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Abstract

We consider the Cauchy problem for non-degenerate Kirchhoff
type dissipative wave equations pu” + a (|| AY?u(t)||?) Au+u' =0
and (u(0),4(0)) = (ug,u1), where ug # 0. We derive the lower
decay estimate ||u(t)||> > Ce™Pt for t > 0 with 8 > 0 for the
solution u(t).

2010 Mathematics Subject Classification. 35B40, 35115

1 Introduction

Let H be a real Hilbert space with inner product (-,-) and norm || - ||. Let
A be a linear operator on H with dense domain D(A). We assume that the
operator A is self-adjoint and nonnegative such that (Av,v) > 0 for v € D(A).
The a-th power of A with dense domain D(A®) is denoted by A® for a > 0, and

the graph-norm of A* is denoted by [[v]la = (||v|* + ||AQUH2)% for v € D(A®).
We use that [|A'/?v]|? = (Av,v) for v € D(AY?).

We study on the Cauchy problem for the non-degenerate Kirchhoff type
dissipative wave equations :

" 1/2 2 I >
{pu +a(HA u(t)||)Au+u 0, t>0 (L1)

(u(0),/(0)) = (uo, u1) € D(A) x D(A?),
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where u = wu(t) is an unknown real value function, ' = d/dt, and p is a positive
constant.

For the non-local nonlinear term a(M) € C°([0,00)) N C((0,00)), we as-
sume that as follows :
Hyp.l K;<a(M)<Ky;+ KzM?" forM >0
Hyp.2 0<d(M)M < Kya(M) for M >0
with v >0 and K; >0 (j =1,2,3,4).

From Hyp.1, we see that

M
K
KM g/ a(p) du < (K2 + =2 M”) M. (1.2)
0 7+1

For typical examples, we have that
a(M)=14+M", (14+ M), log(2+ M").

In the case of one dimension, (1.1) describes small amplitude vibrations of
an elastic string (see [3], [4], [6]).

We obtain the following global existence theorem (see Theorem 4.1 and
Proposition 5.1).

Theorem 1.1 Suppose that Hyp.1 and Hyp.2 are fulfilled. If the initial data
(uo,u1) belong to D(A) x D(AY?) and satisfy ug # 0, and moreover, the coef-
ficient p and the initial data (ug,u1) satisfy the smallness condition (4.1), then
the problem (1.1) admits a unique global solution u(t) in the class

([0, 00); D(A)) N C([0, 00); D(A?)) N C3([0, 00); H) .
Moreover, the solution u(t) satisfies
|AY2u(t)||?> > Ce™™t  for t>0 (1.3)
with some a > 0.

In previous paper [10], we have derived the upper decay estimates of the
solution u(t) of (1.1) in the case of a(M) = (1 + M)” with v > 0 and A =
—A=-Y" 8?/0x? with domain D(A) = H2(RV) :

AV 2u@)|? < C(1+8) 71, [ @) + [ Au®)|> < C(1+1)72,
IAY2d/ @)1 + |l (@) < C(L+6)> for 20

(see [5], [8] for a(M) =1+ M” with v > 1, that is, a(-) € C*([0,0))).
On the other hand, Ghisi and Gobbino [5] have derived the lower decay
estimate (1.3) for (1.1) (see [9] for bounded domains).
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The purpose of this paper is to derive the lower decay estimate for ||u(t)|*.

For the non-local nonlinear term a(M) € C([0,00))NC?((0, 0)), we assume
that as follows :

Hyp.3 |a"(M)|M? < Ksa(M) for M >0
with K5 > 0.

We obtain the following lower decay estimate of the solution u(t) of (1.1)
(see Theorem 5.4). Our main result is as follows.

Theorem 1.2 Suppose that the assumption of Theorem 1.1 and Hyp.3 are
fulfilled. Then, the solution u(t) satisfies

u(t)|? > Ce Pt for t>0 (1.4)
with some B > 0.

The notations we use in this paper are standard. Positive constants will be
denoted by C and will change from line to line.

2 Local Existence and Energy

We have the following local existence theorem by standard arguments (see
[1], [2], [7], [11] and the references cited therein).

Proposition 2.1 Suppose that Hyp.1 and Hyp.2 are satisfied. If the initial
data (ug,u1) belong to D(A) x D(AY?), then the problem (1.1) admits a unique
local solution u(t) in the class C°([0,T); D(A))NCL([0,T); D(AY?))NC?([0,T);
H) for some T = T(||uol|2, [ui|l1) > 0.

