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Abstract

In this paper, we study the spectra of hydrogen type ions by using
the method of Natural Statistical Physics.
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of typesetting of the TEX-file of this manuscript.
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1 Physical system composed of hydrogen type
ions

In this section, we study the physical system of hydrogen type ions.
The simplest atom is the hydrogen atom such that one electron is rotating

around the nucleus. As for the spectra of the hydrogen atom, we refer to Y.
Ito [15], Chapter 13 and Y. Ito [44], Chapter 15.

As for the hydrogen type ions He+, Li++, Be+++, · · · , we study the
mathematical model such as one electron is rotating around the nucleus in the
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similar way as the hydrogen atom. Thereby we can understand the spectra of
the hydrogen type ion.

In the case of the atom which has the several electrons, the nucleus makes
the combined system with the several electrons by virtue of the action of the
strong force of the nucleus in the center.

Then these electrons have the shell type structure. The mutual interaction
of these electrons is considered to be the effect of the shield of the charge of
the nucleus by virtue of the electrons inside this shell.

Thereby, we can analyze the spectra of the hydrogen type ion by using the
similar model as the hydrogen atom.

Then some electrons move into the inside of the shell. Therefore the fluc-
tuation of the spectra of hydrogen type ion happens to appear.

We understand and explain the observed data of the spectra of the hydrogen
type ions on the bases of the laws of the natural statistical physics.

Here we consider the system of hydrogen type ions such as we need not
consider the influence of the spin. They are the cases where there is not the
influence of the outer electro-magnetic field or where we can neglect such an
influence.

One hydrogen type ion is the combined system of two particles composed of
one nucleus and one electron rotating around it. The physical system of those
hydrogen type ion is an example of the system of two particles.

Each hydrogen type ion is moving in the 3-dimensional space.
Assume that the masses of the nucleus and the electron are m1 and m2

respectively. Further we assume that the electric charges of the nucleus and
the electron are Ze and −e respectively.

Here we assume Z ≥ 1.
Then, when we consider the shell type structure of the electrons, it is nec-

essary to consider the shield effect by this shell type structure. Thereby we
must consider the electric charge of the nucleus Ze to be Z ′e, where we must
choose Z ′ < Z properly instead of the atomic number Z. In the sequel, for the
simplicity of the notation, we happen to identify Z ′ with Z.

Then we denote the position variables of a nucleus and an electron as r1 and
r2 respectively. Then the position variable of a hydrogen type ion is expressed
as r = (r1, r2)

We denote the momentum variables of a nucleus and an electron as p1

and p2 respectively. Then the momentum variable of a hydrogen type ion is
expressed as p = (p1, p2).

We assume that we can neglect the mutual interaction between the different
hydrogen type ions.

There is the mutual interaction by virtue of the action of the potential

V (r) = − Ze2

|r1 − r2|
between a nucleus and an electron of one hydrogen type ion.
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Because the masses of a nucleus and an electron are very small, we can
neglect the gravitational interaction.

Then each hydrogen type ion is moving by virtue of the Newtonian equation
of motion

dp

dt
= −gradV (r).

Therefore the total energy of one hydrogen type ion

2∑
i=1

1

2mi
|pi|2 + V (r)

does not depend on the time t.
Here the first term denotes the kinetic energy of a hydrogen type ion and

the second term denotes the potential energy of a hydrogen type ion.
Namely the conservation law of the total energy of each hydrogen type ion

holds.

2 Setting of the mathematical model

In this section, we study the setting of the mathematical model for the
study of the natural statistical phenomena of the spectra of the hydrogen type
ions.

Here we assume that the physical system considered here is the probability
space Ω = Ω(B, P ). Its elementary event ρ is one hydrogen type ion moving
in the 3-dimensional space R3. This hydrogen type ion is the combined system
of two particles composed of one nucleus and one electron.

Therefore the considered physical system is an example of the system of
two particles.

Then the position variable r(ρ) of one hydrogen type ion ρ is the pair
r(ρ) = (r1(ρ), r2(ρ)) of the position variable r1(ρ) of a nucleus and the position
variable r2(ρ) of an electron. Corresponding to this, the momentum variable
p(ρ) of one hydrogen type ion ρ is the pair p(ρ) = (p1(ρ), p2(ρ)) of the
momentum variable p1(ρ) of a nucleus and the momentum variable p2(ρ) of an
electron.

Then the variable r changes in the space R6 and the variable p changes in
its dual space R6.

