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Abstract

A counting formula for cyclic automorphic hypergraphs is given.
The result can be understood as a generalization of a theorem
proved by A. Nakamoto, T. Shirakura and S. Tazawa, which was
originally called Royle’s conjecture.
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1 Introduction

Enumerations of generalized graphs have been studied by many authors.
In particular, their fundamental research was done by N. G. de Bruijn and
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Mathematical Sciences (RACMaS) of Tohoku University.

1



Kumi Kobata and Yasuo Ohno2

D. A. Klarner [1], and the counting formula for the unlabeled general hyper-
graphs was given by S. Y. Wu [2], T. Ishihara [3] and Q. Jianguo [4], inde-
pendently. For ordinary graphs, in 2001, G. Royle conjectured an explicit
formula for the number of the unlabeled self-complementary graphs, which was
described in terms of the numbers of two kinds of unlabeled graphs. Royle’s
conjecture was proved by A. Nakamoto, T. Shirakura and S. Tazawa [5] in
2009. After their work, the second named author [6] proved its generalization
to the case of edge colored cyclically automorphic complete graphs, which is a
generalization of the concept of self-complementary graphs to general orders.
In this paper, for hypergraphs, we define cyclically automorphic graphs (cf.
[7]), and give a counting formula for them.

2 Main theorem

For any positive integer n, let V = {v1, v2, . . . , vn} be a finite set of vertices.
For any positive integer k, let E = {e1, e2, . . . , ek} be the set of edges of a
hypergraph on V , where ei (i = 1, 2, . . . k) is a subset of V such that | ei |≥ 2
and ei ̸= ej for any i ̸= j. Thus, a hypergraph is a generalization of an ordinary
graph, namely, although an edge of an ordinary graph is a set of two vertices,
an edge of a hypergraph is a set of two or more vertices. However, in this paper,
we only consider h-hypergraphs, for any integer h ≥ 2, and an h-hypergraph
is a hypergraph with exactly h vertices on each edge. We denote by Hh,n the
set of the only graph, named a complete h-hypergraph, which has totally

(
n
h

)
edges.

For any positive integers r, let ζr = exp
(
2πi
r

)
be the r-th primitive root of

unity. Cyclic group Z =
{
ζr, ζ

2
r , . . . , ζ

r
r = 1

}
of order r is considered as the set

of r distinct colors. We denote by H
(r)
h,n the set of all edge colored complete

unlabeled h-hypergraphs f (up to isomorphism) with n vertices in V whose
edges are colored by colors in Z.

We define cyclic permutation σ as σ =

(
ζr ζ2r . . . ζr−1

r ζrr
ζ2r ζ3r . . . ζrr ζr

)
. For

f ∈ H
(r)
h,n, the action of σ is the cyclic permutations of colors of each of all

edges in f , i.e. σf = ζr · f . An important definition is that, a graph f ∈
H

(r)
h,n is said to be cyclically automorphic if it satisfies σf = f . Let sc

(r)
h (n)

denotes the number of cyclically automorphic graphs inH
(r)
h,n, namely sc

(r)
h (n) =

#
{
f ∈ H

(r)
h,n|σf = f

}
. Let qs(f) be the number of edges in f colored by ζsr .

The main result of the present paper is as follows:

Theorem 2.1. For any positive integers r, h and n, we have

sc
(r)
h (n) =

∑

f∈H
(r)
h,n

ζq1(f)+2q2(f)+···+rqr(f)
r .

2

Remark 2.2. The second named author’s theorem in [6] is the special case
when h = 2 in the above theorem.

3 Examples

We introduce the case sc
(2)
3 (4) as an example of the main theorem. The edges

of complete 3-hypergraphs of order 4 are colored by two colors in this case.

First, we consider the elements of H
(2)
3,4 as given in Fig. 1. It has five elements,

and one of them, marked by square box, is the only cyclically automorphic

3-hypergraph in H
(2)
3,4 .

n =4, r = 2, h =3

=2
8

2 =2
6

2
2 =2

4
2
3 =2

2=2
4

Figure 1:

The number written under each graph is the value of the graph, in the sense
of the right-hand side of Theorem 2.1, namely it is the product of the colors of
its all edges. For example, let us consider the second graph from the left. This
graph has three edges of the color ζ2 = −1 and one edge of the color ζ22 . Thus
the value of the graph is (ζ2)

3 · (ζ22 )1 = ζ2 = −1.
We obtain 1 as the total sum of numbers under five 3-hypergraphs in Fig.