Moreover, ||u(t)||2 + ||v/'(t)||1 < oo fort >0, then we can take T = co.

In what follows, let u(t) be a solution of (1.1) under the assumption of
Proposition 2.1.
We set that

M(t) = || A 2u(t)|? (2.1)

and

M(t)
B(t) = pll (0] + / a(p) du (2.2)

for simplicity of the notations.
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Proposition 2.2 Under the assumption of Proposition 2.1, the solution u(t)
of (1.1) satisfies that

B() +2/ I/ (s)||2ds = E(0), (2.3)
0
M(t) < K;'E(0), (2.4)
a(M(1) < Ko + Ko(KT EQ©) (2 1(0)), (25)
lu)* < 6(lluoll* + pE(0)) - (2.6)
fort > 0.
Proof. Taking the inner product of (1.1) with 2u/(¢), we have
d , B
T E® + 2 @) =0, (2.7)

and integrating (2.7) in time ¢, we obtain (2.3).
Moreover, it follows from (5.1) and (2.2) that

K1M(t) < E(t) < E(0),
and from Hyp.2 that
a(M(t)) < Ko + KsM(t)Y < I1(0).
Taking the inner product of (1.1) with u(t¢), we have

Ld

5 O + aar ) = p (WO - Gw'e.u)

and we observe from the Young inequality that
t
a1 +2 [ a(d(s)M(s)ds
0
t
1
< Jluoll* + 2p/0 Il ()17 ds + Jluoll* + pllw |I* + 5 ()N + 20 | (£)||?
and hence
1 t
Sl +2 [ a((s)(5)ds
0

t
< 2ol + » (p||u1|2 20l ()] + 2 / ||u/<s>||2ds>
< 2uoll? + 3pE(0)

which implies the desired estimate (2.6). O
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3 Several Estimates

In order to obtain a-priori estimates of the solution u(t), we assume that

|M'(t)] 1
p <
M(t) ~ Ki+1

(3.1)

where M (t) is defined by (5.1).

Proposition 3.1 Under the assumption (3.1), the solution u(t) satisfies

[ Au(t)]?
M) < G(t) < G(0), (3:2)
where
e e
o) = 1500 + a0, (33
_ ARG @) P AV Pu() P — (AP (), A Pu())[?

Proof. 'We have from (1.1) that

4 JlAu®?
dt  M(t)
- W (2(a(M (1)) Au, Au) M (t) — (a(M(t)) Au, Au)M'(t))
= T (U4 + (A2 A ()
= (IO + p (1420 @2 = 3007(1)) M'(1)))
= —2Q(t) + pR(1)

where we set

. B 2(A1/2u”,A1/2u’)M(t) 4 (||A1/2u/(t)H2 _ %M//(t)) M/(t)
"= (V) 3T(1)? |
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Since we observe

Lau)
& (M) M (M) + 2a(M () MOM (1)
DM

)~

< (a2 2ar0 - L 0F)

2(A1/2UII7A1/2,MI) ( )_|_ ||A1/2u/||2M/(t) _ %M’(t)M"(t)
a(M(t))M(t)?

_ M) a"(M@)M() +2a(M () (| 417202 ERITY TN

i e O (A (o) - MO ) + Rio

M

M) [, G MM
-3t (2 oy ) @0+ RO

we have

d (@)l
o (Ml sam)

ra (1 2 (o SOMONOYY o,

Moreover, we observe

pMI(t) () a(M()M()
1+ 53 <2 4 CM@)M(E)

and Q(t) > 0, we have

o0 =5 (5 1o ) <o

which implies the desired estimate (3.2). O

Proposition 3.2 Under the assumption (3.1), the solution u(t) satisfies

u/ 2
”M% < B(0), (3.5)

where

2 K 1
B(0) = max{ la 4t

O I(O)2G(0)}. (3.6)
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Proof. Taking the inner product of (1.1) with 2u/(t)/M (t), we have

d [lv' @) M)\ [l O] _ M'(t)
i (e ) U = MO 3 37
< 2o A0
o [Au@®)]® | ' (@)1

where we used the Young inequality.

