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Abstract

In this paper, we define the Lebesgue integral of the Lebesgue mea-
surable function on Rd, (d ≥ 1).

Then we study the method of calculation of the Lebesgue integral.
Further we clarify the convergence properties of the Lebesgue integral
completely. These facts are the new results.

2000 Mathematics Subject Classification. Primary 28A25.

Introduction

This paper is the part IV of the series of papers on the axiomatic method
of measure and integration on the Euclidean space.

As for the details, we refer to Ito [12]. Further we refer to Ito [1] ∼ [11],
[13] ∼ [19].
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In this paper, we define the d-dimensional Lebesgue integral and study their
fundamental properties. Here we assume d ≥ 1.

We assume that the d-dimensional Euclidean space Rd is the Lebesgue mea-
sure space (Rd, M, µ). Then we define the class of the Lebesgue measurable
functions which adapt this Lebesgue measure. We define the Lebesgue integral
of these Lebesgue measurable functions.

Then, in this paper, we define that a function f(x) is Lebesgue measurable
by the condition that it is a limit of a sequence of simple functions in the sense
of pointwise convergence.

Here the convergence in the sense of pointwise convergence means the point-
wise convergence on the set of points except all singular points of a function
f(x). As for details, we explain this in section 1.

This is the similar method to the method of defining a Jordan measurable
function by the condition that it is a limit of a direct family of simple functions
in the wider sense of uniform convergence in the theory of Riemann integral.

In this point, this method is different from the method of defining the
Lebesgue integral until now.

Since the Lebesgue integral is defined for a Lebesgue measurable function,
we have to prove that the Lebesgue measurability of functions is preserved for
four fundamental rules of calculation and operations of taking the supremum,
the infimum and the limit in order to study the relations between the Lebesgue
integral and the operations of functions. We show these results as the theorems
for the properties of Lebesgue measurable functions.

We define the Lebesgue integral for these Lebesgue measurable functions.
Assume that a simple function f(x) on a measurable set E of Rd is defined

as follows:

f(x) =
∞∑
p=1

apχEp(x), (ap ∈ R, (1 ≤ p < ∞))

for the countable division of E

E =

∞∑
p=1

Ep, (Ep ∈ M, (1 ≤ p < ∞)).

Then we define the Lebesgue integral of f(x) as the sum of the series in the
right hand side of the following formula

∫

E

f(x)dx =
∞∑
p=1

apµ(Ep).

Here we assume that the series in the right hand side converges absolutely.
We define the Lebesgue integral of a general measurable function f(x) on

E by the formula ∫

E

f(x)dx = lim
n→∞

∫

E

fn(x)dx.

2

Here we assume that a sequence {fn(x)} of the simple functions converges to
f(x) on E in the sense of pointwise convergence.

In general, the Lebesgue integral of f(x) either converges or diverges. In
the case of convergence, there is either one of the case of absolute convergence
and the case of conditional convergence. In the case of conditional convergence,
we say until now that the Lebesgue integral is the improper Lebesgue integral.

Then the concept of pointwise convergence well conforms to the class of all
Lebesgue measurable functions and the class of Lebesgue integrable functions.

Namely the limit function of a sequence of functions in these classes in the
sense of pointwise convergence belongs to the same class.

Thus, by using the similar expression to the theory of Riemann integral, it
is seen clear that we have the difference that the convergence of a sequence of
functions well confirms to the uniform convergence in the theory of Riemann
integral and the convergence of a sequence of functions well confirms to the
pointwise convergence in the theory of Lebesgue integral.

In the theory of Lebesgue integral, the reason why a integral domain E is
a Lebesgue measurable set is the following.

If we assume that a considered subset E of Rd is not a Lebesgue measurable
set, even a constant function on E is not a Lebesgue measurable function. After
all, it is meaningless in itself to consider any Lebesgue measurable function on
such a set E. Therefore the definition of the Lebesgue integral on a Lebesgue
non-measurable set E is meaningless.

Thus it is meaningless to consider a Lebesgue non-measurable set and a
Lebesgue non-measurable function in the theory of Lebesgue integral. These
consideration is not the problem of the theory of Lebesgue integral.

Further, since the Lebesgue measure is a complete measure, we cannot con-
sider the more extended measure theory including the Lebesgue non-measurable
set by extending it. In this point, it is meaningless to consider the Lebesgue
non-measurable sets.

In this paper, the range of a function is considered to be the subset of the
space of the extended real numbers R = [−∞, ∞].

Here I show my heartfelt gratitude to my wife Mutuko for her help of
typesetting this manuscript.

1 Lebesgue measurable functions

In this section, we define the concept of the Lebesgue measurable functions
and study their fundamental properties. Here we assume d ≥ 1.

Assume that the d-dimensional Euclidean space Rd is the d-dimensional
Lebesgue measure space (Rd, M, µ).
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Assume that a subset E of Rd is a Lebesgue measurable set. Hereafter, for
simplicity, we say that E is measurable.

Now we consider a measurable function defined on a set E. Then we assume
that all considered functions f(x) are the extended real-valued functions defined
on E. Namely we assume that the range of a function f(x) is included in the
space of the extended real numbers R = [−∞, ∞].

We denote the family of all Lebesgue measurable sets included in E as ME

and the restricted measure of the Lebesgue measure µ on Rd to the elements
of ME as µ. Then we say that the measure space (E, ME , µ) is the d-
dimensional Lebesgue measure space on E. Hereafter we consider this
Lebesgue measure space (E, ME , µ) when we study the Lebesgue integral of
a Lebesgue measurable function f(x) on E. Further we happen to denote ME

as M for simplicity.
At first, we define the concept of the simple functions.

Definition 1.1 We define that a function f(x) defined on a measurable
set E of Rd is a simple function if f(x) is defined to be

f(x) =

∞∑
p=1

apχEp(x), (x ∈ E) (1.1)

for a countable division

(∆) : E =
∞∑
p=1

Ep = E1 + E2 + · · · . (1.2)

Here ap is a real number or ±∞ for 1 ≤ p < ∞ and they are not necessarily
different. χEp(x) denotes the defining function of a set Ep, (1 ≤ p < ∞).
Then we denote this simple function f(x) as f∆(x). Here we assume that all
the subsets E1, E2, · · · of E are the Lebesgue measurable sets and they are
mutually disjoint. Further, we assume that E(∞) = {x; |f(x)| = ∞} ∈ M
holds and µ(E(∞)) = 0 holds.