Further the variables r1 and r2 change in the space R3 and the variables
p1 and p2 change in its dual space R3.

Here, since the 3-dimensional Euclidean space R3 is self-dual, we identify
the Euclidean space R3 and its dual space and we denote the 3-dimensional
Euclidean space and its dual space as the same symbol R3. We use the similar
notation for R6 and R6.
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The mutual interaction of the force of the Coulomb potential

V (r) = − Ze2

|r1 − r2|

is working between a nucleus and an electron.
Then the total energy of each hydrogen type ion ρ is determined by virtue

of the Newtonian mechanics. Its value is equal to

2∑
i=1

1

2mi
|pi(ρ)|2 + V (r(ρ)).

Here the masses of a nucleus and an electron are m1 and m2 respectively and
the electric charges of a nucleus and an electron are Ze and −e respectively.

We consider that this energy variable is a natural random variable on the
probability space Ω. This is a continuous random variable.

Then we consider that r = r(ρ) and p = p(ρ) have the different values for
each hydrogen type ion ρ and, in general, these values distribute randomly. In
this sense, we can consider that r = r(ρ) and p = p(ρ) are two random variables
and it is the forms of phenomena as the natural statistical phenomena that,
especially, they are the natural random variables on the physical system.

We assume that the hydrogen type ion considered here is always in the
bound state. Therefore, in this case, the Schrödinger operator determined
afterwards has only the negative discrete eigen-values.

Then, by virtue of Law II in Y. Ito [44], Section 2.2, the natural random dis-
tribution law of r = r(ρ) is determined by the L2-density ψ(r) and the natural
random distribution law of p = p(ρ) is determined by its Fourier transform

ψ̂(p).
Then we have the expectation value E of the energy variable of the total

physical system as follows:

E = E
[ 2∑

i=1

1

2mi
|pi(ρ)|2 + V (r(ρ))

]

= E
[ 2∑

i=1

1

2mi
|pi(ρ)|2

]
+E

[
V (r(ρ))

]

=

∫ ( 2∑
i=1

1

2mi
|pi|2

)�� ψ̂(p) ��2 dp+

∫
V (r)|ψ(r)|2dr

=

∫ { 2∑
i=1

ℏ2

2mi
|∇riψ(r)|2 + V (r)|ψ(r)|2

}
dr.

Here we use the Plancherel’s equality for the Fourier transformation. Fur-
ther the integral domain is considered to be the whole space.
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Then we denote this energy expectation value as the formula

J [ψ] =

∫ { 2∑
i=1

ℏ2

2mi
|∇riψ(r)|2 + V (r)|ψ(r)|2

}
dr.

We say that J [ψ] is the energy functional.
We can obtain the L2-density which is really realized as the solution of the

variational problem for this functional in the stationary state.
Here, we consider the variational principle and the variational problem in

the following.

Principle I (Variational principle) The L2-density ψ(r) realized really
in the stationary state is the stationary function of the energy functional J [ψ].

Thereby, we can choose the L2-density ψ(r) of the natural probability dis-
tribution of the position variable r = r(ρ) of the hydrogen type ion ρ, which
is really realized in the stationary state among the admissible L2-densities.

The L2-density ψ(r) obtained as the solution of the variational problem in
the above determines the really observed natural statistical phenomena.

In order to determine the stationary function in the Principle I, we consider
the variational problem in the following.

Problem I (Variational problem) Among the admissible L2-densities
ψ, determine the L2-density ψ so that the energy functional J [ψ] has the sta-
tionary value.

3 Mathematical analysis

In this section, we carry out the mathematical analysis for the mathematical
model considered in Section 2.

By solving the variational problem in Section 2, we solve the Schrödinger
equation in the stationary state for the system of hydrogen type ions.

We have the following Schrödinger equation

(
− ℏ2

2m1
∆1 −

ℏ2

2m2
∆2 −

Ze2

|r1 − r2|

)
ψ = Eψ (3.1)

as the Euler equation for the variational problem of Problem I in Section 2.
Here E is the Lagrange’s indeterminate multiplier. Further ∆1 = ∆r1 and
∆2 = ∆r2 denote the Laplace operators with respect to the variables r1 and
r2 respectively.
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The L2-density ψ, which is the solution of the variational problem of Prob-
lem I, is obtained as the solution of the Schrödinger equation in the above.