Since

Ve 2 ey and enop Rl <102600),

we have

d [lu' @) Ky |lu'(1)]? 2
dt M(t)  Kyi+1 M(t) < 106

and hence, we obtain (3.6). O

Remark. 1If the nonnegative function f(t) satisfies
f)+aft)<b, t>0

with positive constants a and b, then

f(t) <max{f(0), b/a}, =0,

Indeed, taking

g(t) = max{f(0), b/a}y, t=0,

we see that —ag(t) + b < 0 and ¢'(t) = 0, and hence,
g'(t) +ag(t) >b and f(0) < g(0).

Thus, by the comparison principle, we conclude.
4 Global Existence

Theorem 4.1 Suppose that Hyp.1 and Hyp.2 are fulfilled. If the initial data
(ug,uy) belong to D(A) x D(AY?) are satisfies ug # 0 and

1

20G(0) BO)F < o

(4.1)
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then the problem (1.1) admits a unique global solution u(t) in the class
C?([0,00);D(A)) N C*([0, 00); D(A2)) N C*([0,00); H)

and the solution u(t) satisfies

[u(®)[|* < 6([[uoll* + pE(0)), (4.2)
E(t) < E0), a(M(t)) <1(0),

[M'(t)] 1

M (t) = Ky+17 (44)
[ Au(t)|® o' (1)]1?
M) < G(0), M) < B(0). (4.5)

Proof.  Let u(t) be a solution on [0, T]. Since we observe from (3.2), (3.5), and
(4.1) that

|M'(0)] lutll || Auoll
M) =% M0)F M(0)E

1
K4+17

B(0)2G(0) <

putting
M) 1
M(S) K4 + 1
we see that Ty > 0. If T7 < T, we have
| M (1)) 1 | M (1Y) 1
for 0<t<T;, and = .
P T K+ =t=h PM(T) T Ki+1

Again, from (3.2), (3.5), and (4.1) it follows that

T = sup{t € [0,00) | p for 0<s<t},

|M'(t)] v @)l [[Au)|l 1 1
M(D) SQpM(t)% M(t)? < 20B0)26(0) < 77

for 0 <t < T, and hence, we obtain 77 > T, and we see that the solution w(t)
satisfies the estimates (2.3)—(2.6), (3.2), and (3.5), which implies (4.2)—(4.5).
Taking the inner product of (1.1) with 2Au'(t)/a(M (t)), we have

1/2u/ 2
£ (M )

2 (1+ p o (M(1)M (1) M'(t)) AR

2 a(M(@) M) a(M(t)
Since
pa'(M(t)M(t) M'(t) Ky [M'(2)|
) M@ =1 2 P
Ky 1
>1- =t

>0
2 Ky+1— 7
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we have

d [ A2 ()] 2
(AL paaio ) <o,

and hence,
|2 0 + | Au(t)]? <C for 0<t<T.

Thus, we observe that ||u(t)||2 + ||/ (t)]l1 < C, and by the second statement
of Proposition 2.1, we conclude that the problem (1.1) admits a unique global
solution. O

5 Lower Decay Estimates

Proposition 5.1 Under the assumption of Theorem 4.1, it holds that
M(t)>Ce ™ for t>0 (5.1)

with some a > 0.

Proof. Taking the inner product of (1.1) with 2u/(t)/M ()%, we have

. (p||U’(t)||2 a(M(t))) o <1+pM’(t)> OIE

M@ M@ M) ) M)
_ —2a(M (1) + o/ (M(E)M(t) M'(1)
M) M)
(M) M(1) _ a(M(1))
SCTMEw) Mo =M

with some a > 0, where we used Hyp.2 and (4.4).
Since 1 + pM'(t)/M(t) > 0, we have

d (WO | ad() L @I | a(M(0)
dt(”M(t)? Y0 >§a<” GE >

and hence, we obtain

[ @I a(M(®))
PawE T M S

where we used the assumption that a(M(t)) > K; > 0. O

Proposition 5.2 Under the assumption of Theorem 4.1, it holds that

1AM (1))

M) <C for t>0. (5.2)
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Proof. Taking the inner product of (1.1) with (2A4u/(t) + p~ L Au(t))/M(t), we

have
HAI/2 ‘@)1 u [Au(®)]> | (Au(t),u'(1))
i (" e e+ )
)\ A2 @) | a(M(#)) [|[Au@)|* | 1[M'()[?
+(1+ohme ) S 2 e
i () AP 1 M)
—— (atar(o) + aarnre) i el - LSO s
Moreover, taking (5.3) + (3.7) x p~'K; !, we have
dn M'(t) \AW ' ||2 M(t)) [[Au(t)|* 1M1
al (1+pM(t) b M@) 2 M2
< M'(t)\ [Ju '( ||2
M(t)
where

