verify

(a1 − b1
√
D)(a2 − b2

√
D) = (a1a2 + b1b2D)− (a1b2 + a2b1)

√
D (2)

Combining (1) and (2), we can see the map π is a surjective homo-
morphism from K× to C0(Q). We note that ∞ is the unit element
of C0(Q) and the kernel of π is Q×. Hence one knows C0(Q) ∼=
K×/Q×. Let [a + b

√
D] be the equivarent class (a + b

√
D)Q× ∈

K×/Q×.

Theorem 2.1 With the above notation

C0(Q) ∼= K×/Q×,

where the isomorphism map is given by

(
a

b
,
a2

b2
−D

)
→ [a− b

√
D] = (a− b

√
D)Q×

3
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One can relate C0(Q) and C1(Q) by the following map

(
a

b
,
a2

b2
−D

)
→ [a−b

√
D] → a− b

√
D

a+ b
√
D

→
(
a2 +Db2

a2 −Db2
,− 2ab

a2 −Db2

)

Here we shall recall Hilbert’s theorem 90.

Proposition 2.2 Let K/k be a finite Galois extension of fields with
Galois group G = Gal(K/k). Then the first cohomology group of
G, with coefficients in the multiplicative group of K, is trivial:

H1(G,K×) = 1.

Since the cohomological period of cyclic group is 2, we have the
following corollary of Hilbert’s theorem 90.

Corollary 2.3 Let K be a finite cyclic extension of a field k with
Galois group G = ⟨σ⟩. Here σ is a generator of G. Then any
a ∈ K× with NK/k(a) = 1 is written in the form a = b/bσ for some
b ∈ K×. Thus we have an isomorphism

N−1
K/k(1) = {a ∈ K× | NK/ka = 1} ∼= K×/k×

From this corollary, the above bijection is the isomorphism between
C0(Q) and C1(Q).

Theorem 2.4
C0(Q) ∼= C1(Q),

where the isomorphism is given by

(
a

b
,
a2

b2
−D

)
∈ C0(Q) →

(
a2 +Db2

a2 −Db2
,− 2ab

a2 −Db2

)
∈ C1(Q)

In the following, we shall abbreviate

(
a

b
,
a2

b2
−D

)
∈ C0(Q) to

P
(a
b

)
.

4

Remark 2.5 We note that this new multiplicative structure is not
compatible with the usual additive structure of C0(Q). For exam-

ple, P (0) = (0,−D) =

(
0

1
,−D

)
is the 0 element in the additive

structure. But the fact (−
√
D)2 = D ∈ Q shows P (0) has the order

2 in the multiplicative group C0(Q).

Let C be the general rational parabola y = ax2+bx+c = a(x−
α)(x−β), where a, b, c ∈ Z with the discriminant D = b2−4ac ̸= □.
Then one can verify the above multiplicative group structure on
C(Q), where C(Q) = {(x, f(x) |x ∈ Q}, is generalized as follows:

(p/q, f(p/q)−α) ∈ C0(Q) → [p/q−α] = [p−qα] = (p−qα)Q× ∈ K×/Q×.

This relation also induces the isomorphism between the groups of
C(Q) and K×/Q×. We shall pick up two examples as follows.

Example 2.6 If f(x) = x2 − x− 1, one can verify

x

y

Fn+1
Fn

Fm+1
FmFm+n+1

Fm+n

Fn+1

Fn
→ [Fn+1 − φFn] = [φ̄n],

Fn+1

Fn
satisies

P (Fm+1

Fm
) ∗ P (Fn+1

Fn
) = P (Fm+n+1

Fm+n
)

5
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Example 2.7 The group structure is also defined for the case
D < 0. For example, let us consider the case f(x) = x2 + 1.

x

y

F2n+2F2n+1F2n

(F2n+1 −
√
−1)(F2n+2 −

√
−1)

= F2n+3(F2n −
√
−1)

From tangent addition formula, one knows

1
F2n+1

+ 1
F2n+2

1− 1
F2n+1F2n+2

= 1
F2n

Therefore we have verified

tan−1

(
1

F2n+1

)
= tan−1

(
1

F2n

)
− tan−1

(
1

F2n+2

)
.

Repeating this relations from n = 0 to ∞, one can verify the fol-
lowing well known Lenstra and Goggins’s formula.

π

2
=

∞∑
n=0

tan−1

(
1

F2n+1

)
.

