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Abstract

A pentagonal square triangular number is a number which is
a pentagonal number P5(ℓ), a square y2 and a triangular number
P3(m) at the same time. It would be well known for the specialists
that there exists no pentagonal square triangular number except for
P3(1) = 12 = P5(1) = 1. But we don’t know any simple reference of
the proof of this fact in print. The object of this note is to provide
a such reference. Here we shall present three independent proofs of
this fact one of which was already referred in the net article [24].
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1 Introduction

Determination of the pentagonal square triangular number is proposed as the
problem 29.4 (c) of Silverman’s text “Friendly Introduction to Number The-
ory”. Hence J. Silverman probably knew the answer and the proof of this fact.
On the other hand, E. Deza declares that the problem is still an open problem in
the text “Figurate Numbers”. The following explanation was written in the net
article “Pentagonal Square Triangular Number” of Wolfram Mathworld. “It is
almost certain that no other solution exists except for 1, although no proof of
this fact appears to have yet appeared in print.” In the article, they continued
that the problem was finally settled by J. Sillcox in 2003 and 2006 as follows. It
is easy to verify that the determination of pentagonal square triangular number
is equivalent to solve the simultaneous pell equations x2−2y2 = 1, z2−6y2 = 1
with even y. Sillcox has pointed out that this problem is the special case
R = 2, S = 6 of W. S. Anglin’ s results which determined all the positive inte-
ger solutions of simultaneous pell equations x2 −Ry2 = 1, z2 − Sy2 = 1 for all
the cases 0 < R < S ≤ 200 [2] (1996).

In the following section, we shall explain the proof the above fact of W. S.
Anglin and also give two other proofs. We note that this paper is the growth
of the bachelor’s thesis of the second and the third authors.

2 Pentagonal Square Triangular Number

2.1 Baker theory on linear forms in logarithms

Let Pk(n) be the n−th k−gonal number, i.e., the number of dots of a regular
k−gon with n dots on each side. Then Pk(n) is written as

Pk(n) =
n((k − 2)n− (k − 4))

2
.

In the following the set of all the k−gonal numbers {Pk(n) | n ∈ N} will be
denoted by Pk. Assume

P3(m) =
m(m+ 1)

2
= y2 = P5(n) =

n(3n− 1)

2
.

Putting X = 6n − 1, Y = 2m + 1 and Z = 2y, we obtain the following
simultaneous pell equations

{
X2 − 6Z2 = 1,
Y 2 − 2Z2 = 1.

Then, in the article of the pentagonal square triangular number of Wolfram
Mathworld, J. Sillcox referred the result of W. S. Anglin [2] (1996). Actually

2

Anglin determined all the positive integer solutions of the following simultane-
ous pell equations {

X2 − SZ2 = 1,
Y 2 −RZ2 = 1.

where 0 < R < S ≤ 200 and not square. Hence our case is R = 2, S = 6 and J.
Sillcox pointed out that the solution of the above simultaneous pell equation
is only the trivial one P3(1) = 12 = P5(1) in 2003 and 2006, although no proof
of this fact appears and to have yet appeared in print. Here we quote that the
proof of Anglin is based on Baker’s theory on the linear forms in logarithms.
The methods are described in Anglin’s paper [2], or in section 4.6 of Anglin’s
text [1], or in the section 1 of the first author’s paper [12].

Remark 2.1 We note one can determine the solutions of simultaneous pell
equations by several other methods as in [12]. Here we shall explain two other
methods in the following sections.

2.2 Square Terms in Binary Recurrence Sequences

P3(m) =
m(m+ 1)

2
= y2 = P5(n) =

n(3n− 1)

2
.

implies {
X2 − 6Z2 = 1,
Y 2 − 2Z2 = 1,

⇐⇒
{

X2 − 3Y 2 = −2,
Y 2 − 2Z2 = 1,

where X = 6n−1, Y = 2m+1 and Z = 2y. Let us define the binary recurrence
sequences ak, bk by putting ak+1 = 4ak − ak−1, bk+1 = 4bk − bk−1, with initial
terms a0 = 1, a1 = 2, b0 = 0, b1 = 1. Then {(ak, bk) | k ≥ 0} is the set of
all the non negative integer solutions of the pell equation x2 − 3y2 = 1. Since
2 totally ramifies in the real quadratic field Q(

√
3), we know X + Y

√
3 =

(1 +
√
3)(ak + bk

√
3), i.e.,

X = ak + 3bk, and Y = ak + bk.