By the similar consideration as same as the argument until now, we have
the time-evolving Schrödinger equation

iℏ
∂ψ(r, t)

∂t
=
(
− ℏ2

2m1
∆1 −

ℏ2

2m2
∆2 −

Ze2

|r1 − r2|

)
ψ(r, t).

When we consider the motion of the system of two particles by virtue of
the Newtonian mechanics, we happen to consider it by the separation of the
center of gravity. As for its outline, we refer to Y. Ito [15], Section 13.5 and Y
Ito [44], Chapter 15.

Then the motion of the center of gravity is the linear motion with constant
velocity.

On the other hand, the relative motion is the motion of one particle with
the converted mass

µ =
m1m2

m1 +m2

under the action of the potential V (r) of the central force.
Corresponding to this, we may consider the separation of the center of

gravity for the Schrödinger equation.
Then the motion of the center of gravity is considered as the motion of the

system of free particles with the mass M = m1 +m2.
On the other hand, the relative motion is considered as the motion of the

system of one particle composed of the micro-particles with the converted mass
µ under the action of the potential V (r) of the central force.

Really, the observed result of the spectra of the hydrogen type ions are the
effects of this relative motion.

We consider that the effect of the motion of the center of gravity can be
neglected.

Therefore, in the real, we may consider that the center of gravity is motion-
less.

This is a very rough approximation of the real phenomena.
Then, since the converted mass µ is nearly equal to the mass me of an

electron, really we may consider the approximation in the following in order to
solve the Schrödinger equation (3.1).

As the first approximation, we consider that a nucleus is infinitely heavy and
we treat the system of hydrogen type ions as the system of particles composed

of electrons in the field of Coulomb force −Ze2

r
.

Therefore we consider that the physical system considered here is the prob-
ability space Ω = Ω(B, P ) composed of electrons moving under the conditions
in the above. This is the system of one particle.

Here we consider that a nucleus is stopped at a point and we consider the
orthogonal coordinate system so that this point is the origin.

6

Then we denote the position variable of one electron ρ as r = r(ρ) and the
momentum variable of ρ as p = p(ρ).

Then the variable r changes in the space R3 and the variable p changes in
its dual space R3.

Here each electron is moving under the action of the potential

V (r) = −Ze2

r
, (r = ∥r∥).

Then we have the Schrödinger equation

(
− ℏ2

2me
∆− Ze2

r

)
ψ(r) = Eψ(r)

which describes the stationary state of the system of electrons. Here ∆ = ∆r
denotes the Laplace operator with respect to r and we put r = |r|. We denote
the mass of an electron as me.

By deforming this, we have the equation

∆ψ +
2me

ℏ2
(
E +

Ze2

r

)
ψ = 0.

At first, because we have

lim
r→∞

(
−Ze2

r

)
= 0,

we remark that E < 0 holds in the bound state.
Then we put E = −|E|.
Here we consider the polar coordinate expression in the 3-dimensional space.

This is expressed as follows:



x = r sin θ cos ϕ,

y = r sin θ sin ϕ,

z = r cos θ,

(r > 0, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π).

Therefore the Jacobian of this coordinate transformation is equal to

J = r2 sin θ.

Then, for a function ψ(r) = ψ(x, y, z), we have the formula of the coordinate
transformation of the integral

∫
ψ(r)dr =

∫∫∫
ψ(x, y, z)dxdydz

=

∫∫∫
ψ
(
r sin θ cos ϕ, r sin θ sin ϕ, r cos θ

)
r2 sin θdrdθdϕ.
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Here the integration domain is the whole spaceR3. In general, for a function
ψ(x, y, z) = ψ(r, θ, ϕ), the Laplace operator ∆ is expressed as follows:

∆ψ =
1

r2
∂

∂r

(
r2

∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂ϕ2
.

Therefore, if we use the polar coordinate in the above, we can separate the
variable as follows:

ψ(r, θ, ϕ) = R(r)Y m
l (θ, ϕ).

Then the radial function R(r) is the solution of the equation

1

r2
d

dr

(
r2

dR

dr

)
+

{ 2me

ℏ2
(
−|E|+ Ze2

r

)
− l(l + 1)

r2

}
R = 0.

Here, by the transformation of variables as follows, we rewrite this equation
to the dimensionless equation:

s = αr, α2 =
8me|E|
ℏ2

, λ =
Ze2

ℏ
( me

2|E|
)1/2

.