1, and the number “1” coincides with the number of cyclically automorphic

3-hypergraph in H
(2)
3,4 . This is what the theorem asserts.

Next, we introduce another case sc
(3)
3 (4) as also an example of our theorem.

The edges of complete 3-hypergraphs of order 4 are colored by three colors in

this case. First, we consider the all elements of H
(3)
3,4 as given in Fig. 2. It

has fifteen elements, and there are no cyclically automorphic 3-hypergraphs
among them. This fact is apparent from the fact that the number of edges, 4,
is relatively prime to the number of colors, 3, however it can also be derived
from our theorem.

The value of each graph is written under the graph and is expressed as

3
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an integer power of the cubic root of unity. We obtain 0 as the total sum of
the values of fifteen 3-hypergraphs in Fig. 2, and the “0” coincides with the

number of cyclically automorphic 3-hypergraph in H
(3)
3,4 .

It’s somewhat a puzzling fact that says that to count a special graph, you
can use the edge information of all its companion graphs including itself.

4 Proof of Theorem 2.1

Let
(
V
h

)
be {{v1, v2, . . . , vh} ⊂ V |vi ̸= vj for i ̸= j}, and let Z(Vh) denote the set

of all edge colored complete labeled h-hypergraphs with n vertices whose edges

are colored by each colors in Z. A map fL ∈ Z(Vh) can be understood as an edge
colored labeled h-hypergraph, for example, when fL(vi1 , vi2 , . . . , vih) = ζsr , it

4

means that the edge (vi1 , vi2 , . . . , vih) is colored by ζsr . The action σfL can be
understood as the product ζr · fL.

The set of permutations Ξ = {1, σ} on the set Z is used, where 1 is the
identity. We define an isomorphism γ of h-hypergraphs as follows:
Let Γ = Sn be the symmetric group on V . We consider that γ ∈ Γ is a
permutation acts on

(
V
h

)
, such that, for every element (vi1 , vi2 , . . . , vih) of

(
V
h

)
,

γ(vi1 , vi2 , . . . , vih) = (γvi1 , γvi2 , . . . , γvih).

Moreover, we introduce a permutation (γ : ξ), for ξ ∈ Ξ, on Z(Vh) defined by

(γ : ξ)fL(vi1 , vi2 , . . . , vih) = ξfL(γvi1 , γvi2 , . . . , γvih).

Let Z
(Vh)
sc be

Z
(Vh)
sc =

{
fL ∈ Z(Vh) | ∃γ ∈ Γ, (γ : σ) fL = fL

}
.

Let Γσ, Γ1 and ΓfL be

Γσ =
{
γ ∈ Γ | ∃fL ∈ Z(Vh), (γ : σ) fL = fL

}
,

Γ1 =
{
γ ∈ Γ | ∃fL ∈ Z(Vh), (γ : 1) fL = fL

}
,

and
ΓfL =

{
γ ∈ Γ | (γ : 1) fL = fL

}
for fL ∈ Z(Vh),

where 1 means the identical permutation. Let ℓ(f) and ℓ(fL) be the numbers
of ways of labeling a graph f and fL, respectively. Namely, if f is the unlabeled
graph of fL, then ℓ(f) = ℓ(fL). And we have #ΓfL · ℓ(fL) = n!.

It is easy to see that

Lemma 4.1. For γ ∈ Γ, we have the following:

(1) fL is a fixed point of the action of (γ : 1) if and only if fL is constant on
every cyclic permutation in the disjoint cycle decomposition of γ.

(2) fL is a fixed point of the action of (γ : σ) if and only if in every cyclic
permutation z in the disjoint cycle decomposition of γ, fL(z(vi1 , vi2 , . . . , vih)) =
ζr · fL(vi1 , vi2 , . . . , vih) holds for any (vi1 , vi2 , . . . , vih) ∈ z.

Then, from (2) in Lemma 4.1 we have the following:

Lemma 4.2. γ is an element of Γσ if and only if the length of every cyclic
permutation in the disjoint cycle decomposition of γ is divisible by r.

Next, we study the following lemma.
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Lemma 4.3.

sc
(r)
h (n) =

1

n!

∑
γ∈Γσ

#
{
fL ∈ Z(Vh)|(γ : σ)fL = fL

}
.

Proof.