Moreover ak+1 + bk+1

√
3 = (ak + bk

√
3)(2 +

√
3) implies two relations

ak+1 = 2ak + 3bk and bk+1 = ak + 2bk.

Hence we have

Y 2 − 1 = (ak + bk)
2 − 1 = a2k − 1 + b2k + 2akbk = 4b2k + 2akbk = 2bkbk+1.

Combining the facts Z2 = bkbk+1 and (bk, bk+1) = 1, we know bk = � and
bk+1 = �. Now let us recall Ljunggren’s classical result of [14].

3
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Theorem 2.2 (Ljunggren) The equation x2 −Dy4 = 1, where D is positive
and not a perfect square has at most two positive integer solutions. If there
are two solutions, these solutions are given by either x+ y

√
D = εD, ε2D or by

x+y
√
D = εD, ε4D. Here εD (> 1) is the fundamental unit of the real quadratic

field Q(
√
D). Moreover the exceptional εD, ε4D case occurs only when D = 1785

or D = 28560.

Now our case is D = 3. Since ε3 = 2+
√
3, ε23 = 7+ 4

√
3, we know bk = b1 = 1

and bk+1 = b2 = 2. Thus we have verified Y = 2m + 1 = a1 + b1 = 2 + 1,i.e.,
m = 1. Hence P3(m) = y2 = P5(n) if and only if the trivial case m = n = 1.

2.3 Integral Points on Modular Elliptic Curve

P3(m) =
m(m+ 1)

2
= y2 = P5(n) =

n(3n− 1)

2
.

implies {
X2 − 6Z2 = 1,
Y 2 − 2Z2 = 1,

where X = 6n−1, Y = 2m+1 and Z = 2y. Since (XY )2 = (2Z2+1)(6Z2+1),
we obtain

(12Z)2 × (XY )2 = (12Z2)(12Z2 + 2)(12Z2 + 6).

Putting y = 12XY Z and x = 12Z2 + 3, we have the modular elliptic curve

E : y2 = x3 − x2 − 9x+ 9.

We note that each pentagonal square triangular number corresponds to an
integer point on this elliptic curve E. This curve’s Cremona label is 192A2(R)
and the Mordell Weil group E(Q) is isomorphic to Z×(Z/2Z)2. The generators
of E(Q) are given by

Z = ⟨P1 = (0, 3)⟩,Z/2Z = ⟨P2 = (3, 0)⟩,Z/2Z = ⟨P3 = (1, 0)⟩.

Then all the integral points on E are given by

E(Z) = {(−5,±8), (−3, 0), (−1,±4), (0,±3), (1.0), (3, 0), (9,±24), (51,±360)}.

x = 12Z2 + 3 yields X = 5, Y = 3, Z = 2, i.e., m = y = n = 1. Hence we have
verified the following theorem by three different approaches.

Theorem 2.3 There exists no pentagonal square triangular number P3(m) =
y2 = P5(n) except for the trivial case P3(1) = 12 = P5(1).

Remark 2.4 The first author gave a detailed explanation of the determination
of the integer points E(Z) of the above modular elliptic curve E in his paper
[12](section 3).

4

3 Heptagonal Square Triangular Number

3.1 Square Terms in Binary Recurrence Sequences

Assume

P3(m) =
m(m+ 1)

2
= y2 = P7(n) =

n(5n− 3)

2
.

Then we have
{

(2m+ 1)2 − 8y2 = 1,
(10n− 3)2 − 40y2 = 9.

⇐⇒
{

(2m+ 1)2 − 8y2 = 1,
(10n− 3)2 − 5(2m+ 1)2 = 4.