Then R(s) satisfies the equation

1

s2
d

ds

(
s2

dR

ds

)
+

( λ

s
− 1

4
− l(l + 1)

s2
)
R = 0.

When s is sufficiently large, the solution behaves as R ∼ e−s/2. Thus, if we
put

R(s) = f(s)e−s/2,

f(s) satisfies the equation

d2f

ds2
+

( 2

s
− 1

) df

ds
+

( λ− 1

s
− l(l + 1)

s2
)
f = 0.

Then we determine R so that it is a L2-function.
Now, putting

f(s) = sl(a0 + a1s+ a2s
2 + · · · ) ≡ slL(s), a0 ̸= 0,

L(s) satisfies the equation

s
d2L

ds2
+

(
2(l + 1)− s

) dL

ds
+ (λ− l − 1)L = 0.

Thereby, the coefficients aν satisfy the iteration formula

aν+1 =
ν + l + 1− λ

(ν + 1)(ν + 2l + 2)
aν .

8

Therefore we have the formula

aν+1

aν
∼ 1

ν
, (ν → ∞).

Then, if L(s) is an infinite series, we have L(s) ∼ es, (s → ∞) and R(s) is not
a L2-function.

Therefore, L(s) must be a polynomial.
Hence, there exists a natural number nr so that
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holds.
Thereby, we see that the eigen-values E are equal to
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, (n = 1, 2, · · · ).

Now we assume that the function L
(m)
n (z) denotes the polynomial solution

L(m)
n (z) =

1

n!
z−mez

dn

dzn
(zn+me−z)

of the equation

z
d2

dz2
L(m)
n (z) + (m+ 1− z)

d

dz
L(m)
n (z) + nL(m)

n (z) = 0,

(n = 0, 1, 2, · · · ; m = 1, 2, · · · ).

We say that this function L
(m)
n (z) is the Laguerr’s bi-polynomial.

Then the following normalization condition is satisfied:
∫ ∞

0

e−zz2l
[
L
(2l+1)
n+l (z)

]2
z2dz =

2n[(n+ l)!]3

(n− l − 1)!
.

Therefore, if we define the solution R(r) = Rnl(r) as

Rnl(r) = −
{( 2

na0

)3 (n− l − 1)!

2n[(n+ l)!]3

}1/2

e−s/2slL
(2l+1)
n+l (s),

s =
2

na0
r, a1 =

a0
Z
, a0 =

ℏ2

mee2
,

the ortho-normality condition of the radial function Rnl(r) is satisfied in the
following.

Theorem 3.1(Ortho-normality condition) We use the notation in the
above. Then we have the following equalities:
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0

Rn′l(r)
∗Rnl(r)r
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Here the integration domain is the whole spaceR3. In general, for a function
ψ(x, y, z) = ψ(r, θ, ϕ), the Laplace operator ∆ is expressed as follows:

∆ψ =
1

r2
∂

∂r

(
r2

∂ψ

∂r

)
+

1

r2 sin θ

∂
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In the next, we assume that the spherical function Y m
l (θ, ϕ) is the simul-

taneous eigen-function solution of the equation

−
[ 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

]
Y m
l (θ, ϕ),

= l(l + 1)Y m
l (θ, ϕ),

−i
∂

∂ϕ
Y m
l (θ, ϕ) = mY m

l (θ, ϕ),

(|m| ≤ l, l = 0, 1, · · · , n− 1).

The spherical function Y m
l (θ, ϕ) is expressed as

Y m
l (θ, ϕ) =

√
(2l + 1)

4π

(l − |m|)!
(l + |m|)!

Pm
l (cos θ)eimϕ.

Then, we say that Pl(x) and Pm
l (x), (|x| ≤ 1) are the Legendre’s poly-

nomial and the Legendre’s bi-polynomial respectively and we define them
in the following formulas respectively:

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l,

Pm
l (x) =

1

2ll!
(1− x2)

|m|
2

dl+|m|

dxl+|m| (x
2 − 1)l

= (1− x2)

|m|
2

d|m|

dx|m|Pl(x), (|m| ≤ l).

Then Pm
l (x), (|m| ≤ l) are the polynomial solutions of the Legendre’s asso-

ciated differential equation

(1− x2)
d2

dx2
Pm
l (x)− 2x

d

dx
Pm
l (x)

+
(
l(l + 1)− m2

1− x2

)
Pm
l (x) = 0.

For these functions, the following two ortho-normality conditions are satis-
fied.

