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Abstract

We study the transfinite version of Welter’s Game, a combinatorial game played
on a belt divided into squares numbered with general ordinal numbers. In particular,
we give a solution for the game, based on those of the transfinite version of Nim
and the original version of Welter’s Game using Cantor normal form.
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Introduction

We assume that the reader is familiar with basic terminology on combinatorial

game theory, in particular about impartial games, for example, N -position, P-

position, nim-sum, and G-values (see [2], [7]).

Welter’s Game is an impartial game investigated by Welter in 1954 [9]. Since it

was also investigated by Mikio Sato, it is often called Sato’s Maya Game in Japan.

The rules of Welter’s games are as follows:

It is played with several coins placed on a belt divided into squares numbered

with the nonnegative integers 0, 1, 2, . . . from the left as shown in Fig. 1.

The legal move is to move any one coin from its present square to any unoc-

cupied square with a smaller number.

The game terminates when a player is unable to move any coin, namely, the

coins are jammed in the squares with the smallest numbers as shown in Fig. 2.
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2

We express the binary nim-sum by symbol ⊕, and finitely many summation by⊕
.

Definition 0.1 (Welter function). Let (a1, . . . , an) be a Welter’s Game position.

Then we define the value [a1| · · · |an] of Welter function at (a1, . . . , an) as follows:

[a1| · · · |an] = a1 ⊕ · · · ⊕ an ⊕
⊕

1≤i<j≤n

(ai | aj),

where (ai | aj) = (ai ⊕ aj)⊕ (ai ⊕ aj − 1).

The G-value of the position in Welter’s Game is known to be computed by Welter

function.

Theorem 0.2 (Welter’s Theorem [9]). The value of Welter function at each position

gives its G-value. Namely,

G(a1, . . . , an) = [a1| . . . |an].

The transfinite version of Welter’s Game was introduced in [6], and the transfinite

version of Nim is written in [2] for example. Kayada gave closed-form expressions

for the G-values of the transfinite versions of Nim and Welter’s Game. He claimed

they are correct and announced that he would publish the proof for the transfinite

version of Welter’s Game [5], but his proof has not been published yet.

In this paper, we give different expressions of the G-values using the Cantor

normal form of ordinal numbers and give a new proofs for them.

1. Transfinite Game

We denote by Z the set of all integers and by N0 the set of all nonnegative integers.

Let us denote by ON the class of all ordinal numbers. Later we see that the

nim-sum operation can be extended naturally on ON .

The following is known about general ordinal numbers.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

○ ○ ○ ○

Figure 1: Welter’s Game

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

○ ○○ ○

Figure 2: End position of Welter’s Game

Theorem 1.1 (Cantor Normal Form theorem [4]). Every α ∈ ON (α > 0) can be

expressed as

α = ωγk ·mk + · · ·+ ωγ1 ·m1 + ωγ0 ·m0,

where ω is the lowest transfinite ordinal number and k is a nonnegative integer,

m0, . . . ,mk ∈ N0 \ {0}, and α ≥ γk > · · · > γ1 > γ0 ≥ 0.

Let α1, . . . , αn be ordinal numbers. Then, each αi, i = 1, . . . , n is expressed by

using finitely many common powers γ0, . . . , γk as:

αi = ωγk ·mik + · · ·+ ωγ1 ·mi1 + ωγ0 ·mi0,

where mik ∈ N0.

Next, we will define the minimal excluded number of a class of ordinal numbers

and the G-value of a position in general Transfinite Game.

Definition 1.2 (minimal excluded number). Let T be a proper subclass of ON .

Then mex T is defined to be the least ordinal number not contained in T , namely

mex T = min(ON \ T ).

Definition 1.3. Let G and G′ be game positions. The notation G → G′ means

that G′ can be reached from G by a single move.

Definition 1.4 (G-value). Let G and G′ be game positions. The value G(G) called

the G-value of G is defined as follows:

G(G) = mex{G(G′) | G → G′}.