2.2 Newton’s method and Halley’s method

In this subsection, we shall restrict ourselves to the case D > 0.
Let y = f(x) be a real valued function and α be a root of the equa-
tion f(x) = 0. Then, in general, Newton’s method is a root-finding
algorithm which produces successively better approximations to the
root α. Start with a value x0 = x with f ′(α) ̸= 0 and sufficiently
close to α satisfying f ′(x0) ̸= 0. Put

6

xn+1 = xn −
f(xn)

f ′(xn)

Then xn −→ α as n −→ ∞.
In the case f(x) = x2 −D, it is easy to verify

xn+1 =
1

2

(
xn +

D

xn

)
.

Assume xn =
p

q
∈ Q. Then xn+1 =

p2 +Dq2

2pq
, and we have verified

the following proposition.

Proposition 2.8 Newton’s method xn → xn+1 for
√
D satisfies

P (xn+1) = P (xn) ∗ P (xn) = P (xn)
2

Halley’s method is another root-finding algorithm faster than

Newton’s method. Put g(x) =
f(x)√
|f ′(x)|

. When f ′(α) ̸= 0, one

knows
f(α) = 0 ⇐⇒ g(α) = 0

Then xn+1 = xn − g(xn)

g′(xn)
and g′(xn) =

2|f ′(xn)|2 − f(xn)f
′′(xn)

2f ′(xn)
√

|f ′(xn)
.

Applying Newton’s methods for g(x), Halley’s method consists of
a sequence of iterations:

xn+1 = xn −
2f(xn)f

′(xn)

2|f ′(xn)|2 − f(xn)f ′′(xn)
.

In the case f(x) = x2 −D, we have

xn+1 =
x3
n + 3Dxn

3x2
n +D

.

Assume xn =
p

q
∈ Q. Then xn+1 =

p3 +Dpq2

3p2q +Dq3
and hence we have

verified the following proposition.

Proposition 2.9 Halley’s methods xn → xn+1 for
√
D satisfies

P (xn+1) = (P (xn) ∗ P (xn)) ∗ P (xn) = P (xn)
3.

7
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3 Secant methods and the simple con-

tinued fraction expansions of
√
D

In this section we restrict ourselves to the case D > 0. When
the continued fraction expansions of

√
D have the period length n,

we shall write √
D = [a0; a1, . . . , an].

For k ≥ 1, αk > 1 is defined by putting

√
D = [a0; a1, . . . , ak−1, αk].

Then ak = [αk], where a = [x] denotes the Gauss symbol., i.e.
the maximal integer a satisfying a ≤ x. There are two ways of
indexing the kth convergents of the above continued fraction ex-
pansions. Here we adopt the indexing of Takagi [14], i.e., we will
put as follows;

Pk = ak−1Pk−1 + Pk−2, with P−1 = 0, P0 = 1,

Qk = ak−1Qk−1 +Qk−2, with Q−1 = 1, Q0 = 0.

Then kth convergent is defined by
Pk

Qk

= [a0; a1, . . . , ak−1] and sat-

isfy;

√
D =

αkPk + Pk−1

αkQk +Qk−1

⇐⇒ αk = −Pk−1 −Qk−1

√
D

Pk −Qk

√
D

.

Here, for the sake of the readers who are not familiar with the
sequences of convergents, we will list small values of Pk, Qk in the
following table.

k −1 0 1 2 . . . n . . .

ak a0 a1 a2 . . . an = 2a0 . . .

Pk 0 1 a0 a1a0 + 1 . . . Pn = an−1Pn−1 + Pn−2 . . .

Qk 1 0 1 a1 . . . Qn = an−1Qn−1 +Qn−2 . . .

8

Moreover αn−k+1 = − 1

αk

, which implies an = 2a0 and the sym-

metrical property an−k = ak for 1 ≤ k ≤ n − 1. ηk denotes
Pk + Qk

√
D. Then ηn = εD = Pn − Qn

√
D is the fundamental

unit of the order Z[
√
D] with the norm (−1)n. For 0 ≤ k ≤ n, k-th

convergent satisfies the following property.

Theorem 3.1 Take two points corresponding to the convergents

P

(
Pk

Qk

)
=

(
Pk

Qk

,
P 2
k

Q2
k

−D

)
and P

(
Pn−k

Qn−k

)
=

(
Pn−k

Qn−k

,
P 2
n−k

Q2
n−k

−D

)
.

Then the line connecting two points intersects x-axis at the same

point

(
Pn

Qn

, 0

)
, that is,

P

(
Pk

Qk

)
∗ P

(
Pn−k

Qn−k

)
= P

(
Pn

Qn

)
.

Proof. From Theorem 1.1, the assertion is equivalent to show
ηkηn−k ∈ εDQ×. When k = 0, the assertion is true, because

η0ηn = 1× (Pn −Qn

√
D) = εD ∈ εDQ×.