In Definition 1.1, we define the defining function χA(x) of a set A as follows:

χA(x) =

{
1, (x ∈ A),
0, (x ̸∈ A).

Since a simple function f(x) is a function, its range is fixed. Namely, the
range of a simple function is the at most countable set in the space of extended
real numbers R = [−∞, ∞].

Especially, we happen to say that a simple function is a step function if its
range is the finite set in R.

4

Nevertheless, there are many ways of the expressions of a simple function
f(x) in the formula (1.1) because there are many varieties of the forms of the
divisions ∆ of E in the formula (1.2).

Thus, even if the range of a simple function f(x) is fixed, we use the symbol
f∆(x) in order to distinguish the simple functions whose expressions in the
formula (1.1) are different.

Then we define the concept of the Lebesgue measurable functions in the
following definition.

Definition 1.2 Let E be a measurable set in Rd. Then we define that an
extended real-valued function f(x) defined on E is a Lebesgue measurable
function if it satisfies the following conditions (i) and (ii):

(i) When we put E(∞) = {x ∈ E; |f(x)| = ∞}, we have E(∞) ∈ M and
µ(E(∞)) = 0.

(ii) There exists a sequence of the simple functions {fn(x); n ≥ 1} such that
we have the limit

lim
n→∞

fn(x) = f(x)

in the sense of pointwise convergence on E\E(∞).

The condition (ii) of Definition 1.2 is equivalent to the following condition
(iii):

(iii) For every point x in E\E(∞) and an arbitrary positive number ε > 0,
there exists a certain natural number n0 such that we have the inequality

|fn(x)− f(x)| < ε

for any natural number n such as n ≥ n0.

We say that a point x in E(∞) is a singular point of a function f(x) in
Definition 1.1 and Definition 1.2.

For simplicity, we say that a Lebesgue measurable function f(x) is a mea-
surable function or measurable

Example 1.1 Let a set E be a measurable set in Rd. A simple function
f(x) and a continuous function f(x) defined on E are measurable.

Theorem 1.1 Let a set E be a measurable set in Rd. Assume that two
functions f and g are measurable on E. Then the following functions (1) ∼
(10) defined on E are also measurable:

(1) f + g. (2) f − g. (3) fg.

5
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(4) f/g. Here we assume that g(x) ̸= 0 holds on x ∈ E.

(5) αf . Here α is a real constant. (6) |f |p. Here p ̸= 0 is a real number.

(7) sup(f, g). (8) inf(f, g). (9) f+ = sup(f, 0).

(10) f− = − inf(f, 0).

The functions sup(f, g) and inf(f, g) in Theorem 1.1 are defined in the
following:

sup(f, g)(x) = sup(f(x), g(x)), (x ∈ E),

inf(f, g)(x) = inf(f(x), g(x)), (x ∈ E).

Further we have the relations

|f(x)| ≥ f+(x) ≥ 0, |f(x)| ≥ f−(x) ≥ 0.

f(x) = f+(x)− f−(x), |f(x)| = f+(x) + f−(x).

Theorem 1.2 If a function f(x) is measurable on E and we have the
relations F ⊂ E with F ∈ M, the restriction fF (x) = f(x)|F of f(x) on F is
measurable on F .

Now we use the following notation. Let α and β be two arbitrary real
numbers or ±∞. Then we put

E(f > α) = {x ∈ E; f(x) > α},

E(f ≤ α) = {x ∈ E; f(x) ≤ α},

E(f = α) = {x ∈ E; f(x) = α},

E(α < f ≤ β) = {x ∈ E; α < f(x) ≤ β}, (α < β).

Theorem 1.3 Let f(x) be a function defined on E. Then the following
four propositions are equivalent:

(1) For an arbitrary real number α, we have E(f > α) ∈ ME .

(2) For an arbitrary real number α, we have E(f ≤ α) ∈ ME .

(3) For an arbitrary real number α, we have E(f ≥ α) ∈ ME .

(4) For an arbitrary real number α, we have E(f < α) ∈ ME .

Corollary 1.1 For a function f(x) defined on E, the following (1) and
(2) are equivalent:

6

(1) For an arbitrary real number α, we have E(f > α) ∈ ME .

(2) For an arbitrary rational number r, we have E(f > r) ∈ ME .

Corollary 1.2 Assume that a function defined on E satisfies the condi-
tions of Theorem 1.3. Then every set in the following (1) ∼ (5) belongs to
ME :

(1) E(f = α). Here α is an arbitrary real number.

(2) E(f < ∞). (3) E(f = ∞). (4) E(f > −∞).

(5) E(f = −∞).

Theorem 1.4 For a function f(x) defined on E, the following (1) and (2)
are equivalent:

(1) f(x) is measurable on E. Namely there exists a sequence of the simple
functions {fn(x)} such that it converges to f(x) in the sense of pointwise
convergence on E\E(∞).

(2) For an arbitrary real number α, we have E(f > α) ∈ ME .

If f(x) is measurable, there exists a sequence of the simple functions {fn(x)}
which converges to f(x) in the sense of pointwise convergence on E\E(∞) by
virtue of the definition. Then it is the meaning of this theorem that the method
of the concrete construction of one of such sequences of the simple functions is
given.

We give the result in the following Corollary 1.3.

Corollary 1.3 Assume that a function f(x) is measurable on E. Then,
for an arbitrary natural number n ≥ 1, we put

Ep
n = E(

p

n
≤ f <

p+ 1

n
), (p = 0, ±1, ±2, · · · )

and we denote the defining function of Ep
n as

Cp
n(x) = χEp

n
(x).

Then, if we define the simple function fn(x) by the formula

fn(x) =
∞∑

p=−∞

p

n
Cp

n(x), (x ∈ E),

the sequence of the simple functions {fn(x)} converges to f(x) in the sense of
pointwise convergence on E\E(∞).

7
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Theorem 1.5 If a function f(x) on E is measurable and f(x) ≥ 0 holds
for x ∈ E, there exists a sequence of the simple functions {fn(x)} which sat-
isfies the conditions fn(x) ≥ 0, (n ≥ 1) and converges to f(x) in the sense of
pointwise convergence on E\E(∞).

Theorem 1.6 If the functions fn(x), (n ≥ 1) defined on E are measur-
able, the following functions (1) ∼ (5) are also measurable on E:

(1) sup
n≥1

fn(x). (2) inf
n≥1

fn(x). (3) lim
n→∞

fn(x). (4) lim
n→∞

fn(x).