Theorem 1.5. Let G be a game position. Then
{

G(G) ̸= 0 if and only if G is an N -position,
G(G) = 0 if and only if G is a P-position.

2. Main Results

2.1. Transfinite Nim

We extend Nim into its transfinite version (Transfinite Nim) by allowing the size of

the heaps of tokens to be a general ordinal number. The legal moves are to replace

an arbitrary ordinal number α by a smaller ordinal number β.
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Definition 2.1. For ordinal numbers α1, . . . , αn ∈ ON , we define their nim-sum

as follows:

α1 ⊕ · · · ⊕ αn =
∑
k

ωγk(m1k ⊕ · · · ⊕mnk).

We give a proof for the G-value of the Transfinite Nim using this form.

Theorem 2.2. For Transfinite Nim position (α1, . . . , αn) ⊆ ON n，we have the

following:

G(α1, . . . , αn) = α1 ⊕ · · · ⊕ αn.

Proof. The proof is by induction. Let α1 ⊕ · · · ⊕ αn = α (α ∈ ON ). We have to

show that, for each β (< α), there exists a position with G-value β reached by a

single move from (α1, . . . , αn).

Let (α1, . . . , αn) → (β1, . . . , βn), by induction hypothesis we have

G(β1, . . . , βn) = β1 ⊕ · · · ⊕ βn.

If α = 0, no ordinal β (β < α) exists. We can assume α > 0.

We can write α and β as

α = ωγk · ak + · · ·+ ωγk · a1 + a0
β = ωγk · bk + · · ·+ ωγk · b1 + b0,

where a0, . . . , ak, b0, . . . , bk ∈ N0. By definition,

as = m1s ⊕ · · · ⊕mns, for s = 1, . . . , k.

Since α > β, there exsists s such that

as > bs, at = bt for all t (< s).

As in the strategy of original Nim, since as > bs, there is an index i such that

mis > mis ⊕ as ⊕ bs.

We define

m′
it = mit ⊕ as ⊕ bs for all t (≤ s)

and

α′
i = ωγk ·mik + · · ·ωγs+1 ·mis+1 + ωγs ·m′

is

+ ωγs−1 ·m′
is−1 + · · ·+ ωγ0 ·m′

i0,

where mis ⊕ as ⊕ bs = m′
is.

5

If we put α′
i = βi, αj = βj (j ̸= i). Then, αi > βi and we have

β1 ⊕ · · ·βi−1 ⊕ βi ⊕ βi+1 ⊕ · · ·βn = β

Therefore, for each β (< α), there is a position (β1, . . . , βn) reached by a single

move from (α1, . . . , αn).

Example 2.3. In the case of position (1, ω · 2+ 4, ω2 · 3+ 9, ω2 · 2+ω · 4+ 16, ω2 +

ω · 5 + 25):

Let us calculate the value of α1 ⊕ α2 ⊕ α3 ⊕ α4 ⊕ α5.

We get

α1 = ωβ2 ·m12 + ωβ1 ·m11 +m10 = ω2 · 0 + ω · 0 + 1

α2 = ωβ2 ·m22 + ωβ1 ·m21 +m20 = ω2 · 0 + ω · 2 + 4

α3 = ωβ2 ·m32 + ωβ1 ·m31 +m30 = ω2 · 3 + ω · 0 + 9

α4 = ωβ2 ·m42 + ωβ1 ·m41 +m40 = ω2 · 2 + ω · 4 + 16

α5 = ωβ2 ·m52 + ωβ1 ·m51 +m50 = ω2 · 1 + ω · 5 + 25.

So, we have

m12 ⊕m22 ⊕m32 ⊕m42 ⊕m52 = 0⊕ 0⊕ 3⊕ 2⊕ 1

= 0

m11 ⊕m21 ⊕m31 ⊕m41 ⊕m51 = 0⊕ 2⊕ 0⊕ 4⊕ 5

= 3

m10 ⊕m20 ⊕m30 ⊕m40 ⊕m50 = 1⊕ 4⊕ 9⊕ 16⊕ 25

= 5.