Assume the assertion is true for k − 1, i.e., ηk−1ηn−k+1 ∈ εDQ×.
Then αn−k+1αk = −1 implies

(
ηk−1

ηk

)(
ηn−k+1

ηn−k

)
=

αk

αn−k+1

= −αkαk ∈ Q×.

Hence the assertion is true for k, because

ηkηn−k = −ηk−1ηn−k+1

αkαk

∈ εDQ×, which completes the proof.

Since ηnt+k = (ηn)
tηk, we can generalize the above assertion as

follows.

Proposition 3.2 For any natural numbers i, j,m which satisfy i+
j = mn,

P

(
Pi

Qi

)
∗ P

(
Pj

Qj

)
= P

(
Pn

Qn

)m

= P

(
Pmn

Qmn

)

9
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√
D =
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√
D

Pk −Qk

√
D

.
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8

Moreover αn−k+1 = − 1

αk

, which implies an = 2a0 and the sym-

metrical property an−k = ak for 1 ≤ k ≤ n − 1. ηk denotes
Pk + Qk

√
D. Then ηn = εD = Pn − Qn

√
D is the fundamental

unit of the order Z[
√
D] with the norm (−1)n. For 0 ≤ k ≤ n, k-th

convergent satisfies the following property.

Theorem 3.1 Take two points corresponding to the convergents

P

(
Pk

Qk

)
=

(
Pk

Qk

,
P 2
k

Q2
k

−D

)
and P

(
Pn−k

Qn−k

)
=

(
Pn−k

Qn−k

,
P 2
n−k

Q2
n−k

−D

)
.

Then the line connecting two points intersects x-axis at the same

point

(
Pn

Qn

, 0

)
, that is,

P

(
Pk

Qk

)
∗ P

(
Pn−k

Qn−k

)
= P

(
Pn

Qn

)
.

Proof. From Theorem 1.1, the assertion is equivalent to show
ηkηn−k ∈ εDQ×. When k = 0, the assertion is true, because

η0ηn = 1× (Pn −Qn

√
D) = εD ∈ εDQ×.

Assume the assertion is true for k − 1, i.e., ηk−1ηn−k+1 ∈ εDQ×.
Then αn−k+1αk = −1 implies

(
ηk−1

ηk

)(
ηn−k+1

ηn−k

)
=

αk

αn−k+1

= −αkαk ∈ Q×.

Hence the assertion is true for k, because

ηkηn−k = −ηk−1ηn−k+1

αkαk

∈ εDQ×, which completes the proof.

Since ηnt+k = (ηn)
tηk, we can generalize the above assertion as

follows.

Proposition 3.2 For any natural numbers i, j,m which satisfy i+
j = mn,

P

(
Pi

Qi

)
∗ P

(
Pj

Qj

)
= P

(
Pn

Qn

)m

= P

(
Pmn

Qmn

)

9
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Modifying the proof of the above theorem, we can also prove the
following lemma.

Lemma 3.3 For any 1 ≤ k ≤ n− 1,

ηkηn−k+1 − ηk−1ηn−k ∈ εDQ.

Proof. From the definition, we have

ηk+1 = akηk + ηk−1, ηn−k−1 = −akηn−k + ηn−k+1.

Multilying the both sides each other, we have

ηk+1ηn−k−1 = −a2kηkηn−k + ηk−1ηn−k+1 + ak(ηkηn−k+1 − ηk−1ηn−k).

Hence

ηkηn−k+1−ηk−1ηn−k = (ηk+1ηn−k−1+a2kηkηn−k−ηk−1ηn−k+1)/ak ∈ εDQ.

From this lemma, theorem 3.1 which is established for convergents
can be generalized to the following proposition which is established
for intermediate convergents.

Proposition 3.4 For any 1 ≤ k ≤ n− 1 and any integer 0 < bk <
ak, the points corresponding to the intermediate convergents satisfy

P

(
bkPk + Pk−1

bkQk +Qk−1

)
∗ P

(
(ak − bk)Pn−k + Pn−k−1

(ak − bk)Qn−k +Qn−k−1

)
= P

(
Pn

Qn

)
.

Proof. Put

ξk+1 = bkηk+ηk−1, ξn−k+1 = (ak−bk)ηn−k+ηn−k−1 = ηn−k+1−bkηn−k.

Then

ξk+1ξn−k−1 = −b2kηkηn−k + ηk−1ηn−k+1 + bk(ηkηn−k+1 − ηk−1ηn−k).