Theorem 3.2 (Ortho-normality condition) We use the notation in
the above. Then we have the following equality:

∫ 1

−1

Pm
l (x)Pm

l′ (x)dx =
2

(2l + 1)

(l + |m|)!
(l − |m|)!

δll′ .
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Theorem 3.3 (Ortho-normality condition) We use the notation in
the above. Then we have the following equality:

∫ 2π

0

dϕ

∫ π

0

Y m′

l′ (θ, ϕ)∗Y m
l (θ, ϕ) sin θdθ = δll′δmm′ .

Then n is said to be a principal index. If we fix the principal index n, the
point index l can takes the n values 0, 1, 2, · · · , n−1. Further, for each value
of l, themagnetic indexm can takes the (2l+1) values−l, −l+1, · · · , l−1, l.

Here we used to denote m as the magnetic index. Even though we denote
the mass of an electron as m also, it is the convention that we venture to use
the same letter.

Therefore, for one fixed value n, there are the

n−1∑
l=0

(2l + 1) = n2

linearly independent eigen-functions and they are associated with the same
eigen-value En.

The (2l+1) eigen-functions are degenerated for one l because the potential
is spherically symmetric, and the eigen-value En is determined by only one
principal index n and it does not depend on l because the potential is the
Coulomb potential.

Then the eigen-functions of the system of hydrogen type ions in the sta-
tionary state are given as follows.

Namely, the eigen-functions associated with the indices n, l andm are given
with the consideration of the normalization condition as follows:

ψnlm(r, θ, ϕ) = Rnl(r)Y
m
l (θ, ϕ),

Rnl(r) = −
{( 2

na0

)3 (n− l − 1)!

2n[(n+ l)!]3

}1/2

e−s/2slL
(2l+1)
n+l (s),

Y m
l (θ, ϕ) =

√
(2l + 1)

4π

(l − |m|)!
(l + |m|)!

Pm
l (cos θ)eimϕ.

Here we put

s =
2

na1
r, a1 =

a0
Z
, a0 =

ℏ2

mee2
.

By the consideration in the above, we have the solution of the eigen-value
problem of the Schrödinger equation for the system of hydrogen type ions.

Namely, we have the following.

11
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Theorem 3.3 (Ortho-normality condition) We use the notation in
the above. Then we have the following equality:
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Here we used to denote m as the magnetic index. Even though we denote
the mass of an electron as m also, it is the convention that we venture to use
the same letter.

Therefore, for one fixed value n, there are the
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(2l + 1) = n2

linearly independent eigen-functions and they are associated with the same
eigen-value En.

The (2l+1) eigen-functions are degenerated for one l because the potential
is spherically symmetric, and the eigen-value En is determined by only one
principal index n and it does not depend on l because the potential is the
Coulomb potential.

Then the eigen-functions of the system of hydrogen type ions in the sta-
tionary state are given as follows.
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Theorem 3.4 (Eigen-value problem) The function ψnlm(x, y, z) =
ψnlm(r, θ, ϕ) defined in the above is the eigen-function of the Schrödinger
operator

H = − ℏ2

2me
∆− Ze2

r

associated with the eigen-value

En = −meZ
2e4

2ℏ2n2
= − Z2ℏ2

2mea20

1

n2
= − ℏ2

2mea21

1

n2
.

Namely, we have the following equality

(
− ℏ2

2me
∆− Ze2

r

)
ψnlm = Enψnlm,

(|m| ≤ l, l = 0, 1, · · · , n− 1; n = 1, 2, · · · ).

Then the eigen-functions

ψnlm(r) = ψnlm(x, y, z) = ψnlm(r, θ, ϕ)

in Theorem 3.4 satisfy the following ortho-normality condition.

Theorem 3.5(Ortho-normality condition) We use the notation in the
above. Then we have the following equalities:

∫
ψn′l′m′(r)∗ψnlm(r)dr = δnn′δll′δmm′ .

Further, the system of eigen-functions {ψnlm(r)} in the above satisfies the
following completeness condition.

Theorem 3.6 (Completeness condition) We use the notation in the
above. Then we have the following equalities:

∞∑
n=1

n−1∑
l=0

l∑
m=−l

ψnlm(r′)∗ψnlm(r) = δ(r′ − r), (r′. r ∈ R3).

Namely, the system of eigen-functions {ψnlm} in the above is the complete
ortho-normal system.

Then Theorem 3.6 is equivalent to Corollary 3.1 in the following.