_ (Au(t), v/ (1))
F(t)=H(t) + MG

AV (@) [Au@®)[> | 1 W)
= M) e T R
M'(t) |[Au@)]* 1 M'(2)
M) M) 2p M)

(=0),

R(t) = = (a(M(t)) + a'(M(t)) M(t))

a(M(t)) M'(t)
pK1  M(t)

Since we observe from the Young inequality and Hyp.1 that

[(Au(t),w'(t))] <ﬁllz4U(t)||2Jr Ll ()]
M@E) "2 M) 2K, M(t)

a(M@®)) |[Au@®)[> 1 [u'@®)]?
ST M@ T M@

and from (4.4) that

M) K.
Yo 2k 0
and from (4.3)—(4.5) that
R <Ol ¢

=T =
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we have

d

th( )+ vF(t) < C

with some v > 0, and hence,
F(it)<C or H(t)<C
which implies the desired estimate (5.2). O

Proposition 5.3 Under the assumption of Theorem 4.1 and Hyp.3, it holds
that

[ (2)]2
M ¢

for t>0. (5.4)

Proof. Taking the inner product of (1.1) with (2u”(t) + p~*/(t))/M(t), we
have
A2/ @) | o' (M()M(t) | M (1)

d [ |lu"(@)]?
dt(p e M) e > M(0)?
(t)

WO AR 0) (t nw<w
o My T M ) ( > M(t

a(M()) [AV2/ (D] | o (M(£)M(t) M ()]
M M@ 2 M@

M'(t) | AY 2! (8)]2
M(t)  M(t)

(5.5)

= (—a(M(t)) + 3a’(M (1)) M (1))

’ 3
+ % (—a’(M(t))M(t) + a" (M(t))M(t)?) (M (t)>

M(?)
M) (1 WO | @), (1)
_Aﬂﬂ<% M) M) )'

)

Moreover, taking (5.5)+(3.7), we have

d M@ @I | aI(0) 4" @)
o0+ ( )

M@ M@

o/ (M) M(1) | M (1) OO
2 M@?*@* M@) iy oW

+
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3 ()12 AV2W(@)[)2 d/ (M(t)M(t) |M'(1)]?

o :p”M((%” +a(M(t))|| M(tgm Ll (252)) (t)|M((;))2|
1 ' (1)1
+<2p +P> M(t)

M'(1) [ A2 (1))

S(t) = (—a(M(t)) + 3a'(M(t)) M(t)) M) MQ)

, 3
+ 5 (o Qr)M) + o aro)r0?) (570 )

M)
M) (1 @I | W), () M)
" M) (2,0 M@ M) )‘“(M“”M<t>'

Since we observe from the Young inequality that

(W’ @), w' @) _ pllu"@ | 1 v @]
M@ S 2 M@) 20 M@)

and from (4.4) that

1+pﬂz\44/((tt)) 2 Kfil (>0)
and from (4.3)-(4.5), (5.2) that
Ky Ju' @)

|5 (®)] SC+2(K4+1) M(t)

we have

d
ZG(H) +vG(H) < C

with some v > 0, and hence,
Gt)<0 or K(t)<0
which implies the desired estimate (5.4). O

Theorem 5.4 Suppose that the assumption of Theorem 4.1 and Hyp.3 are
fulfilled. Then, the solution u(t) satisfies

u(t)||> > Ce P for t>0 (5.6)

with some B> a > 0.
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Proof.  Using (1.1), we observe that

T = T AU O] - 2M(@)ute). (1)
_ -2 u - M(t) w u//
= e (Pl gge20)
(1)

- ||u<t>||2“‘”"“““)))

and

(Ault) = Tugizult) Au(t) = [4u(t) =

Thus, we have

d M) 2a(M(t)) M)

@l * Tl 4O Ty Ol
= oAl e ehe
<yl - “”|||u<(>)|||
< Qo140 T OF + 5 e
and moreover, by a(M(t)) > K; > 0,
F T S CHni/((t?H; = T < P

with some v > 0, where we used (5.4). Therefore, we obtain

M(t)

S Ceut
[[u(®)]]?

and hence

u(t)||? > Ce ™ M(t) > Ce Vet = Ce™ Pt
with some 8 > a > 0, where we used (5.1). O
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