Let us denote kth Fibonacci and Lucas number by Fk and Lk, respectively.
Then (10n− 3)2 − 5(2m+1)2 = 4 implies 10n− 3 = L2k and 2m+1 = F2k for
some positive integer k. Then the following identity is well known

(8y2) = F 2
2k − 1 = F2k+2F2k−2 = Fk+1Lk+1Fk−1Lk−1.

Then (Fk+1, Lk+1) = (Fk+1, Fk−1) = (Lk−1, Fk−1) = 1 from the definition.

Lk+1 + Fk+1

√
5

2
=

(
Lk−1 + Fk−1

√
5

2

)(
3 +

√
5

2

)

implies
2Lk+1 = 3Lk−1 + 5Fk−1, 2Fk+1 = Lk−1 + 3Fk−1.

Hence

(Lk+1, Fk−1) | (2Lk+1, Fk−1) = (3Lk−1, Fk−1) = (3, Fk−1),

and
(Lk−1, Fk+1) | (Lk−1, 2Fk+1) = (Lk−1, 3Fk−1) = (3, Lk−1).

(Fk−1, Lk−1) = 1 implies at least one of (Lk+1, Fk−1) and (Lk−1, Fk+1) is 1.
Since Fk−1Lk−1Fk+1Lk+1 = 8y2, we have Fk−1 = � or 2� or Fk+1 = � or
2�. From J. H. E. Cohn’s classical results on square and two times square
in Fibonacci numbers, Fi = �, 2� if and only if i = 0, 1, 2, 3, 6, 12. Hence
k ∈ {2, 3, 4, 5, 7, 11, 13}. Trying one by one, we see k = 2 is the only the case
F 2
2k − 1 = 8�, which yields the case m = n = 1.

3.2 Integral Points on Modular Elliptic Curve

Since (2m + 1)2 = 8y2 + 1 and (10n − 3)2 = 40y2 + 9, we obtain 5 × (2m +
1)2(10n− 3)2 = (40y2 + 5)(40y2 + 9). Then we have

80y2 × 22 × 5(2m+ 1)2(10n− 3)2 = 80y2(80y2 + 10)(80y2 + 18).

5
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Putting Y = 40(2m + 1)(10n − 3)y and X = 80y2 + 9, we have the modular
elliptic curve

E : Y 2 = X3 +X2 − 81X − 81.

We note that any heptagonal square triangular number corresponds to an inte-
ger point on this elliptic curve E. This curve’s Cremona label is 960j2 and the
Mordell Weil group E(Q) is isomorphic to Z × (Z/2Z)2. Then the generators
of E(Q) are given by

Z = ⟨P1 = (6,−15)⟩,Z/2Z = ⟨P2 = (−1, 0)⟩,Z/2Z = ⟨P3 = (9, 0)⟩.
Then all the integral points on E are given by

E(Z) = {(−1, 0), (−9, 0), (−6,±15), (−3,±12, (15,±48), (39,±240), (89,±840)}.

X = 80y2 + 9 yields y = 1 and 10n − 3 = 7, 2m + 1 = 3, i.e., m = y = n = 1.
Hence we have verified the following theorem by two different approaches.

Theorem 3.1 There exists no heptagonal square triangular number P3(m) =
y2 = P7(n) except for the trivial case P3(1) = 12 = P7(1), that is,

P3 ∩ P4 ∩ P7 = {1}.

4 Several Polygonal Square Triangular Num-
bers

4.1 Octagonal Square Triangular Number

Assume

P3(m) =
m(m+ 1)

2
= y2 = P8(n) = n(3n− 2).

Hence {
(2m+ 1)2 = 8y2 + 1,
(3n− 1)2 = 3y2 + 1.

Thus
242y2 × (2m+ 1)2(3n− 1)2 = (24y2)(24y2 + 3)(24y2 + 8).

Putting X = 24y2+4 and Y = 24(2m+1)(3n−1), we have the modular elliptic
curve

E : Y 2 = X3 −X2 − 16X + 16.