Corollary 3.1 For ψ(r) ∈ L2, we have the following equality:

∫
|ψ(r)|2dr =

∞∑
n=1

n−1∑
l=0

l∑
m=−l

|cnlm|2.

12

Here we put

cnlm =

∫
ψnlm(r)∗ψ(r)dr.

Here the integration domain is the whole space.

Therefore we have the following eigen-function expansion theorem.

Theorem 3.7 (Eigen-function expansion theorem) We consider the
system of eigen-functions {ψnlm(r)} in the above. Then, for a square integrable
function ψ(r) on R3, we have the following equality:

ψ(r) =
∞∑

n=1

n−1∑
l=0

l∑
m=−l

cnlmψnlm(r).

Here the Fourier type coefficient cnlm is defined by the equality

cnlm =

∫
ψnlm(r)∗ψ(r)dr.

Here, we assume that the integration domain is the whole space R3. Then
the series on the right hand side converges in the sense of L2-convergence.

Especially, if ψ(r) is a L2-density, we have the equality

∫
|ψ(r)|2dr = 1.

Thus the Fourier type coefficients {cnlm} defined in the Theorem 3.7 satisfy
the condition

∞∑
n=1

n−1∑
l=0

l∑
m=−l

|cnlm|2 = 1.

Theorem 3.8 We put L2 = L2(R3). Further we assume that J [ψ] is the
same as Problem I and {En} and {ψnlm} are the same as Theorem 3.4. Here
we denote the closed subspace

L{ψklm; |m| ≤ l, l = 0, 1, 2, · · · , k − 1;

k = n, n+ 1, n+ 2, · · · }

13
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∫
ψnlm(r)∗ψ(r)dr.
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the condition
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as Hn. Then we have the following:

min
ψ∈Hn, ∥ψ∥=1

J [ψ] = En, J [ψnlm] = En,

(|m| ≤ l, l = 0, 1, 2, · · · , n− 1; n = 1, 2, 3, · · · ),

E1 < E2 < · · · < En < · · · < 0, lim
n→∞

En = 0.

Here the multiplicity of the eigen-value En is equal to n2, (n ≥ 1).

By virtue of this Theorem, we see that the solution {ψnlm}, {En} of the
eigen-value problem in Theorem 3.4 are the complete solution of the variational
problem for the energy functional J [ψ].

Here, by virtue of the inverse process of the separation of variables, we
derive the time-evolving Schrödinger equation.

At first, we consider the function

ψnlm(r, t) = ψnlm(r)exp
[
−i

En
ℏ
t
]
.

By differentiating the both sides of this equality with respect to t, we have
the equality

iℏ
∂ψnlm(r, t)

∂t
= Enψnlm(r)exp

[
−i

En
ℏ
t
]
.

Here, assuming that the Schrödinger operator H for the system of hydrogen
type ions is

H = − ℏ2

2me
∆− Ze2

r
,

we have the equality
Hψnlm(r) = Enψnlm(r).

Therefore we have the equality

iℏ
∂ψnlm(r, t)

∂t
= Hψnlm(r) · exp

[
−i

En
ℏ
t
]
= Hψnlm(r, t).

Now we put

ψ(r, t) =
∞∑

n=1

n−1∑
l=0

l∑
m=−l

cnlmψnlm(r, t)

by using the Fourier type coefficients {cnlm} of the initial condition ψ(r).
Then ψ(r, t) satisfies the equality

iℏ
∂ψ(r, t)

∂t
= Hψ(r, t).

14

This equation is the time-evolving Schrödinger equation for the system of
hydrogen type ions in the bound state.

Namely we have the following.

Theorem 3.9 Assume that the functions ψ(r) and ψ(r, t) are given as
in the above. Then ψ(r, t) is the unique solution of the initial value problem
for the time-evolving Schrödinger equation

iℏ
∂ψ(r, t)

∂t
=
(
− ℏ2

2me
∆− Ze2

r

)
ψ(r, t), (r ∈ R3, 0 < t < ∞)

under the following condition (1):

(1) (Initial condition) We have the equality

ψ(r, 0) = ψ(r), (r ∈ R3).

By using the Plancherel’s equality for the Fourier transformation, the energy
functional J [ψ] is expressed as follows:

J [ψ] =

∫
ψ(r)∗

(
− ℏ2

2me
∆− Ze2

r

)
ψ(r)dr.