From the above lemma ξk+1ξn−k−1 ∈ εDQ. Since ξk+1ξn−k−1 ̸= 0,
ξk+1ξn−k−1 ∈ εDQ×, which means the corresponding rational points
satisfy the claim of this proposition.

10

Remark 3.5 The case cases bk = 0 and bk = ak in this proposition
coincide with the above formula on convergents of Theorem 3.1.

Now we shall refer similar results also hold for the case f(x) =
x2 − x+ 1−D

4
, where D is a positive non square integer with D ≡ 1

(mod 4). Let C0 be the parabola y = f(x) = x2 − x − 1−D
4

. Then
we denote the rational point on C0 by

P (p/q) = (
p

q
, f(

p

q
)).

If the period of the continued fraction expansions of ω = 1+
√
D

2
is

n. ω is written in the form

ω = [a0; a1, . . . , an],

where an = 2a0−1 and an−k = ak for the cases 1 ≤ k ≤ n−1. Then
Pk, Qk are defined by putting P−1 = 0, P0 = 1, Q−1 = 1, Q0 = 0 and
Pk+1 = akPk+Pk−1 and Qk+1 = akQk+Qk−1 for k ≥ 0. Then Pn−
Qnω satisfies Nk/Q(Pn−Qnω) = P 2

n−PnQn+
(1−D)Q2

n

4
= (−1)n and

hence the fundamental unit εD of the order Z[ω] of K = Q(
√
D).

Putting ηk = Pk −Qkω, one can verify

ηkηn−k ∈ ηnQ× = εDQ×

for 0 ≤ k ≤ n. Similar to the case f(x) = x2 −D, we can show the
following propositions.

Theorem 3.6 For any 0 ≤ k ≤ n, P (p/q) = (p
q
, p

2

q2
− p

q
+ 1−D

4
)

satisfies

P (Pk/Qk) ∗ P (Pn−k/Qn−k) = P (Pn/Qn) .

Proposition 3.7 For any 1 ≤ k ≤ n − 1 and any integer 0 <
bk < ak, the points P (p/q) = (p

q
, p

2

q2
− p

q
+ 1−D

4
) corresponding to the

intermediate convergents satisfy

P ((bkPk + Pk−1)/(bkQk +Qk−1))
∗P (((ak − bk)Pn−k + Pn−k−1)/((ak − bk)Qn−k +Qn−k−1))
= P (Pn/Qn) .

11
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4 Algebraic tori

We shall show that C0(Q) and C1(Q) are the rational points of
certain algebraic tori. Firstly, we shall recall several definitions and
notations of algebraic tori. Let k be an algebraic number field and
K be its finite extension and RK/k be Weil restriction from K to k.
There exists an exact sequence of algebraic tori defined over k.

1 → R
(1)
K/k(Gm) → RK/k(Gm)

N→ Gm → 1,

where N is the norm map from K to k and R
(1)
K/k(Gm) is its kernel.

Similarly there exists the following exact sequence of algebraic tori

1 → Gm → RK/k(Gm) → RK/k(Gm)/Gm → 1.

WhenK is a quadratic fieldQ(
√
D) and k = Q, we denoteRK/Q(Gm)/Gm

and R
(1)
K/Q(Gm) by T0 and T1, respectively. Then C0(Q) ∼= T0(Q)

by the following homomorphism

(
a

b
,
a2

b2
−D

)
∈ C0(Q) → [a− b

√
D] ∈ K×/Q× = T0(Q).

Similarly C1(Q) ∼= T1(Q) by the following map

(x, y) ∈ C1(Q) → x+ y
√
D ∈ T1(Q).

Theorem 4.1 With the above notation, we have

C0(Q) ∼= T0(Q) ∼= T1(Q) ∼= C1(Q).

Through these isomorphisms, one can define the local factor for
each prime in K. Adelizations of these Euler factors imply the
zeta functions and then the class numbers hC0 of C0 and hC1 of C1

as algebraic tori. In his paper [7], F. Lemmermeyer investigated
another approach to the Pell conics C1 and calculated the class
number hC1 directly. Finally he found the following relative class
number formula for hK and hC1 .

12

hK

hC1

=

{
2tK−1 D < 0 or D > 0 and NK/Q O×

K = {±1},
2tK−2 D > 0 and NK/Q O×

K = {1},

where tK is the number of distinct primes which sprits in K and
O×

K is the unit group of K.
Now we shall recall fundamental results on the class numbers

of algebraic tori. The class number relation of isogenous tori was
firstly investigated by J. M. Shyr in his paper [14]. Later, using
Shyr’s formula on Tamagawa numbers of isogeneous tori, T. Ono
and others(such as R. Sasaki, M. Morishira, V. E. Voskresenskii and
the author) investigated the class number relations more precisely
as follows.