∑
γ∈Γσ

#
{
fL ∈ Z(Vh)|(γ : σ)fL = fL

}

=
∑
γ∈Γ

#
{
fL ∈ Z(Vh)|(γ : σ)fL = fL

}

=
∑
γ∈Γ

#

{
fL ∈ Z

(Vh)
sc |(γ : σ)fL = fL

}

=
∑

fL∈Z
(Vh)
sc

#
{
γ ∈ Γ|(γ : σ)fL = fL

}
.

For any fL ∈ Z
(Vh)
sc , we put F =

{
γ ∈ Γ | (γ : σ)fL = fL

}
and consider η ∈

F . We put {δ1, δ2, . . . , δℓ} =
{
δ ∈ Γ|(δ : 1)fL = fL

}
, where we set δi ̸= δj for

any i ̸= j. Since fL = (η : σ)fL = η(σ(fL)), we get η−1(fL) = σ(fL). First,
we have (δiη : σ)fL = δiη(σ(f

L)) = δi(η(σ(f
L))) = δi(f

L) = (δi : 1)f
L = fL.

So we get {δ1η, δ2η, . . . , δlη} ⊂ F , namely, ℓ ≤ #F . On the other hand, we
have (γη−1 : 1)fL = γ(η−1(fL)) = γ(σ(fL)) = (γ : σ)fL = fL. So we get
Fη−1 ⊂ {δ1, . . . , δℓ}, namely, #F ≤ ℓ. Thus we obtain

#
{
γ ∈ Γ|(γ : σ)fL = fL

}
= #

{
γ ∈ Γ|(γ : 1)fL = fL

}
.

Hence, the right hand side of the above equality becomes

∑

fL∈Z
(Vh)
sc

#
{
γ ∈ Γ|(γ : 1)fL = fL

}
=

∑

fL∈Z
(Vh)
sc

#ΓfL

=
∑

fL∈Z
(Vh)
sc

n!

ℓ(fL)

= n!
∑

fL∈Z
(Vh)
sc

1

ℓ(fL)

= n!
∑

f∈H
(r)
h,n

ℓ(f) · 1

ℓ(f)
.

The sum on the right hand side of the above equality is equal to the value
sc(r)(n).

6

Next, we need the following lemmas.

Lemma 4.4. For γ ∈ Γ,
∑

(γ:1)fL=fL

fL∈Z
(Vh)

ζq1(f
L)+2q2(f

L)+···+rqr(f
L)

r

=

{
0 (γ ̸∈ Γσ),

#
{
fL ∈ Z(Vh)|(γ : 1)fL = fL

}
(γ ∈ Γσ).

Proof. For γ ̸∈ Γσ, we put γ = z1 · z2 · · · · · zt such that the length of z1 is k

which is not divisible by r. We consider fL
1 , f

L
2 , . . . , f

L
r ∈ Z(Vh) satisfying the

following two conditions:

· if (vi1 , vi2 , . . . , vih) ∈ z1, then
fL
1 (vi1 , vi2 , . . . , vih) = ζ1r ,
fL
2 (vi1 , vi2 , . . . , vih) = ζ2r ,...
fL
r (vi1 , vi2 , . . . , vih) = ζrr ,

· if (vi1 , vi2 , . . . , vih) ̸∈ z1, then
fL
1 (vi1 , vi2 , . . . , vih) = fL

2 (vi1 , vi2 , . . . , vih) = · · · = fL
r (vi1 , vi2 , . . . , vih).

It is enough to prove that the sum of the values of fL
1 , f

L
2 , . . . , f

L
r is equal to

0. We calculate as follows:
r∑

j=1

ζ
q1(f

L
j )+2q2(f

L
j )+···+rqr(f

L
j )

r

=
r∑

j=1

ζ
q1(f

L
1 )+2q2(f

L
1 )+···+rqr(f

L
1 )

r · ζ(j−1)k
r

= ζ
q1(f

L
1 )+2q2(f

L
1 )+···+rqr(f

L
1 )

r

(
ζ0·kr + ζ1·kr + · · ·+ ζ(r−1)·k

r

)

= ζ
q1(f

L
1 )+2q2(f

L
1 )+···+rqr(f

L
1 )

r

(
ζ0r + ζkr + · · ·+ ζ(r−1)k

r

)
.