(5) If f(x) = lim
n→∞

fn(x) exists almost everywhere on E, then f(x) is also

measurable on E.

If a certain property (P) concerning a function f(x) or a sequence of mea-
surable functions {fn(x)} holds everywhere on the set E\e for a certain null
set e, then we say that this property (P) for the function f(x) or the sequence
of functions {fn(x)} holds almost everywhere.

For example, when we have the equality

f(x) = 0, (x ∈ E\e, µ(e) = 0),

we say that f(x) is equal to 0 almost everywhere on E.
Further, when we have the limit

lim
n→∞

fn(x) = f(x), (x ∈ E\e, µ(e) = 0),

we say that fn(x) converges to f(x) almost everywhere on E.
We denote this as

lim
n→∞

fn(x) = f(x), (a.e. x ∈ E).

Then the values of the limit function f(x) happen to be undetermined on
the null set e.

But we give one value to f(x) and fix it at every point in such the null
set e. We define the function as above in order to fix the definition of this
function. Namely, if the domains are different for several functions, it is almost
meaningless to state any proposition concerning such the functions.

In this case, even if we give what kind of value to f(x) on a null set, this is
an idea in order to express the proposition explicitly because this definition of
f(x) does not influence the value of the Lebesgue integral of f(x).

Theorem 1.7 (Egorov’s Theorem) Assume that E is a measurable set
in Rd such that µ(E) < ∞ holds, and fn(x), (n ≥ 1) are measurable functions
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which have the finite value almost everywhere on E. Further, assume that there
is the finite limit f(x) = lim

n→∞
fn(x) almost everywhere on E. Then, for an

arbitrary positive number ε > 0, there exists a set F ∈ ME such that we have
the following (1) and (2):

(1) We have F ⊂ E and µ(E\F ) < ε.

(2) fn(x) converges to f(x) uniformly on F .

Corollary 1.4 In the Theorem 1.7, we may have a closed set F .

By virtue of Egorov’s Theorem and Corollary 1.4, we have the following
Theorem.

Theorem 1.8 (Lusin’s Theorem) Assume that E is a measurable set
in Rd and f(x) is a measurable function which has the finite value almost
everywhere on E. Then, for an arbitrary positive number ε > 0, there exists a
certain closed set F ⊂ E such that we have the following (1) and (2):

(1) We have µ(E\F ) < ε.

(2) f(x) is continuous on F .

2 Definition of the Lebesgue integral

In this section, we define the Lebesgue integral of a Lebesgue measurable
function.

Assume that d ≥ 1 holds and the d-dimensional Euclidean space Rd is the
Lebesgue measure space (Rd, M, µ).

Assume that a subset E of Rd is a Lebesgue measurable set.
Then, by restricting (Rd, M, µ) on E, we have the d-dimensional Lebesgue

measure space (E, M, µ) on E.
Here we define the Lebesgue integral of a Lebesgue measurable function

f(x) on E and denote this by the symbol

∫

E

f(x)dx.

Although we denote a double integral or a triplet integral by the symbols

∫ ∫

E

f(x)dx,

∫ ∫ ∫

E

f(x)dx
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respectively, here we generally use the symbol of integral

∫

E

f(x)dx.

Especially, we use the symbol of the double integral for the expression of
Fubini’s Theorem concerning the iterated integral.

In the following, we define the Lebesgue integral in two steps.

(1) The case where f(x) is a simple function
In this case, we assume that a function f(x) is defined in the formula

f(x) =
∞∑
p=1

apχEp(x), (ap ∈ R, p ≥ 1) (2.1)

for a division of E:

(∆) : E = E1 + E2 + · · · , (Ep ∈ ME , p ≥ 1). (2.2)

Then we define the Lebesgue integral of f(x) as the sum of the series in the
right hand side of the formula

∫

E

f(x)dx =
∞∑
p=1

apµ(Ep). (2.3)

We denote this as the symbol of the left hand side in the above. Here we
assume that the series in the right hand side converges absolutely.

The sum of the absolutely convergent series in the right hand side of the for-
mula (2.3) has the determined value independent of the choice of the expression
of the function f(x) in the formula (2.1).

Then we say that f(x) is Lebesgue integrable on E. f(x) is Lebesgue
integrable on E if and only if |f(x)| is Lebesgue integral on E.

This equivalence is understood because of the following consideration.
For the absolute function of the function f(x) in the formula (2.1), we have

the equality

|f(x)| =
∞∑
p=1

|ap|χEp(x). (2.4)

Therefor we have the equality

∫

E

|f(x)|dx =

∞∑
p=1

|ap|µ(Ep). (2.5)
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Then if the series in the right hand side of the formula (2.3) converges
absolutely if and only if the series in the right hand side of the formula (2.5) is
convergent.

Remark 2.1 As for the convergence and the divergence of the series in the
right hand side of the formula (2.3), we have the two cases of (1) convergence
and (2) divergence.

In detail, we have two cases of (1-i) absolute convergence and (1-ii) condi-
tional convergence for the case (1) and two cases of (2-i) divergence to either
one of ±∞ and (2-ii) it vibrates and does not converge to any constant value
in the case (2).

The case (1-i) is the definition of the Lebesgue integral and the case (1-ii)
is the case where the integral converges conditionally.

Here, since we consider only the case where a simple function f(x) is
Lebesgue integrable, this means that we consider only the case (1-i) of Re-
mark 2.1.

In general, as for the details of the convergence and divergence of the
Lebesgue integral, we consider them in the method of calculation of the Lebesgue
integral afterward.

(2) The case where f(x) is a general measurable function
In this case, we assume that a function f(x) is a general measurable function

defined on E. Then we have a sequence of the simple functions {fn(x)} which
converges to f(x) on E\E(∞) in the sense of pointwise convergence.

Here we assume that each fn(x) is Lebesgue integrable and there exists the
limit

lim
n→∞

∫

E

fn(x)dx. (2.6)

Then we say that this limit is the Lebesgue integral of f(x) on E and denote
it as ∫

E

f(x)dx = lim
n→∞

∫

E

fn(x)dx. (2.7)

Further we say that the Lebesgue integral (2.7) converges absolutely if
the limit (2.6) does not depend on the choice of a sequence {fn(x)} of Lebesgue
integrable simple functions which converges to f(x) on E\E(∞) in the sense
of pointwise convergence and it is equal to the constant value.