We note that the class numbers of algebraic tori RK/k(Gm)
and Gm are the usual class number of algebraic number fields K
and k and denoted hK and hk, respectively. The isogeny between
RK/k(Gm) and R

(1)
K/k(Gm) × Gm implies the class number relation

of hK , hk and hK/k, where hK/k denotes the class number of norm

one torus R
(1)
K/k(Gm). T. Ono defined the following Euler number

E(K/k) in his paper [11];

E(K/k) =
hK

hK/khk

.

Similarly, we defined E ′(K/k) in [3] based on the following exact
sequence of algebraic tori.

1 → Gm → RK/k(Gm) → RK/k/Gm → 1.

Let h′
K/k be the class number of the above algebraic toriRK/k(Gm)/Gm.

Another arithmetic invariant E ′(K/k) is defined by putting

E ′(K/k) =
hK

h′
K/khk

.

Since E(K/k) = E ′(K/k) for any cyclic extension K/k, we have
rediscovered the following formulae for the cases K = Q(

√
D) and

13
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4 Algebraic tori
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12

hK

hC1

=

{
2tK−1 D < 0 or D > 0 and NK/Q O×

K = {±1},
2tK−2 D > 0 and NK/Q O×

K = {1},

where tK is the number of distinct primes which sprits in K and
O×

K is the unit group of K.
Now we shall recall fundamental results on the class numbers

of algebraic tori. The class number relation of isogenous tori was
firstly investigated by J. M. Shyr in his paper [14]. Later, using
Shyr’s formula on Tamagawa numbers of isogeneous tori, T. Ono
and others(such as R. Sasaki, M. Morishira, V. E. Voskresenskii and
the author) investigated the class number relations more precisely
as follows.

We note that the class numbers of algebraic tori RK/k(Gm)
and Gm are the usual class number of algebraic number fields K
and k and denoted hK and hk, respectively. The isogeny between
RK/k(Gm) and R

(1)
K/k(Gm) × Gm implies the class number relation

of hK , hk and hK/k, where hK/k denotes the class number of norm

one torus R
(1)
K/k(Gm). T. Ono defined the following Euler number

E(K/k) in his paper [11];

E(K/k) =
hK

hK/khk

.

Similarly, we defined E ′(K/k) in [3] based on the following exact
sequence of algebraic tori.

1 → Gm → RK/k(Gm) → RK/k/Gm → 1.

Let h′
K/k be the class number of the above algebraic toriRK/k(Gm)/Gm.

Another arithmetic invariant E ′(K/k) is defined by putting

E ′(K/k) =
hK

h′
K/khk

.

Since E(K/k) = E ′(K/k) for any cyclic extension K/k, we have
rediscovered the following formulae for the cases K = Q(

√
D) and

13



24 Shin-ichi Katayama

k = Q;

hK

h(C1)
=

hK

hQh(T1)
= E(K/Q) = E ′(K/Q) =

hK

hQh(T0)
=

hK

h(C0)
.

Thus we have shown a geometrical interpretation of Gauss’s genus
theory for conics defined over Q.

5 Height of the rational points on C0

5.1 Height of the rational points

Here we shall define the height of the rational point P
(
a
b

)
=

(a
b
, a

2

b2
−D) in C0(Q). Let x be a rational number written in lowest

terms x = a
b
. Then the naive height H(x) of x is defined by H(x) =

logmax{|a|, |b|} as usual. Denote a0 = a and b0 = b. Scince 2-

Desent of P is the Newton’s method for P , P
(

ak+1

bk+1

)
= P

(
ak
bk

)2

means

[ak+1 − bk+1

√
D] = [(ak − bk

√
D)2] = [(a2k +Db2k)− 2akbk

√
D].

In the case D > 0, one sees ak > |bk| > 1 for k ≥ 1. Hence

H
(
P
(

ak
bk

))
= log |ak| for k ≥ 1. Canonical height ĥ(P ) of P =

P
(
a
b

)
is defined by putting

ĥ(P ) = lim
n→∞

H
(
P
(

an
bn

))

2n

Therefore

ĥ(P ) = lim
n→∞

log |an|
2n

.