Thus, by the definition of nim-sum in general ordinal number

α1 ⊕ α2 ⊕ α3 ⊕ α4 ⊕ α5 = ω · 3 + 5.

Therefore, this position is an N -position, and the legal good move is ω · 2+ 4 →
ω + 1.

2.2. Transfinite Welter’s Game

In transfinite version (Transfinite Welter’s Game), the size of the belt of Welter’s

Game is extended into general ordinal numbers, but played with finite number of

coins. The legal moves are to move one coin toward the left (jumping is allowed), and

one cannot place two or more coins on the same square as in the original Welter’s

Game (see Fig. 3). We will define Welter function of a position of Transfinite

Welter’s Game.
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0 1 2 3 ω ω + 2 ω2

○○ ○○ · · · · · · · · ·

Figure 3: Transfinite Version of Welter’s Game

Definition 2.4. Let α1, . . . , αn ∈ ON . Each αi can be expressed as αi = ω·λi+mi,

where λi ∈ ON and mi ∈ N0. Welter function in general ordinal numbers is defined

as follows:

[α1| · · · |αn] = ω · (λ1 ⊕ · · · ⊕ λn) +
⊕

λ∈ON

[Sλ],

where [Sλ] is Welter function, and Sλ = {mn | λn = λ}.

The following is our main result.

Theorem 2.5. Let α1, . . . , αn ∈ ON . The G-value of general position (α1, . . . , αn)

in Transfinite Welter’s Game is equal to its Welter function. Namely,

G(α1, . . . , αn) = [α1| · · · |αn].

Proof. Let [α1| · · · |αn] = α. We have to show that, for each β (< α), there exists a

position with G-value β reached by a single move from (α1, . . . , αn).

Let (α1, . . . , αn) → (β1, . . . , βn). Then by the assumption of induction we have

G(β1, . . . , βn) = [β1| · · · |βn].

If α = 0, there exist no β (< α). We can assume α > 0 and

α = ω · λ+ a0 and β = ω · λ′ + b0,

where λ, λ′ ∈ ON , a0, b0 ∈ N0. Since α > β，we have

(λ > λ′) or (λ = λ′ and a0 > b0).

In the latter case, since a0 =
⊕

λ∈ON

[Sλ] > b0, from the theory of Nim ([1], [3],

[8]) there exists some λ0 and nonnegative integer c0 (< [Sλ0
]) such that

a0 ⊕ [Sλ0 ]⊕ c0 = b0.

Next since [Sλ0
] > c0, from the theory of Welter function ([2]), there is an index

i and m′
i (< mi) such that mi ∈ Sλ0

and [S′
λ0
] = c0, where S′

λ0
is the set obtained

from Sλ0
by replacing mi with m′

i. Thus, the move from αi = ω · λi + mi to

α′
i = ω · λi +m′

i changes its G-value from α = ω · λ+ a0 to β = ω · λ+ b0.

7

In the former case, as in Transfinite Nim, there is an index i and λ′
i (< λ) such

that (λ1, . . . , λi−1, λ
′
i, λi+1, . . . , λn) has G-value λ′ and we can adjust the finite part

of αi so that the resulting Welter function to be β.

Therefore, for each β (< α), there is a position reached by a single move from

(α1, . . . , αn) and its G-value is β.

Corollary 2.6. A position in Transfinite Welter’s Game is a P-position if and only

if it satisfies the following conditions:



ω · (λ1 ⊕ · · · ⊕ λn) = 0⊕
λ∈ON

[Sλ] = 0.

By this corollary, we can easily calculate a winning move in Transfinite Welter’s

Game by its Welter function.