Then we say that f(x) is Lebesgue integrable on E. The usual Lebesgue
integral is the Lebesgue integral in this case.

A function f(x) defined on E is Lebesgue integrable if and only if the
absolute function |f(x)| is Lebesgue integrable.

Theorem 2.1 When f(x) is Lebesgue integrable on E, we choose the
sequence of the simple functions {fn(x)} as in Corollary 1.3. Then the Lebesgue

11
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integral of f(x) on E is given by the formula

∫

E

f(x)dx = lim
n→∞

1

n

∞∑
p=−∞

pµ(E(
p

n
≤ f <

p+ 1

n
)).

Theorem 2.2 Assume that f(x) is Lebesgue integrable on E. Now, if we
define

f+(x) = sup{f(x), 0}, f−(x) = − inf{f(x), 0}, (x ∈ E).

Then f+(x) and f−(x) are also Lebesgue integrable on E and we have the
equality ∫

E

f(x)dx =

∫

E

f−(x)dx−
∫

E

f−(x)dx.

Further we have the equality

∫

E

|f(x)|dx =

∫

E

f+(x)dx+

∫

E

f−(x)dx.

Corollary 2.1 Assume that f(x) is Lebesgue integrable on E and g(x) is
Lebesgue measurable on E. Then, if we have the inequality |g(x)| ≤ |f(x)| on
E, g(x) is Lebesgue integrable on E.

Further the Lebesgue integral (2.7) converges conditionally if the limit
(2.6) has the various values depending on the choices of the sequences of
Lebesgue integrable simple functions {fn(x)} which converge to f(x) in the
sense of pointwise convergence on E\E(∞).

Until now, in this case, we have said that f(x) is Lebesgue integrable in
the extended sense on E and the Lebesgue integral in this case is the improper
Lebesgue integral.

The Lebesgue integrable functions on E are the special case of the Lebesgue
integrable functions in the extended sense.

If the limit (2.6) does not exist, we say that the Lebesgue integral diverges.
In this case, the Lebesgue integral does not exist.

Remark 2.2 The case of the conditional convergence in Remark 2.1, (1-
ii) means that the integral of the simple function is the improper Lebesgue
integral.

In general, as for details of the situations of convergence or divergence of the
Lebesgue integral, we study them in the section of the method of calculation
of the Lebesgue integrals afterward.

12

3 Fundamental properties of the Lebesgue in-
tegrals

In this section, we study the fundamental properties of the Lebesgue inte-
gral.

Assume that a subset E of Rd is a Lebesgue measurable set and the d-
dimensional Lebesgue measure space (E, M, µ) is defined on E. Here we
assume d ≥ 1.

3.1 The fundamental properties of the Lebesgue integral

In this paragraph, we study the fundamental properties of the Lebesgue
integral.

As for the all formulas of all theorems in this paragraph, we can easily prove
that these formulas are true for the Lebesgue integrable simple functions. For
the general Lebesgue measurable functions, we prove these formulas by taking
limits from all formulas for the Lebesgue measurable simple functions by virtue
of the definition of the Lebesgue integral. Therefore we omit the details of the
proofs here.

Theorem 3.1.1 Assume that a function f(x) is Lebesgue integrable on E
and F is a measurable subset of E. Then the restriction fF (x) = f(x)|F of
f(x) on F is Lebesgue integrable on F and we have the equality

∫

E

fF (x)dx =

∫

F

f(x)dx.

Namely the function f(x) is Lebesgue integrable on F .

Theorem 3.1.2 Assume that a set E is a Lebesgue measurable set in Rd

and a function f(x) is integrable on E. If E = E1 + E2 is a division of E and
E1 and E2 are Lebesgue measurable, we have the equality

∫

E

f(x)dx =

∫

E1

f(x)dx+

∫

E2

f(x)dx.

Theorem 3.1.3 If a function f(x) is Lebesgue integrable on E, we have
the inequality

|
∫

E

f(x)dx| ≤
∫

E

|f(x)|dx.
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Theorem 3.1.4 Assume that a set E is Lebesgue measurable in Rd and
two functions f(x) and g(x) are Lebesgue integrable on E. Then we have the
following (1) ∼ (4):

(1) f(x) + g(x) is also Lebesgue integrable on E and we have the equality

∫

E

{f(x) + g(x)}dx =

∫

E

f(x)dx+

∫

E

g(x)dx.

(2) For an arbitrary real constant α, αf(x) is also Lebesgue integrable on E
and we have the equality

∫

E

{αf(x)}dx = α

∫

E

f(x)dx.

(3) If f(x) ≥ 0 holds on E, we have the inequality

∫

E

f(x)dx ≥ 0.

(4) If f(x) ≥ g(x) holds on E, we have the inequality

∫

E

f(x)dx ≥
∫

E

g(x)dx.

Corollary 3.1.1 If two functions f(x) and g(x) are Lebesgue integrable
on E, then, for two arbitrary real constants α and β, αf(x) + βg(x) is also
Lebesgue integrable on E and we have the equality

∫

E

{αf(x) + βg(x)} = α

∫

E

f(x)dx+ β

∫

E

g(x)dx.

Theorem 3.1.5 If a function f(x) is Lebesgue integrable on E, we have
the following (1) and (2):

(1) If µ(E) = 0 holds, we have

∫

E

f(x)dx = 0.

(2) We have µ(E(f = ∞)) = µ(E(f = −∞)) = 0.

14

Corollary 3.1.2 Assume that two functions f(x) and g(x) are Lebesgue
measurable on E and f(x) = g(x) holds almost everywhere on E. Then, if f(x)
is Lebesgue integrable on E, g(x) is also Lebesgue integrable on E and we have
the equality ∫

E

f(x)dx =

∫

E

g(x)dx.

By virtue of Corollary 3.1.2, if two Lebesgue integrable functions are equal
almost everywhere on E, we have not to distinguish their Lebesgue integrals.

Theorem 3.1.6 If a function f(x) is Lebesgue integrable on E, E(f ̸= 0)
is equal to a union of at most countable sets with the finite Lebesgue measures.

Theorem 3.1.7(The first mean value theorem) Assume that a set E
is measurable and a function f(x) is a bounded measurable function on E and
g(x) is Lebesgue integrable on E.