In the case D ≡ 2, 3 (mod 4), put ξ = a + b
√
D and ξ1 = |a1| +

|b1|
√
D. Then |ξ̄| = ||a1| − |b1|

√
D|| < |ξ1|. ξk denote ξk = |ak| +

|bk|
√
D and ξ̄k = |ak| − |bk|

√
D. Then a1 and b1 are coprime, and

14

inductively we get ξk = ξ2
k−1

1 for k ≥ 1. Since |ak| = (ξ1
2k−1

+

ξ̄1
2k−1

)/2 = ξ1
2k−1

(1 + (ξ̄1/ξ1)
2k−1

)/2,

ĥ(P ) = lim
n→∞

log |an|
2n

= lim
n→∞

2n−1 log |ξ1|+ log(1 + (ξ̄1/ξ1)
2n−1

)− log 2

2n

=
log |ξ1|

2
=

log(|a1|+ |b1|
√
D)

2
.

In the case D ≡ 1 (mod 4), we must substitute ξ1 to |a1|+|b1|
√
D

2

Then |ξ̄1| = | |a1|−|b1|
√
D|

2
| < |ξ1|. ξk denote ξk =

|ak|+|bk|
√
D

2
. Then

ĥ(P ) = lim
n→∞

log |an|
2n

= lim
n→∞

2n−1 log |ξ1|+ log(1 + (ξ̄1/ξ1)
2n−1

)− log 2

2n

=
log |ξ1|

2
=

log(a1|+|b1|
√
D

2
)

2
.

Now we shall consider the cases D < 0. In the cases D ≡ 2, 3
(mod 4), put ξ1 = |a1| + |b1|

√
D. Then |ξ1| =

√
a21 −Db21 and

ξk = ξ2
k−1

1 = |ak| + |bk|
√
D and H

(
P
(

ak
bk

))
= logmax(|ak|, |bk|).

If |ak| > |bk|,
a2k < |ξk|2 = a2k −Db2k < 2a2k.

Hence

log(|ξk|/
√
2) < log |ak| = H (P (ak/bk)) < log |ξk|.

If |ak| < |bk|,

|D|b2k < |ξk|2 = a2k −Db2k < (|D|+ 1)b2k.

Hence

log(|ξk|/
√

|D|+ 1) < log |bk| = H(P (ak/bk) < log(|ξk|/
√

|D|).

Using squeeze theorem

ĥ(P ) = lim
n→∞

H
(
P
(

an
bn

))

2n
= lim

n→∞

log |ξ1|2n−1

2n
=

log |ξ1|
2

.

15
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inductively we get ξk = ξ2
k−1

1 for k ≥ 1. Since |ak| = (ξ1
2k−1

+

ξ̄1
2k−1

)/2 = ξ1
2k−1

(1 + (ξ̄1/ξ1)
2k−1

)/2,

ĥ(P ) = lim
n→∞

log |an|
2n

= lim
n→∞

2n−1 log |ξ1|+ log(1 + (ξ̄1/ξ1)
2n−1

)− log 2

2n

=
log |ξ1|

2
=

log(|a1|+ |b1|
√
D)

2
.

In the case D ≡ 1 (mod 4), we must substitute ξ1 to |a1|+|b1|
√
D

2

Then |ξ̄1| = | |a1|−|b1|
√
D|

2
| < |ξ1|. ξk denote ξk =

|ak|+|bk|
√
D

2
. Then

ĥ(P ) = lim
n→∞

log |an|
2n

= lim
n→∞

2n−1 log |ξ1|+ log(1 + (ξ̄1/ξ1)
2n−1

)− log 2

2n

=
log |ξ1|

2
=

log(a1|+|b1|
√
D

2
)

2
.

Now we shall consider the cases D < 0. In the cases D ≡ 2, 3
(mod 4), put ξ1 = |a1| + |b1|

√
D. Then |ξ1| =

√
a21 −Db21 and

ξk = ξ2
k−1

1 = |ak| + |bk|
√
D and H

(
P
(

ak
bk

))
= logmax(|ak|, |bk|).

If |ak| > |bk|,
a2k < |ξk|2 = a2k −Db2k < 2a2k.

Hence

log(|ξk|/
√
2) < log |ak| = H (P (ak/bk)) < log |ξk|.

If |ak| < |bk|,

|D|b2k < |ξk|2 = a2k −Db2k < (|D|+ 1)b2k.

Hence

log(|ξk|/
√
|D|+ 1) < log |bk| = H(P (ak/bk) < log(|ξk|/

√
|D|).

Using squeeze theorem

ĥ(P ) = lim
n→∞

H
(
P
(

an
bn

))

2n
= lim

n→∞

log |ξ1|2n−1

2n
=

log |ξ1|
2

.
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In the cases D ≡ 1 (mod 4), substituting ξ1 to |a1|+|b1|
√
D

2
, one can

similarly get the same conclusion

ĥ(P ) =
log |ξ1|

2
.