Since k is not divisible by r, ζkr ̸= 1. The part
(
ζ0r + ζkr + · · ·+ ζ

(r−1)k
r

)
is

equal to 0 and the left hand side of the equality in Lemma 4.4 becomes 0 for
γ ̸∈ Γσ.

For γ ∈ Γσ, by Lemma 4.2, q1(f
L) + 2q2(f

L) + · · ·+ rqr(f
L) is divisible by

r. Thus,
∑

(γ:1)fL=fL

f∈Z
(Vh)

ζq1(f
L)+2q2(f

L)+···+rqr(f
L)

r =
∑

(γ:1)fL=fL

f∈Z
(Vh)

1

= #
{
fL ∈ Z(Vh)|(γ : 1)fL = fL

}
.

7
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any i ̸= j. Since fL = (η : σ)fL = η(σ(fL)), we get η−1(fL) = σ(fL). First,
we have (δiη : σ)fL = δiη(σ(f

L)) = δi(η(σ(f
L))) = δi(f

L) = (δi : 1)f
L = fL.

So we get {δ1η, δ2η, . . . , δlη} ⊂ F , namely, ℓ ≤ #F . On the other hand, we
have (γη−1 : 1)fL = γ(η−1(fL)) = γ(σ(fL)) = (γ : σ)fL = fL. So we get
Fη−1 ⊂ {δ1, . . . , δℓ}, namely, #F ≤ ℓ. Thus we obtain

#
{
γ ∈ Γ|(γ : σ)fL = fL

}
= #

{
γ ∈ Γ|(γ : 1)fL = fL

}
.

Hence, the right hand side of the above equality becomes

∑

fL∈Z
(Vh)
sc

#
{
γ ∈ Γ|(γ : 1)fL = fL

}
=

∑

fL∈Z
(Vh)
sc

#ΓfL

=
∑

fL∈Z
(Vh)
sc

n!

ℓ(fL)

= n!
∑

fL∈Z
(Vh)
sc

1

ℓ(fL)

= n!
∑

f∈H
(r)
h,n

ℓ(f) · 1

ℓ(f)
.

The sum on the right hand side of the above equality is equal to the value
sc(r)(n).

6

Next, we need the following lemmas.

Lemma 4.4. For γ ∈ Γ,
∑

(γ:1)fL=fL

fL∈Z
(Vh)

ζq1(f
L)+2q2(f

L)+···+rqr(f
L)

r

=

{
0 (γ ̸∈ Γσ),

#
{
fL ∈ Z(Vh)|(γ : 1)fL = fL

}
(γ ∈ Γσ).

Proof. For γ ̸∈ Γσ, we put γ = z1 · z2 · · · · · zt such that the length of z1 is k

which is not divisible by r. We consider fL
1 , f

L
2 , . . . , f

L
r ∈ Z(Vh) satisfying the

following two conditions:

· if (vi1 , vi2 , . . . , vih) ∈ z1, then
fL
1 (vi1 , vi2 , . . . , vih) = ζ1r ,
fL
2 (vi1 , vi2 , . . . , vih) = ζ2r ,...
fL
r (vi1 , vi2 , . . . , vih) = ζrr ,

· if (vi1 , vi2 , . . . , vih) ̸∈ z1, then
fL
1 (vi1 , vi2 , . . . , vih) = fL

2 (vi1 , vi2 , . . . , vih) = · · · = fL
r (vi1 , vi2 , . . . , vih).

It is enough to prove that the sum of the values of fL
1 , f

L
2 , . . . , f

L
r is equal to

0. We calculate as follows:
r∑

j=1

ζ
q1(f

L
j )+2q2(f

L
j )+···+rqr(f

L
j )

r

=
r∑

j=1

ζ
q1(f

L
1 )+2q2(f

L
1 )+···+rqr(f

L
1 )

r · ζ(j−1)k
r

= ζ
q1(f

L
1 )+2q2(f

L
1 )+···+rqr(f

L
1 )

r

(
ζ0·kr + ζ1·kr + · · ·+ ζ(r−1)·k

r

)

= ζ
q1(f

L
1 )+2q2(f

L
1 )+···+rqr(f

L
1 )

r

(
ζ0r + ζkr + · · ·+ ζ(r−1)k

r

)
.

Since k is not divisible by r, ζkr ̸= 1. The part
(
ζ0r + ζkr + · · ·+ ζ

(r−1)k
r

)
is

equal to 0 and the left hand side of the equality in Lemma 4.4 becomes 0 for
γ ̸∈ Γσ.