Then, if we put
m = inf

x∈E
f(x), M = sup

x∈E
f(x),

we have the following (1) and (2):

(1) f(x)g(x) is Lebesgue integrable on E.

(2) There exists a real constant α with m ≤ α ≤ M such that we have the
equality ∫

E

f(x)|g(x)|dx = α

∫

E

|g(x)|dx.

Corollary 3.1.3 Assume that a function f(x) is continuous on a bounded
closed domain and g(x) is Lebesgue integrable on E and g(x) ≥ 0 holds for
x ∈ E. Then there exists a certain point x0 ∈ E such that we have the equality

∫

E

f(x)g(x)dx = f(x0)

∫

E

g(x)dx.

Theorem 3.1.8 Assume that E is a Lebesgue measurable set of Rd and
a function f(x) is Lebesgue integrable on E. Then, for an arbitrary positive
number ε > 0, there exists a continuous function fε(x) which is identically zero
outside a certain bounded measurable set such that we have the inequalities

��
∫

E

f(x)dx−
∫

E

fε(x)dx
��≤

∫

E

�� f(x)− fε(x)
�� dx < ε.
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Theorem 3.1.4 Assume that a set E is Lebesgue measurable in Rd and
two functions f(x) and g(x) are Lebesgue integrable on E. Then we have the
following (1) ∼ (4):

(1) f(x) + g(x) is also Lebesgue integrable on E and we have the equality

∫

E

{f(x) + g(x)}dx =

∫

E

f(x)dx+

∫

E

g(x)dx.

(2) For an arbitrary real constant α, αf(x) is also Lebesgue integrable on E
and we have the equality

∫

E

{αf(x)}dx = α

∫

E

f(x)dx.

(3) If f(x) ≥ 0 holds on E, we have the inequality

∫

E

f(x)dx ≥ 0.

(4) If f(x) ≥ g(x) holds on E, we have the inequality

∫

E

f(x)dx ≥
∫

E

g(x)dx.

Corollary 3.1.1 If two functions f(x) and g(x) are Lebesgue integrable
on E, then, for two arbitrary real constants α and β, αf(x) + βg(x) is also
Lebesgue integrable on E and we have the equality

∫

E

{αf(x) + βg(x)} = α

∫

E

f(x)dx+ β

∫

E

g(x)dx.

Theorem 3.1.5 If a function f(x) is Lebesgue integrable on E, we have
the following (1) and (2):

(1) If µ(E) = 0 holds, we have

∫

E

f(x)dx = 0.

(2) We have µ(E(f = ∞)) = µ(E(f = −∞)) = 0.
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Corollary 3.1.2 Assume that two functions f(x) and g(x) are Lebesgue
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E
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∫

E
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Theorem 3.1.6 If a function f(x) is Lebesgue integrable on E, E(f ̸= 0)
is equal to a union of at most countable sets with the finite Lebesgue measures.

Theorem 3.1.7(The first mean value theorem) Assume that a set E
is measurable and a function f(x) is a bounded measurable function on E and
g(x) is Lebesgue integrable on E.

Then, if we put
m = inf

x∈E
f(x), M = sup

x∈E
f(x),

we have the following (1) and (2):

(1) f(x)g(x) is Lebesgue integrable on E.

(2) There exists a real constant α with m ≤ α ≤ M such that we have the
equality ∫

E

f(x)|g(x)|dx = α

∫

E

|g(x)|dx.

Corollary 3.1.3 Assume that a function f(x) is continuous on a bounded
closed domain and g(x) is Lebesgue integrable on E and g(x) ≥ 0 holds for
x ∈ E. Then there exists a certain point x0 ∈ E such that we have the equality

∫

E

f(x)g(x)dx = f(x0)

∫

E

g(x)dx.

Theorem 3.1.8 Assume that E is a Lebesgue measurable set of Rd and
a function f(x) is Lebesgue integrable on E. Then, for an arbitrary positive
number ε > 0, there exists a continuous function fε(x) which is identically zero
outside a certain bounded measurable set such that we have the inequalities

��
∫

E

f(x)dx−
∫

E

fε(x)dx
��≤

∫

E

�� f(x)− fε(x)
�� dx < ε.
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Theorem 3.1.9 If a function f(x) is Lebesgue integrable on Rd, then, for
an arbitrary y ∈ Rd, the function f(x+ y) is Lebesgue integrable as a function
of x and the function f(−x) is also Lebesgue integrable as a function of x.
Then we have the equalities

∫

Rd
f(x+ y)dx =

∫

Rd
f(−x)dx =

∫

Rd
f(x)dx.

Theorem 3.1.10 If a function f(x) is Lebesgue integrable onRd, we have
the equality

lim
y→0

∫

Rd

�� f(x+ y)− f(x)
�� dx = 0.

3.2 Lebesgue integral and limit

In this paragraph, we study the relations of the d-dimensional Lebesgue
integral and limit.

Theorem 3.2.1 Assume that E is a Lebesgue measurable set of Rd and
we have the division

E = E1 + E2 + · · ·

by using the sequence {En; n ≥ 1} of mutually disjoint Lebesgue measurable
sets. Then, if a function f(x) is Lebesgue integrable on E, we have the equality

∫

E

f(x)dx =

∫

E1

f(x)dx+

∫

E2

f(x)dx+ · · · .

Further, if a function f(x) is Lebesgue measurable on every set En, (n ≥ 1)
and the condition

∞∑
n=1

∫

En

�� f(x) �� dx < ∞

is satisfied, we also have the equality in the above.

Corollary 3.2.1 Assume that E is a Lebesgue measurable set of Rd and
{En; n ≥ 1} is a monotone increasing sequence of Lebesgue measurable sets
and satisfies the condition

E =
∞∪

n=1

En.
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Then, if a function f(x) is Lebesgue integrable on E, then, for an arbitrary
positive number ε > 0, there exists a certain natural number n0 such that, for
n ≥ n0, we have the estimate

∫

E\En

|f(x)|dx < ε.

Especially, we have the equality

lim
n→∞

∫

En

f(x)dx =

∫

E

f(x)dx.

Remark 3.2.1 When the Lebesgue integral
∫

E

f(x)dx

of a function f(x) converges conditionally, we have the limit in Corollary 3.2.1
for a special choice of the sequence {En} of the Lebesgue integrable sets in
Corollary 3.2.1 in the above.