Now we shall compare the corresponding heights defined by F. Lem-
mermeyer in his paper [7]. For the sake of simplicity, we restrict
ourselves to the case D > 0 and D ≡ 2, 3 (mod 4), because other
cases can be verified in the similar manner. Recall the isomorphisms
as follows;

C0(Q) ∼= K×/Q× ∼= N−1
K/Q(1)

∼= C1(Q),

where

(
ak
bk
,
a2k
b2k

−D

)
�→ [ak − bk

√
D] �→

(
ak − bk

√
D

ak + bk
√
D

)

=

(
a2k +Db2k − 2akbk

√
D

a2k −Db2k

)
=

(
ak+1 − bk+1

√
D

ck+1

)

�→
(
ak+1

ck+1

,−bk+1

ck+1

)
, where

ak+1

bk+1

in lowest terms

with a2k+1 −Db2k+1 = c2k+1.
The 2-Decents of C0(Q) and C1(Q) satisy

(
ak
bk
,
a2k
b2k

−D

)
∈ C0(Q) ←→

(
ak+1

ck+1

,−bk+1

ck+1

)
∈ C1(Q)

↓ 2-Decent ↓ 2-Decent(
ak
bk+1

,
a2k+1

b2k+1

−D

)
←→

(
ak+2

ck+2

,−bk+2

ck+2

)

Let us denote Pk =

(
ak
bk
,
a2k
b2k

−D

)
and P̃k =

(
ak+1

ck+1

,−bk+1

ck+1

)
.

Then naive heights satify H(P̃k) = H(Pk+1) = 2H(Pk). Denote

P =

(
a

b
,
a2

b2
−D

)
∈ C0(Q), and corresponding P̃ =

(
a1
c1
,−b1

c1

)
∈

16

C1(Q). Thus the canonical heights of corresponding rational points
on each conic satisfy ĥ(P̃ ) = 2ĥ(P ). One can easily verify similar
results also hold for other cases D > 0, D ≡ 1 (mod 4) and D < 0.

Theorem 5.1 Let us denote P =

(
a

b
,
a2

b2
−D

)
∈ C0(Q), and cor-

responding P̃ =

(
a1
c1
,−b1

c1

)
∈ C1(Q). Then the canonical heights

satisfy ĥ(P̃ ) = 2ĥ(P ).

Remark 5.2 Though it holds for all cases, we restrict ourselves to
the cases D(≡ 1 (mod 4)) > 0. We shall explain the reason why
we don’t use (a, b), but use (a1, b1). GCD (a, b) = 1 don’t imply
GCD(a2 + Db2, 2ab) = 1, but GCD(a1, b1) = 1 imply GCD(a21 +
Db21, 2a1b1) = 1. For example, consider the case D = 6, a = 2, b =
1.

(2−
√
6)2 = 2(5− 2

√
6), (5− 2

√
6)2 = 49− 20

√
6.

Thus a1 = 5, b1 = 2 and a2 = 49, b2 = 20 for this case.

Remark 5.3 Assume D is square free and D ≡ 2, 3 (mod 4) and
the period length of the continued fraction expansion of

√
D is even

n = 2m. Then the point
(

Pm

Qm
, P 2

m

Q2
m
−D

)
in C0(Q) which corre-

sponding to m-th convergent satisfy

(
Pm

Qm

,
P 2
m

Q2
m

−D

)
−→ Pm −Qm

√
D

Pm +Qm

√
D

= (−1)m(Pn −Qn

√
D).

5.2 Canberra distance

Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn. Then the Can-
berra distance d(x, y) is defined by

d(x, y) =
n∑

i=1

|xi − yi|
|xi|+ |yi|

.
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Remark 5.2 Though it holds for all cases, we restrict ourselves to
the cases D(≡ 1 (mod 4)) > 0. We shall explain the reason why
we don’t use (a, b), but use (a1, b1). GCD (a, b) = 1 don’t imply
GCD(a2 + Db2, 2ab) = 1, but GCD(a1, b1) = 1 imply GCD(a21 +
Db21, 2a1b1) = 1. For example, consider the case D = 6, a = 2, b =
1.

(2−
√
6)2 = 2(5− 2

√
6), (5− 2

√
6)2 = 49− 20

√
6.

Thus a1 = 5, b1 = 2 and a2 = 49, b2 = 20 for this case.