Then the Cremona label of E is 240c2 and the Mordel Weil group E(Q) and
the generators are E(Q) ∼= Z× (Z/2Z)2, and
Z = ⟨P1 = (−2, 6)⟩,Z/2Z = ⟨P2 = (1, 0)⟩,Z/2Z = ⟨P3 = (4, 0)⟩.
Hence all the integral points on E are
E(Z) = {(−4, 0), (−2,±6), (0,±4), (1, 0), (4, 0), (5,±6), (6,±10), (16,±60),
(28,±144), (246,±3850)}. Since X = 24y2 + 4, we know X = 28, i.e., y = 1
and hence m = n = 1.

6

Theorem 4.1
P3 ∩ P4 ∩ P8 = {1}.

4.2 Other Polygonal Square Triangular numbers

Put P3(m) =
m(m+ 1)

2
= y2 = P9(n) =

n(7n− 5)

2
. Then

{
(2m+ 1)2 = 8y2 + 1,
(14n− 5)2 = 56y2 + 25.

Thus

562y2 × (2m+ 1)2(14n− 5)2 = (112y2)(112y2 + 14)(114y2 + 50).

Putting X = 112y2 + 21 and Y = 56(2m+ 1)(14n− 5), we obtain the elliptic
curve

E : Y 2 = X3 +X2 − 665X + 4263.

Then the Cremona label of E is 6720ck2 and the Mordell Weil group E(Q) and
the generators of E(Q) are
E(Q) ∼= Z× (Z/2Z)2 and
Z = ⟨P1 = (−14, 105)⟩,Z/2Z = ⟨P2 = (7, 0)⟩,Z/2Z = ⟨P3 = (21, 0)⟩.
Therefore the integral points E(Z) are given by
E(Z) = {(−29, 0), (−14,±105), (1,±60), (3,±48), (7, 0), (21, 0), (31,±120),
(91,±840), (133,±1512), (2911,±157080)}. Since X = 112y2 + 21, we know
X = 133, i.e., y = 1 and hence m = n = 1.

Theorem 4.2
P3 ∩ P4 ∩ P9 = {1}.

In section 5, we shall show the following two theorems in more general settings.

Theorem 4.3
P3 ∩ P4 ∩ P10 = {1}.

Theorem 4.4
P3 ∩ P4 ∩ P11 = {1}.

Put P3(m) =
m(m+ 1)

2
= y2 = P12(n) = n(5n− 4) Then

{
(2m+ 1)2 = 8y2 + 1,
(5n− 2)2 = 5y2 + 4.

Thus

52 × 82y2 × (2m+ 1)2(5n− 2)2 = (40y2)(40y2 + 5)(40y2 + 32).
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2
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and hence m = n = 1.
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Putting X = 40y2 + 12 and Y = 40(2m + 1)(5n − 2), we obtain the elliptic
curve

E1 : Y 2 = X3 +X2 − 296X + 1680.

Then the minimal Weierstrass equation of E1 is

E2 : y2 + xy + y = x3 − 19x+ 26.

Cremona label of E2 is 30a2 and the Mordell Weil group of E2 has rank 0, i.e.,
E2(Q) ∼= Z/2Z × Z/6Z ∼= E1(Q). Then the generators of the torsion group of
E1 are

Z/2Z = ⟨P1 = (12, 0)⟩,Z/6Z = ⟨P2 = (−8, 60)⟩.
Thus there are 11 rational(and so integral) points E(Z) = {P2 = (−8, 60),
2P2 = (16,−36), 3P2 = (7, 0), 4P2 = (16, 36), 5P2 = (−8,−60), P1 = (12, 0),
P1 + P2 = (4,−24), P1 + 2P2 = (52, 360), P1 + 3P2 = (−20, 0),
P1 + 4P2 = (52,−360), P1 + 5P2 = (4, 24)}. Since X = 40y2 + 12, we obtain
X = 52, i.e., y = 1 and hence m = n = 1.

Theorem 4.5
P3 ∩ P4 ∩ P12 = {1}.