Corollary 3.2.2 Assume that E is a Lebesgue measurable set of Rd and
a function f(x) is Lebesgue integrable on E. Now, we put

En = E(|f | < n), (n ≥ 1).

Then，for an arbitrary positive number ε > 0, there exists a certain natural
number n0 such that, for n ≥ n0, we have the estimate

∫

E\En

|f(x)|dx < ε.

Especially, we have the equality

lim
n→∞

∫

En

f(x)dx =

∫

E

f(x)dx.

The following Theorem 3.2.2 means the absolute continuity of the indefinite
integral.

Theorem 3.2.2 Assume that E is a Lebesgue measurable set of Rd and
a functions f(x) is Lebesgue integrable on E. Then, for arbitrary positive
number ε > 0, there exists a certain positive number δ > 0 such that we have
the estimate

|
∫

e

f(x)dx| < ε

17
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e
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if we have µ(e) < δ for any Lebesgue measurable subset e ⊂ E.

Theorem 3.2.3(Lebesgue’s bounded convergence theorem) As-
sume that E is a bounded measurable set in Rd. If a sequence {fn(x); n ≥ 1} of
the uniformly bounded Lebesgue measurable functions converges to f(x) almost
everywhere on E, we have the equality

lim
n→∞

∫

E

fn(x)dx =

∫

E

f(x)dx.

Theorem 3.2.4(Lebesgue’s convergence theorem) Assume that E
is a measurable set in Rd. Then assume that a sequence {fn(x); n ≥ 1} of
Lebesgue measurable functions converges to the finite limit f(x) almost every-
where on E. Further, if there exists a Lebesgue integrable function Φ(x), (≥ 0)
on E such that we have the estimates

|fn(x)| ≤ Φ(x), (x ∈ E, n ≥ 1),

we have the equality

lim
n→∞

∫

E

fn(x)dx =

∫

E

f(x)dx.

We obtain the theorem of the termwise integration by virtue of the Lebesgue’s
convergence theorem.

Theorem 3.2.5(Theorem of the termwise convergence) Assume
that E is a Lebesgue measurable set in Rd and {fn(x); n ≥ 1} is a sequence of
the Lebesgue measurable functions on E. Now we put

f(x) = f1(x) + f2(x) + · · · .

Then, if the series in the right hand side of the formula in the above con-
verges almost everywhere on E and there exists a Lebesgue integrable function
Φ(x), (≥ 0) on E such that we have the estimates

��
n∑

p=1

fp(x)
��≤ Φ(x), (x ∈ E)

for an arbitrary n ≥ 1, we can obtain the theorem of the termwise integration.
Namely we have the equality

∫

E

f(x)dx =

∫

E

f1(x)dx+

∫

E

f2(x)dx+ · · · .

Corollary 3.2.3 Assume that E, {fn(x)} and f(x) are the same as in
Theorem 3.2.5. Then we assume that the following condition (i) or (ii) is sat-
isfied:
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(i) There exists a Lebesgue integrable function Φ(x), (≥ 0) on E such that
we have the estimates

n∑
p=1

|fp(x)| ≤ Φ(x), (x ∈ E, n ≥ 1).

(ii) We have the condition

∞∑
p=1

∫

E

|fp(x)|dx < ∞.

Then we have the theorem of the termwise integration.

Theorem 3.2.6(Beppo Levi’s theorem) Assume that E is a Lebesgue
measurable set in Rd and {fn(x); n ≥ 1} is a monotone increasing sequence
of the Lebesgue integrable functions on E. Further, assume that the monotone
increasing sequence { ∫

E

fn(x)dx
}

is bounded above. Then, if we put

lim
n→∞

fn(x) = f(x), (x ∈ E),

the function f(x) has the finite value almost everywhere on E, and it is Lebesgue
integrable on E, and we have the equality

lim
n→∞

∫

E

fn(x)dx =

∫

E

f(x)dx.

Here we give the fact used in the proof of the theorem in the above in the
following Corollary.

Corollary 3.2.4 Assume that E is a Lebesgue measurable set in Rd and
{En; n ≥ 1} is a monotone increasing sequence of Lebesgue measurable sets in
Rd so that we have the equality

E =
∞∪

n=1

En.

Further, if a Lebesgue measurable function on E is Lebesgue integrable on
each En and we have the condition

lim
n→∞

∫

En

|f(x)|dx < ∞,
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if we have µ(e) < δ for any Lebesgue measurable subset e ⊂ E.
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(i) There exists a Lebesgue integrable function Φ(x), (≥ 0) on E such that
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Then we have the theorem of the termwise integration.
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of the Lebesgue integrable functions on E. Further, assume that the monotone
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E
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}

is bounded above. Then, if we put
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integrable on E, and we have the equality

lim
n→∞

∫

E
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Here we give the fact used in the proof of the theorem in the above in the
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Rd so that we have the equality
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n=1

En.
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En
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then f(x) is Lebesgue integrable on E and we have the equality

lim
n→∞

∫

En

f(x)dx =

∫

E

f(x)dx.

Corollary 3.2.5 Assume that E is a Lebesgue measurable set in Rd and
{fn(x); n ≥ 1} is a monotone increasing sequence of the Lebesgue integrable
functions on E. Then, if the limit

lim
n→∞

fn(x) = f(x), (x ∈ E)

has the finite value almost everywhere on E and it is Lebesgue integrable on E,
we have the equality

lim
n→∞

∫

E

fn(x)dx =

∫

E

f(x)dx.

Next we prove the Fatou’s Lemma as the corollary of Beppo Levi’s theorem.
At first, we remark that the Fatou’s Lemma is used many times in the

following form. Assume that we have the equality

lim
n→∞

fn(x) = f(x), (x ∈ E)

for the Lebesgue integrable functions fn(x), (n ≥ 1) on a measurable set E. If
we have the condition

lim
n→∞

∫

E

fn(x)dx < ∞,

then f(x) is also Lebesgue integrable on E and we have the inequality

∫

E

f(x)dx ≤ lim
n→∞

∫

E

fn(x)dx.

Here we prove the Fatou’s Lemma which is fairly more generalized.

Theorem 3.2.7(Fatou’s Lemma) Assume that E is a Lebesgue mea-
surable set in Rd and {fn(x); n ≥ 1} is a sequence of the Lebesgue integrable
nonnegative functions on E such that we have the condition

lim
n→∞

∫

E

fn(x)dx < ∞.