For γ ∈ Γσ, by Lemma 4.2, q1(f
L) + 2q2(f

L) + · · ·+ rqr(f
L) is divisible by

r. Thus,
∑

(γ:1)fL=fL

f∈Z
(Vh)

ζq1(f
L)+2q2(f

L)+···+rqr(f
L)

r =
∑

(γ:1)fL=fL

f∈Z
(Vh)

1

= #
{
fL ∈ Z(Vh)|(γ : 1)fL = fL

}
.

7
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Lemma 4.5. For γ ∈ Γσ,

#
{
fL ∈ Z(Vh)|(γ : 1)fL = fL

}
= #

{
fL ∈ Z(Vh)|(γ : σ)fL = fL

}
.

Proof. If we fix the color of the first element of each cyclic component of γ,
then the color of the remaining elements are fixed automatically. It follows
from (1) and (2) of Lemma 4.1 that the numbers of graphs of both sides are
equal.

Considering

N =
1

n!

∑
γ∈Γ

∑
(γ:1)fL=fL

fL∈Z
(Vh)

ζq1(f
L)+2q2(f

L)+···+rqr(f
L)

r ,

we obtain the following lemma by using Lemma 4.4 and Lemma 4.5.

Lemma 4.6.

N =
1

n!

∑
γ∈Γσ

#
{
fL ∈ Z(Vh)|(γ : σ)fL = fL

}
.

Proof. Using Lemma 4.4, the right hand side can be computed as follows:

N =
1

n!

∑
γ∈Γ

∑
(γ:1)fL=fL

fL∈Z
(Vh)

ζq1(f
L)+2q2(f

L)+···+rqr(f
L)

r

=
1

n!

∑
γ∈Γσ

∑
(γ:1)fL=fL

fL∈Z
(Vh)

ζq1(f
L)+2q2(f

L)+···+rqr(f
L)

r

=
1

n!

∑
γ∈Γσ

#
{
fL ∈ Z(Vh)|(γ : 1)fL = fL

}
.

The right hand side of the above equality is equal to

1

n!

∑
γ∈Γσ

#
{
fL ∈ Z(Vh)|(γ : σ)fL = fL

}

by using Lemma 4.5.

On the other hand, we have the following lemma:

Lemma 4.7.
N =

∑

f∈H
(r)
h,n

ζq1(f)+2q2(f)+···+rqr(f)
r .

8

Proof.

N =
1

n!

∑

fL∈Z(
V
h)

∑
(γ:1)fL=fL

γ∈Γ

ζq1(f
L)+2q2(f

L)+···+rqr(f
L)

r

=
1

n!

∑

fL∈Z(
V
h)

∑
γ∈ΓfL

ζq1(f
L)+2q2(f

L)+···+rqr(f
L)

r

=
1

n!

∑

fL∈Z(
V
h)

ζq1(f
L)+2q2(f

L)+···+rqr(f
L)

r #ΓfL

=
∑

fL∈Z(
V
h)

ζq1(f
L)+2q2(f

L)+···+rqr(f
L)

r

#ΓfL

n!

Since #ΓfL · ℓ(fL) = n!, the right hand side of the above equality is as follows.

N =
∑

fL∈Z(
V
h)

ζq1(f
L)+2q2(f

L)+···+rqr(f
L)

r

1

ℓ(fL)

=
∑

f∈H
(r)
h,n

ζq1(f)+2q2(f)+···+rqr(f)
r · ℓ(f) · 1

ℓ(f)

=
∑

f∈H
(r)
h,n

ζq1(f)+2q2(f)+···+rqr(f)
r

Finally by adapting Lemmas 4.3, 4.6 and 4.7, we immediately obtain The-
orem 2.1.
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Abstract

LetD be a non-square integer and C0 be the parabola
y = x2 − D. C0(Q) denotes the rational points of C0.
Adding the infinite point ∞ to C0(Q), we introduce
a new multiplicative group structure on C0(Q) ∪ {∞},
which is denoted by C0(Q). As an application of this
group structure, we shall give several formulae of the
covergents of the continued fraction expansions of

√
D.

C1 denotes the Pell conic x2 −Dy2 = 1 and C1(Q) de-

notes the rational points on C1. Then C0(Q) and C1(Q)
are isomorphic as rational points of two algebraic tori.
We will investigate the arithmetic of C0(Q) and C1(Q)
as the rational points of these algebraic tori.
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