5 Miscellaneous

5.1 Trivial Cases

It was Euler who has shown the infinity of the square triangular numbers. Here
we refer to the several cases when the set of the polygonal square number is
finite. Let P10(m) be the decagonal square number, that is,

P10(m) = 4m2 − 3m = y2.

Then 16y2 = (8m− 3)2 − 9 implies

(8m− 3 + 4y)(8m− 3− 4y) = 9.

Hence 8m− 3 + 4y = 9 and 8m− 3− 4y = 1. Therefore y = 1 and m = 1, i.e.,
the only decagonal square number is the trivial case P10(1) = 12 = 1.
Put k = 2a2+2, where a is a natural number. Then Pk(m) = m(a2m−(a2−1))
and one can easily verify the finiteness of the set of k−gonal square numbers
as follows. Since Pk(m) = m(a2m − (a2 − 1)), Pk(m) = y2 implies 4a2y2 =
4a2m(a2m− (a2 − 1)) = (2a2m− (a2 − 1))2 − (a2 − 1)2. Then

(2a2m− a2 + 1 + 2ay)(2a2m− a2 + 1− 2ay) = (a2 − 1)2.

Since there are only finitely many decompositions of AB = (a2 − 1)2 into the
natural numbers A,B, we know the finiteness of the set {Pk(m) = y2 | m, y ∈
N}.

8

Proposition 5.1 Let a be a natural number and k = 2a2+2. Then there exist
only finitely many k−gonal square number.

Remark 5.2 We note that the decagonal square number is nothing but the case
a = 2. We also obtain {P20(m) = y2 | m, y ∈ N} = {1} for the case a = 3, and
{P34(m) = y2 | m, y ∈ N} = {1, 142} for the case a = 4.

Here we note some of the simultaneous diophantine equations can be solved
by elementary factorizations as follows. Consider the following simultaneous
diophantine equations {

x2 −Ry2 = C,
z2 − Sy2 = D,

where R,S are not square positive integers. Assume RS = � = M2. Then

S2x2 −RSz2 = (Sx+Mz)(Sx−Mz) = CS2 −RSD.

Thus the solutions of the above diophantine equations are determined by the
factorizations of S(CS −RD), and hence the number of solutions is finite.
For example, assume

P3(m) = y2 = P11(n) =
n(9n− 7)

2
.

Then {
(2m+ 1)2 − 8y2 = 1,
(18n− 7)2 − 72y2 = 49.

Hence
((18n− 7) + 3(2m+ 1))((18n− 7)− 3(2m+ 1)) = 40.

From the decomposition 40 = 2 × 20 implies the only one positive integer
solution m = n = 1.

Assume k = a2 + 2. Then 8 × a2Pk(n) = (2a2n − (a2 − 2))2 − (a2 − 2)2.
Therefore it is R = 8 and S = 8a2 case of the above diophantine equation.
Therefore we can determine the solutions m,n by simple factorizations of (a2−
2)2 − a2 = (a− 1)(a+ 1)(a− 2)(a+ 2).

We can generalize the above results as follows.

Proposition 5.3 In the case k = a2 + 2, one can determine the solutions of
P3(m) = y2 = Pk(n) by the factorizations of (a− 1)(a+ 1)(a− 2)(a+ 2).

5.2 Several other cases

Assume

P5(m) =
m(3m− 1)

2
= y2 = P8(n) = n(3n− 2).

9
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Then we have {
(6m− 1)2 − 24y2 = 1,
(3n− 1)2 − 3y2 = 1.

722y2 × (6m− 1)2(3n− 1)2 = (72y2)(72y2 + 3)(72y2 + 24).

Put Y = 72y(6m − 1)(3n − 1) and X = 72y2 + 9. Then we have the modular
elliptic curve

E : Y 2 = X3 − 171x+ 810.

This curve’s Cremona label is 1008h2 and the Mordell Weil group E(Q) is
isomorphic to Z× (Z/2Z)2. Then the generators of E(Q) are given by

Z = ⟨P1 = (−3, 36)⟩,Z/2Z = ⟨P2 = (6, 0)⟩,Z/2Z = ⟨P3 = (9, 0)⟩.