Then the inferior limit
f(x) = lim

n→∞
fn(x)
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is Lebesgue integrable on E and we have the inequality
∫

E

f(x)dx =

∫

E

( lim
n→∞

fn(x))dx ≤ lim
n→∞

∫

E

fn(x)dx.

The following theorem 3.2.8 is the result concerning the differentiation under
the integral symbol.

Theorem 3.2.8 Assume that E is a Lebesgue measurable set in Rd and
(a, b) is an interval in R. Assume that a function f(x, t) is defined on the set

E × (a, b) = {(x, t); x ∈ E, t ∈ (a, b)}

and it satisfies the following conditions (i) ∼ (iii):

(i) For an arbitrary chosen and fixed t ∈ (a, b), f(x, t) is Lebesgue inte-
grable on E.

(ii) For an almost every x ∈ E, f(x, t) is differentiable with respect to t.
Then we denote its partial derivative with respect to t as ft(x, t).

(iii) There exists a Lebesgue integrable function Φ(x), (≥ 0) on E such that
we have the estimate

|ft(x, t)| ≤ Φ(x), (x ∈ E, t ∈ (a, b)).

Then, if we put

F (t) =

∫

E

f(x, t)dx,

F (t) is differentiable on (a, b) and we have the equality

F ′(t) =

∫

E

ft(x, t)dx.

4 Calculation of the d-dimensional Lebesgue in-
tegral

In this section, we study the calculation of the d-dimensional Lebesgue
integral by way of approximating the integral domain by the approximating
direct family of the bounded closed sets.

Assume that the integral domain E is a Lebesgue measurable set in Rd and
the integrand f(x) is Lebesgue measurable on E. Assuming that A is a direct
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then f(x) is Lebesgue integrable on E and we have the equality

lim
n→∞

∫

En

f(x)dx =

∫

E

f(x)dx.
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In this section, we study the calculation of the d-dimensional Lebesgue
integral by way of approximating the integral domain by the approximating
direct family of the bounded closed sets.

Assume that the integral domain E is a Lebesgue measurable set in Rd and
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set, we consider the direct family {Eα; α ∈ A} of the bounded closed sets in
E.

Now, we say that a direct family {Eα} converges to E if, for an arbitrary
bounded closed set K included in E, there exists a certain α0 ∈ A such that,
for an arbitrary α with α ≥ α0, K ⊂ Eα holds. Then the direct family {Eα}
is said to be an approximating direct family.

Especially, if, for A = {1, 2, 3, · · · }, E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ · · · holds, the
sequence {En} converges to E monotonely. In general, when a sequence
{En} converges to E, the sequence {Hn} converges to E monotonely for Hn =
E1 ∪ E2 ∪ · · · ∪ En, (n ≥ 1).

Assume that the set E(∞) of all singular points of f(x) has the measure 0.
Then E\E(∞) is also a Lebesgue measurable set.

Further, assume that f(x) is Lebesgue integrable on an arbitrary bounded
closed set included in E\E(∞). In order to be so, any bounded closed set
included in E\E(∞) and the set E(∞) of all singular points of f(x) do not
contact. Namely these sets has a positive distance away from each other. This
is the reason why we construct an approximating direct family {Eα, α ∈ A}
by using the bounded closed sets Eα.

Now assume that a direct family {Eα} of the bounded closed sets which
converges to E\E(∞) is the approximating direct family of E\E(∞).

Then, if, for an approximating direct family {Eα} of E\E(∞),

I(Eα) =

∫

Eα

f(x)dx

converges in the sense of Moore-Smith limit, the limit

I = lim
α

I(Eα)

is equal to the Lebesgue integral of f(x) on E

I =

∫

E

f(x)dx.

Here we say that this Lebesgue integral converges absolutely if the value
I of this Lebesgue integral does not depend on the choice of the approximating
direct family {Eα} of E\E(∞).

Further we say that this Lebesgue integral converges conditionally if
the value I depends on the choice of the approximating direct family {Eα} of
E\E(∞).

Then we say that the Lebesgue integral exists if the Lebesgue integral
converges absolutely or conditionally. We say that f(x) is integrable if the
Lebesgue integral of f(x) converges absolutely.

We say that the Lebesgue integral diverges if the Lebesgue integral does
not exist.
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A function f(x) is Lebesgue integrable on E if and only if |f(x)| is Lebesgue
integrable on E.

By the consideration in the above, so to say, the improper Lebesgue integral
is cleared to be the calculation of the Lebesgue integral by approximating the
integral domain using the approximating direct family of the bounded closed
sets. Until now, we considered that the Lebesgue integral is the integral which
converges absolutely. We have said this as the Lebesgue integral in the narrow
sense. On the other hand, we have said that this is the improper Lebesgue in-
tegral if the Lebesgue integral converges including the case where the Lebesgue
integral converges conditionally.

In this paper, we remark that the Lebesgue integral defined in section 2 is
the unified definition of the Lebesgue integral including the Lebesgue integral
in the narrow sense and the improper Lebesgue integral.

Remark 4.1 Assume that E is a measurable set in Rd and f(x) is an
extended real-valued measurable function defined on E.

Then there exist a direct family {f∆(x)} of the simple functions which
converges to f(x) on E\E(∞) in the sense of pointwise convergence and an
approximating direct family {Eα} of E\E(∞) composed of the bounded closed
subsets. Thereby we have the limits (I), (II) in the sense of Moore-Smith
convergence as follows:

(I)

∫

E

f(x)dx = lim
∆

∫

E

f∆(x)dx.

(II)

∫

E

f(x)dx = lim
α

∫

Eα

f(x)dx.

In the case (I), we remark that we may use the sequence {fn(x)} of the
simple functions which converges to f(x) on E\E(∞) in the sense of pointwise
convergence.

Then the convergence or the divergence of the Lebesgue integrals in (I) and
(II) are equivalent.

Further, in the case of convergence, the absolute convergence or the condi-
tional convergence of the Lebesgue integrals in (I) and (II) are equivalent.

The Lebesgue integral in (I) is calculated by using the approximation of the
function f(x) by the direct family of the simple functions. The Lebesgue inte-
gral in (II) is calculated by using the approximating direct family of E\E(∞)
composed of the bounded closed subsets.

Thus, in order to calculate the Lebesgue integral, there exists the either
one of the methods of calculations such as the calculation by using the approx-
imation of the function or the calculation by using the approximation of the
integral domain.