Remark 5.3 Assume D is square free and D ≡ 2, 3 (mod 4) and
the period length of the continued fraction expansion of

√
D is even

n = 2m. Then the point
(

Pm

Qm
, P 2

m

Q2
m
−D

)
in C0(Q) which corre-

sponding to m-th convergent satisfy

(
Pm

Qm

,
P 2
m

Q2
m

−D

)
−→ Pm −Qm

√
D

Pm +Qm

√
D

= (−1)m(Pn −Qn

√
D).

5.2 Canberra distance

Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn. Then the Can-
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T. Yoshida defined the distance d(a
b
,
√
D) for the rational point(

a
b
, a

2

b2
−D

)
∈ C0(Q), by putting

d
(a
b
,
√
D
)
=

�����
a
b
−

√
D

a
b
+
√
D

����� =
�����
a− b

√
D

a+ b
√
D

����� .

He explained the relation of Newton’s formula for
√
D and this

distance as follows
(
ak
bk
,
a2k
b2k

−D

)
∈ C0(Q) ←→ d

(
ak
bk
,
√
D

)

↓ Newton’s method ↓ 2-Decent(
ak
bk+1

,
a2k+1

b2k+1

−D

)
←→ d

(
ak+1

bk+1

,
√
D

)

From the above argument, one can consider Yosida’s distance is the
usual abosolute value of corresponding value in N−1

K/Q(1) through

the isomorphism between C0(Q).

6 Class number one problem for alge-

braic tori

Let H+(K) be the class group in the narrow sense of a quadratic
field K = Q(

√
D). Then the class group of T0 and T1 is isomorphic

to (H+(K))2 (see for example [7]). We note that the class group
of C0 and C1 is isomorphic to (H+(K))2 as in the section 4. Let
us consider the class number one problem of C0(or C1), i.e., to
determine the algebraic torus T0(or T1) with class number one.

From Gauss’s genus theorem, or the calculations of Ono’s Euler
number E(K/Q), we have

hK/Q = 1 ⇐⇒ hK = 2tK−1 , when D < 0

or when D > 0 and K = Q(
√
D)

with the fundamental unit of norm −1,

hK = 2tK−2 , when D > 0 and K = Q(
√
D)

with the fundamental unit of norm 1.

18

Since hK/Q = |(H+(K))2| is the number of classes in each genus,
class number one problem of T0 = RK/QGm/Gm or C0 is the de-
termination of such quadratic fields. In his paper [19], P. J. Wein-
berger investigated imaginary quadratic fields with a single class in
each genus and showed that there are at most 68 such imaginary
quadratic fields by using Tatuzawa’s lower bound for L(1, χ). In [1],
K. Dohmae determined real quadratic fields(of narrow R-D type)
with a single class in each genus and shows that there are at most
70 such fields also using Tatuzawa’s lower bound.

Proposition 6.1 ([1] and [19]) Let K be imaginary quadratic fields.

Then hK/Q = 1 for at most 68 norm 1 tori R
(1)
K/QGm(or RK/QGm/Gm).

Let K be real quadratic fields of narrow R-D type. Then hK/Q =

1 at most 70 norm 1 tori R
(1)
K/QGm( or RK/QGm/Gm).

Remark 6.2 Discriminants of the known imaginary quadratic fields
with 1 class per genus are listed A003644 in Online Encyclopedia
of Integer Sequences. Since the list depends on Siegel’s bound (see
Tatuzawa [16]), there may exist at most one more such discrimi-
nant not contained in the list. If one assumes that the generalized
Rieman hypothesis is true, the list is complete.

If hK = 1, then hK/Q = 1 and EK/Q = E ′
K/Q = 1 for quadratic

fields K. Thus the conjecture that there exist infinitely many real
quadratic fields with class number one imply a natural weak con-
jecture that there exist infinitely many real quadratic fields with 1
class per genus. More precisely, (H+(K))2 = 0 means the narrow
ideal class group ofK is elementary abelian 2−group. The distribu-
tion of such quadratic fields are the special cases of Cohen-Lenstra
heuristic.

These results are slightly generalized to the following setting.
Let K be a CM extension of the totally real number field k = K+.
Then the class number h = hK is divided by h+ = hk and the quo-
tient h/h+. h/h+ is called the relative class number and usually de-

noted by h−. Then hK/k the class number of norm 1 tori R
(1)
K/k(Gm)

also divides h−. Especially the class number one problem of hK/k

19
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30 Shin-ichi Katayama

for cyclotomic extension K is reduced to the determination of cy-
clotomic extensions with 2-power h−, which was investigated by K.
Horie around 1990. Discriminants of imaginary fields whose class
group has exponent 2 are listed A316743 in Online Encyclopedia of
Integer Sequences.
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