Example 2.7. In the case of position (1, ω·2+4, ω·2+9, ω2+ω·4+16, ω2+ω·5+25):

Let us calculate the value of [α1|α2|α3|α4|α5]. We get

α1 = ωβ2 ·m12 + ωβ1 ·m11 +m10 = ω2 · 0 + ω · 0 + 1

α2 = ωβ2 ·m22 + ωβ1 ·m21 +m20 = ω2 · 0 + ω · 2 + 4

α3 = ωβ2 ·m32 + ωβ1 ·m31 +m30 = ω2 · 0 + ω · 2 + 9

α4 = ωβ2 ·m42 + ωβ1 ·m41 +m40 = ω2 · 1 + ω · 4 + 16

α5 = ωβ2 ·m52 + ωβ1 ·m51 +m50 = ω2 · 1 + ω · 5 + 25.

So, we have

m12 ⊕m22 ⊕m32 ⊕m42 ⊕m52 = 0⊕ 0⊕ 0⊕ 1⊕ 1

= 0

m11 ⊕m21 ⊕m31 ⊕m41 ⊕m51 = 0⊕ 2⊕ 2⊕ 4⊕ 5

= 1

[m10]⊕ [m20 | m30]⊕ [m40]⊕
[
m50] = [1]⊕ [4 | 9]⊕ [16]⊕ [25]

= 1⊕ (4⊕ 9− 1)⊕ 16⊕ 25

= 4.

Therefore, by the definition of Welter function for general ordinal number

[α1|α2|α3|α4|α5] = ω + 4.

Since, this shows that we are in an N -position, we will calculate a winning move.

First, we choose a move that satisfies the first condition of Corollary 2.6. Clearly

we should not make a move that will change the coefficient of ωβ2 = ω2. So we

will choose a move that will change the coefficient of ωβ1 = ω1 to be 0. The same

strategy in Transfinite Nim, shows that
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α5 = ωβ2 ·m52 + ωβ1 ·m51 +m50 = ω2 · 1 + ω · 5 + 25.

So, we have

m12 ⊕m22 ⊕m32 ⊕m42 ⊕m52 = 0⊕ 0⊕ 0⊕ 1⊕ 1

= 0

m11 ⊕m21 ⊕m31 ⊕m41 ⊕m51 = 0⊕ 2⊕ 2⊕ 4⊕ 5

= 1

[m10]⊕ [m20 | m30]⊕ [m40]⊕
[
m50] = [1]⊕ [4 | 9]⊕ [16]⊕ [25]

= 1⊕ (4⊕ 9− 1)⊕ 16⊕ 25

= 4.

Therefore, by the definition of Welter function for general ordinal number

[α1|α2|α3|α4|α5] = ω + 4.

Since, this shows that we are in an N -position, we will calculate a winning move.

First, we choose a move that satisfies the first condition of Corollary 2.6. Clearly

we should not make a move that will change the coefficient of ωβ2 = ω2. So we

will choose a move that will change the coefficient of ωβ1 = ω1 to be 0. The same

strategy in Transfinite Nim, shows that
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(2⊕ 2⊕ 4⊕ 5)⊕ 1 = 1⊕ 1 = 0.

Thus, the only legal move is 5 → 5⊕ 1 = 4. So, our good move is in ω · 5 + 25.

Then，in such moves，we will search for a move that satisfy the second condition．
It is obtained from the knowledge of Welter function.

The finite part should satisfy

1⊕ [4 | 9]⊕ [x | 16] = 0.

So we have

x = 30.

Therefore, the only good move is ω · 5 + 25 → ω · 4 + 30.

In fact，

m12 ⊕m22 ⊕m32 ⊕m42 ⊕m52 = 0⊕ 0⊕ 0⊕ 1⊕ 1

= 0

m11 ⊕m21 ⊕m31 ⊕m41 ⊕m51 = 0⊕ 2⊕ 2⊕ 4⊕ 4

= 0

[m10]⊕ [m20 | m30]⊕ [m40]⊕ [m50] = [1]⊕ [4 | 9]⊕ [30 | 16]
= 1⊕ (4⊕ 9− 1)⊕ (30⊕ 16− 1)

= 1⊕ 12⊕ 13

= 0.

Thus, this position is a P-position.
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