Then we have the following relation in the table 4.1 concerning the conver-
gence or the divergence of the Lebesgue integral of f(x).
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Table 4.1 Convergence and divergence
of the Lebesgue integral




conv.=convergence, div.=divergence,

abs.conv.=absolute convergence,

cond.conv.=conditional convergence.




∫

E

f(x)dx

∫

E

|f(x)|dx
∫

E

f+(x)dx

∫

E

f−(x)dx

abs.conv. conv. conv. conv.

div. div. conv. div.

div. div. div. conv.

cond.conv. or div. div. div. div.

Remark 4.2 In the case where the Lebesgue integral converges absolutely
in Table 4.1, the value of this Lebesgue integral is determined independently
to the choice of the approximating direct family {Eα; α ∈ A} of E.

Only in this case of the absolute convergence, the Lebesgue integral has a
determined meaning.

In Table 4.1, the cases where the Lebesgue integral

∫

E

f(x)dx diverges to

±∞ are the following cases (1) and (2):

(1)

∫

E

f+(x)dx < ∞,

∫

E

f−(x)dx = ∞.

(2)

∫

E

f+(x)dx = ∞,

∫

E

f−(x)dx < ∞.

In these cases, the Lebesgue integrals do not exist.
Nevertheless, in this case, the set function m(A) on ME is defined by the

formula

m(A) =

∫

A

f(x)dx

for a Lebesgue measurable set A in E.
Here ME is the family of all Lebesgue measurable sets in E. Thereby

the Lebesgue-Stieltjes measure space (E, ME , m) on E is defined. In the
case (1), the total measure is equal to m(E) = −∞, and in the case (2), the
total measure is equal to m(E) = ∞. This measure space has the determined
meaning as a σ-finite measure space
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Then the Lebesgue integral of f(x) on E itself does not exist. But the
indefinite integral of f(x) on a Lebesgue measurable set A in E is defined by
the formula

m(A) =

∫

A

f(x)dx

and its value is determined as a finite real value or −∞ or ∞. On the other
hand, in the case where the Lebesgue integral converges conditionally or di-
verges in Table 4.1, the Lebesgue integral converges or diverges according to
the choice of the approximating direct family {Eα; α ∈ A} of E.

Then, in the case where the Lebesgue integral diverges, we cannot give any
meaning to this integral.

Nevertheless, in the case where the Lebesgue integral converges condition-
ally, we can define its value as the value which is meaningful mathematically.

But, in this case, it is hard to make the general theory and we have to
design a way to give its meaning according to each function with the singular
points.

Theorem 4.1 Assume that E is a measurable set in Rd and a func-
tion f(x) is an extended real-valued measurable function which is nonnegative.
Then, if, for an approximating direct family {Eα} of E\E(∞) composed of the
bounded closed sets, there exists a Moore-Smith limit

lim
α

I(Eα) = lim
α

∫

Eα

f(x)dx,

the Lebesgue integral of f(x) on E converges absolutely.

Theorem 4.2 Assume that E and f(x) are as same as in Theorem 4.1.

Then the Lebesgue integral

∫

E

f(x)dx converges if and only if, for every bounded

closed set H in E\E(∞),

I(H) =

∫

H

f(x)dx

is bounded.

Theorem 4.3 Assume that E is a bounded measurable set in Rd and
a function f(x) is Lebesgue integrable on E. Further assume that f(x) ≥ 0
holds. Assume that a sequence {En} of the measurable subsets of E satisfies
the following conditions (i) and (ii):

(i) f(x) is integrable on En, (n ≥ 1).

(ii) µ(E\En) → 0, (n → ∞) holds.
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Then we have the equality

lim
n→∞

∫

En

f(x)dx =

∫

E

f(x)dx.

Remark 4.3 If there does not exist the integral of a function f(x) on E

in Theorem 4.3, we have

∫

E

f(x)dx = ∞. Then, if the other conditions are

the same as in the Theorem, we have the equality

lim
n→∞

∫

En

f(x)dx = ∞ =

∫

E

f(x)dx.

Remark 4.4 Assume that a subset E of Rd is Jordan measurable or
Lebesgue measurable and a function f(x) on E is Jordan measurable or Lebesgue
measurable. Now we classify these functions in the following four classes:

(R) The set of all Riemann integrable functions.

(ER) The set of all functions whose Riemann integrals exist.

(L) The set of all Lebesgue integrable functions.

(EL) The set of all functions whose Lebesgue integrals exist.

Then we have the following inclusion relations

(R) ⊂ (ER) ∩ (L) ⊂ (L) ⊂ (ER) ∪ (L) ⊂ (EL).
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Abstract

We study on the Cauchy problem for non-degenerate Kirchhoff
type dissipative wave equations ρu′′ + a

(
∥A1/2u(t)∥2

)
Au+ u′ = 0

and (u(0), u′(0)) = (u0, u1), where u0 ̸= 0 and the nonlocal nonlin-
ear term a(M) = 1+Mγ with γ > 0. Under the suitably smallness
condition, we derive the upper decay estimates of the solution u(t)
for the case of 0 < γ < 1 in addition to γ ≥ 1.

2010 Mathematics Subject Classification. 35B40, 35L15

1 Introduction

Let H be a real Hilbert space with inner product (·, ·) and norm ∥ · ∥.
In this paper we investigate on the upper decay estimates of the solution

u(t) for the non-degenerate Kirchhoff type dissipative wave equations :

{
ρu′′ + a

(
∥A1/2u(t)∥2

)
Au+ u′ = 0 , t ≥ 0

(u(0), u′(0)) = (u0, u1) ∈ D(A)×D(A1/2) ,
(1.1)

where u = u(t) is an unknown real value function, ρ is a positive constant,
′ = d/dt, A is a linear operator on H with dense domain D(A).

We assume that the operator A is self-adjoint and nonnegative such that
(Av, v) ≥ 0 for v ∈ D(A). The α-th power of A with dense domain D(Aα) is
denoted by Aα for α > 0, and the graph-norm of Aα is denoted by ∥v∥α =(
∥v∥2 + ∥Aαv∥2

) 1
2 for v ∈ D(Aα). We use that ∥A1/2v∥2 = (Av, v) for v ∈

D(A1/2).
For the non-local nonlinear term a(M) ∈ C0([0,∞)) ∩ C2((0,∞)), we as-

sume that as follows :
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