Thus all the integral points on E are given by
E(Z) = {(−15, 0), (−3,±36), (3,±18), (6, 0), (9, 0), (10,±10), (13.±28), (27,±126),
(81,±720)}. Then X = 72y2 + 9 yields X = 81, y = 1, i.e., m = y = n = 1.
Hence we have verified the following theorem.

Theorem 5.4
P4 ∩ P5 ∩ P8 = {1}.

Assume

P3(m) =
m(3m− 1)

2
= P5(n) =

n(3n− 1)

2
= P8(k) = n(3k − 2).

Put y = 6n− 1, we have

{
3(2m+ 1)2 = y2 + 2,
8(3k − 1)2 = y2 + 7.

63 × 24× y2 × (2m+ 1)2(3k − 1)2 = (6y2)(6y2 + 12)(6y2 + 42).

Put Y = 72y(2m+ 1)(3k − 1) and X = 6y2 + 18, we have the modular elliptic
curve

E : Y 2 = X3 − 468x+ 2512.

This curve’s Cremona label is 20160lg2 and the Mordell Weil group E(Q) is
isomorphic to Z2 × (Z/2Z)2. Then the generators of E(Q) are given by
Z = ⟨P1 = (−18, 72)⟩,Z = ⟨P2 = (−14, 80)⟩,Z/2Z = ⟨P3 = (6, 0)⟩, and
Z/2Z = ⟨P4 = (18, 0)⟩. Hence all the integral points on E are given by
E(Z) = {(−24, 0), (−18,±72), (−14,±80), (−6,±72), (−3,±63), (4,±28), (6, 0),
(18, 0), (21.±45), (36,±180), (46,±280), (102,±1008), (168,±2160), (186,±2560),
(381,±7425), (1476,±56700), (2034,±91728), (67246,±17438120)}.
X = 6y2 + 18 yields X = 24 i,e., y = 1, or X = 168 i.e., y = 5. From the con-
dition y = 6n− 1, we know y ̸= 1. Hence y = 6n− 1 = 5, i.e., m = y = n = 1.
Hence we have verified the following theorem.
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Theorem 5.5
P3 ∩ P5 ∩ P8 = {1}.
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[ 11 ] J. Gebel, A Pethő and H. Zimmer, Computing integral points on elliptic
curves, Acta Arith., 68 (1994), 171-192.

[ 12 ] S. Katayama, Several methods for solving simultaneous Fermat-Pell
equations, J. Math. Tokushima Univ., 33 (1999), 1-14.

[ 13 ] T. Koshy, Pell and Pell-Lucas Numbers with Applications, Springer,
New York 2014.

[ 14 ] W. Ljunggren, Einige Eigenschaften der Einheiten reeller quadraticher
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Abstract

We extend the theorem by Olmsted (1945) and Carlitz-Thomas (1963)
on rational values of trigonometric functions to powers of trigonometric
functions.
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1 Introduction

Throughout the paper, we denote the ring of rational numbers by Q, the ring
of real numbers by R, the set of positive rational numbers by Q>0 and a mth

root of unity by ζm := e
2π

√
−1

m . Olmsted [4] and Carlitz-Thomas [2] determined
all rational values of trigonometric functions.

Theorem 1 (Olmsted (1945), Carlitz-Thomas (1963)). If θ ∈ Q, then the only
possible rational values of the trigonometric functions are:

sin (πθ), cos (πθ) = 0, ±1

2
, ±1 ; tan (πθ) = 0, ±1.

By this Theorem1 and well-known facts

cos (πθ)
2
=

1 + cos (2πθ)

2
, tan (πθ)

2
=

1

cos (πθ)
2 − 1,

we have the following result immediately.

Corollary 2. If θ ∈ Q and cos (πθ)
2 ∈ Q, then the only possible values of the

trigonometric functions are:

sin (πθ), cos (πθ) = 0, ±1

2
, ± 1√

2
, ±

√
3

2
, ±1 ; tan (πθ) = 0, ± 1√

3
, ±1, ±

√
3.

1