Therefore, by virtue of Theorem 3.4, we have the equalities

J [ψnlm] = En,

(
|m| ≤ l, l = 0, 1, · · · , n− 1; n = 1, 2, · · ·

)
.

Then, by virtue of Theorem 3.7, we have the equality

J [ψ] =

∞∑
n=1

n−1∑
l=0

l∑
m=−l

|cnlm|2J [ψnlm]

=
∞∑

n=1

n−1∑
l=0

l∑
m=−l

|cnlm|2En

= −meZ
2e4

2ℏ2
∞∑

n=1

n−1∑
l=0

l∑
m=−l

1

n2
|cnlm|2.

Here, if we put

pn =
n−1∑
l=0

l∑
m=−l

|cnlm|2, (n = 1, 2, · · · ),

15
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as Hn. Then we have the following:

min
ψ∈Hn, ∥ψ∥=1

J [ψ] = En, J [ψnlm] = En,

(|m| ≤ l, l = 0, 1, 2, · · · , n− 1; n = 1, 2, 3, · · · ),

E1 < E2 < · · · < En < · · · < 0, lim
n→∞

En = 0.

Here the multiplicity of the eigen-value En is equal to n2, (n ≥ 1).
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derive the time-evolving Schrödinger equation.
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ψnlm(r, t) = ψnlm(r)exp
[
−i

En
ℏ
t
]
.

By differentiating the both sides of this equality with respect to t, we have
the equality

iℏ
∂ψnlm(r, t)

∂t
= Enψnlm(r)exp

[
−i

En
ℏ
t
]
.

Here, assuming that the Schrödinger operator H for the system of hydrogen
type ions is

H = − ℏ2

2me
∆− Ze2

r
,

we have the equality
Hψnlm(r) = Enψnlm(r).

Therefore we have the equality

iℏ
∂ψnlm(r, t)

∂t
= Hψnlm(r) · exp

[
−i

En
ℏ
t
]
= Hψnlm(r, t).

Now we put

ψ(r, t) =
∞∑

n=1

n−1∑
l=0

l∑
m=−l

cnlmψnlm(r, t)

by using the Fourier type coefficients {cnlm} of the initial condition ψ(r).
Then ψ(r, t) satisfies the equality

iℏ
∂ψ(r, t)

∂t
= Hψ(r, t).

14

This equation is the time-evolving Schrödinger equation for the system of
hydrogen type ions in the bound state.

Namely we have the following.
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iℏ
∂ψ(r, t)

∂t
=
(
− ℏ2

2me
∆− Ze2

r

)
ψ(r, t), (r ∈ R3, 0 < t < ∞)

under the following condition (1):
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2me
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r
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)
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we have the equalities

J [ψ] = −meZ
2e4

2ℏ2
∞∑

n=1

1

n2
pn,

0 ≤ pn ≤ 1, (n = 1, 2, · · · ),

∞∑
n=1

pn = 1.

4 Meaning of the spectra of hydrogen type ions

In this section, we study the natural statistical meaning of the spectral
phenomena of hydrogen type ions by using the theory of natural statistical
physics.

By virtue of the study until Section 3, we see that the physical system Ω
composed of hydrogen type ions in the bound state has the following structure
in the stationary state. Namely, Ω is decomposed into the direct sum in the
following:

Ω =
∞∑

n=1

Ωn. (4.1)

Then we have the equalities

P (Ωn) = pn, (n = 1, 2, · · · ),

∞∑
n=1

pn = 1.

Further, each Ωn is decomposed into the direct sum in the following:

Ωn =
n−1∑
l=0

l∑
m=−l

Ωnlm.

Then we have the equalities

P (Ωnlm) = |cnlm|2,

pn =

n−1∑
l=0

l∑
m=−l

|cnlm|2, (n = 1, 2, · · · ),

∞∑
n=1

pn =
∞∑

n=1

n−1∑
l=0

l∑
m=−l

|cnlm|2 = 1.
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Then, for every A ∈ B, we have the equalities

P (A) =
∞∑

n=1

P (Ωn)PΩn(A)

=
∞∑

n=1

n−1∑
l=0

l∑
m=−l

P (Ωnlm)PΩnlm
(A).

Here PΩn(A) and PΩnlm
(A) denote the conditional probabilities.

Here we consider only the principal index n because we study the spectra of
hydrogen type ions. Therefore we consider the direct sum decomposition (4.1).
Then, for two Lebesgue measurable sets A and B in R3, we have the equalities

PΩnlm

({
ρ ∈ Ωnlm; r(ρ) ∈ A

})
=

∫

A

|ψnlm(r)|2dr,

PΩnlm

({
ρ ∈ Ωnlm; p(ρ) ∈ B

})
=

∫

B

|ψ̂nlm(p)|2dp.

Therefore the energy expectation values of the proper physical subsystem
Ωnlm are equal to

EΩnlm

[ 1

2me
p(ρ)2 − Ze2

r

]
= J [ψnlm] = En,

(
|m| ≤ l, l = 0, 1, · · · , n− 1; n = 1, 2, · · ·

)
.

Then, by virtue of the relation of the total physical system and the proper phys-
ical subsystems, the energy expectation value E of the total physical system is
equal to

E = E
[ 1

2me
p(ρ)2 − Ze2

r

]

=
∞∑

n=1

n−1∑
l=0

l∑
m=−l

P (Ωnlm)EΩnlm

[ 1

2me
p(ρ)2 − Ze2

r

]

=
∞∑

n=1

n−1∑
l=0

l∑
m=−l

|cnlm|2En =
∞∑

n=0

Enpn

= −meZ
2e4

2ℏ2
∞∑

n=1

1

n2
pn.

The physical system of hydrogen type ions in the bound state is realized as
the composite state of the proper physical subsystems. The physical subsystem

17
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Ωn, whose energy expectation value is En, is the composite state of the n2

proper physical subsystems

Ωnlm, (|m| ≤ l, l = 0, 1, · · · , n− 1).

The ratio of composition of those physical subsystems Ωn is determined by the
sequence {pn}∞n=1.

Then, because the electron in the hydrogen type ion is moving by virtue
of Coulomb force, L2-densities ψnlm(r, t) is varying with time t. Then the
Fourier type coefficients {cnlm} are varying with time t and, according to this,
the values of {pn} are varying with time t.

Therefore each hydrogen type ion composing the physical subsystem with
the mean energy En is changing its belonging to the proper physical subsystem
with time t. According to this, when a hydrogen type ion in the subsystem of
the mean energy En transverses into the subsystem of the mean energy Em, the
spectral line corresponding to the difference

En − Em

of these mean energies will be observed. We can consider that this spectral lines
coincide well with the distribution of the observed spectra for the hydrogen type
ions in the real.

As the historical facts, the spectra of the hydrogen atoms is known to be
as follows.

Here we remember the Bohr’s Hypotheses proposed in 1913.
Here we propose the analogy of Bohr’s Hypotheses as the Bohr’s Law.

Bohr’s Law We use the notation in the above. Here, assume that the
oscillation number of the observed light is ν. Then we have the formula

hν = En − Em.

Here h denotes the Planck’s constant.

By the study until now, the value of ν is equal to

ν =
meZ

2e4

4πℏ3
( 1

m2
− 1

n2

)
.

Here me denotes the mass of an electron.
Here, in the case m = 2, this coincides with the spectral line of the visible

line from hydrogen atoms, which is discovered by Balmer in 1885.
In the present, this is said to be the Balmer series.
The spectral series known until now are the following. According to the

Pydberg’s expression, these spectral series considered here are the following.

18

(1) Lyman series (discovered in 1906):

ν = RcZ2
( 1

12
− 1

n2

)
, (n = 2, 3, · · · ).

(2) Balmer series (discovered in 1885):

ν = RcZ2
( 1

22
− 1

n2

)
, (n = 3, 4, · · · ).

(3) Paschen series (discovered in 1908):

ν = RcZ2
( 1

32
− 1

n2

)
, (n = 4, 5, · · · ).

(4) Brackett series (discovered in 1922):

ν = RcZ2
( 1

42
− 1

n2

)
, (n = 5, 6, · · · ).

(5) Pfund series (discovered in 1924):

ν = RcZ2
( 1

52
− 1

n2

)
, (n = 6, 7, · · · ).

Here R denotes the Pydberg constant and its value is given as follows:

R = 1.09737× 105 cm−1, (actual value),

Rch = 13.61 eV, (dimension of energy).

By the study until now, R is equal to

R =
mee

4

4πcℏ3

as the theoretically calculated value.
By the study in the above, the theoretical value and the actual value for R

coincide well.
Thereby we can understand and explain reasonably the spectral lines of

hydrogen type ions by virtue of the law of the natural statistical physics.
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