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(r ≥ 0, 0 ≤ θ1, θ2, · · · , θd−2 ≤ π, 0 ≤ θd−1 < 2π)

from r1θ1 · · · θd−1-space to x1x2 · · ·xd-space. Then assume that E′ is a measur-
able subset of rθ1 · · · θd−1-space and put Φ(E′) = E. Then, if a function f(x)
is integrable on E, we have the following formula of the change of variables

∫

E

f(x1, x2, · · · , xd)dx1dx2 · · · dxd

=

∫

E′
f(r cos θ1, r sin θ1 cos θ2, · · · ,

r sin θ1 sin θ2 · · · sin θd−2 cos θd−1, r sin θ1 sin θ2 · · ·
sin θd−2 sin θd−1)r

d−1(sin θ1)
d−2(sin θ2)

d−3 · · ·
sin θd−2drdθ1dθ2 · · · dθd−2dθd−1.
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Abstract

We consider the Cauchy problem for non-degenerate Kirchhoff
type dissipative wave equations ρu′′ + a

(
∥A1/2u(t)∥2

)
Au+ u′ = 0

and (u(0), u′(0)) = (u0, u1), where u0 ̸= 0. We derive the lower
decay estimate ∥u(t)∥2 ≥ Ce−βt for t ≥ 0 with β > 0 for the
solution u(t).

2010 Mathematics Subject Classification. 35B40, 35L15

1 Introduction

Let H be a real Hilbert space with inner product (·, ·) and norm ∥ · ∥. Let
A be a linear operator on H with dense domain D(A). We assume that the
operator A is self-adjoint and nonnegative such that (Av, v) ≥ 0 for v ∈ D(A).
The α-th power of A with dense domain D(Aα) is denoted by Aα for α > 0, and

the graph-norm of Aα is denoted by ∥v∥α =
(
∥v∥2 + ∥Aαv∥2

) 1
2 for v ∈ D(Aα).

We use that ∥A1/2v∥2 = (Av, v) for v ∈ D(A1/2).
We study on the Cauchy problem for the non-degenerate Kirchhoff type

dissipative wave equations :

{
ρu′′ + a

(
∥A1/2u(t)∥2

)
Au+ u′ = 0 , t ≥ 0

(u(0), u′(0)) = (u0, u1) ∈ D(A)×D(A1/2) ,
(1.1)
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where u = u(t) is an unknown real value function, ′ = d/dt, and ρ is a positive
constant.

For the non-local nonlinear term a(M) ∈ C0([0,∞)) ∩ C1((0,∞)), we as-
sume that as follows :

Hyp.1 K1 ≤ a(M) ≤ K2 +K3M
γ for M ≥ 0

Hyp.2 0 ≤ a′(M)M ≤ K4a(M) for M > 0

with γ > 0 and Kj > 0 (j = 1, 2, 3, 4).

From Hyp.1, we see that

K1M ≤
∫ M

0

a(µ) dµ ≤
(
K2 +

K3

γ + 1
Mγ

)
M . (1.2)

For typical examples, we have that

a(M) = 1 +Mγ , (1 +M)γ , log(2 +Mγ) .

In the case of one dimension, (1.1) describes small amplitude vibrations of
an elastic string (see [3], [4], [6]).

We obtain the following global existence theorem (see Theorem 4.1 and
Proposition 5.1).

Theorem 1.1 Suppose that Hyp.1 and Hyp.2 are fulfilled. If the initial data
(u0, u1) belong to D(A)×D(A1/2) and satisfy u0 ̸= 0, and moreover, the coef-
ficient ρ and the initial data (u0, u1) satisfy the smallness condition (4.1), then
the problem (1.1) admits a unique global solution u(t) in the class

C0([0,∞);D(A)) ∩ C1([0,∞);D(A1/2)) ∩ C2([0,∞);H) .

Moreover, the solution u(t) satisfies

∥A1/2u(t)∥2 ≥ Ce−αt for t ≥ 0 (1.3)

with some α > 0.

In previous paper [10], we have derived the upper decay estimates of the
solution u(t) of (1.1) in the case of a(M) = (1 + M)γ with γ > 0 and A =

−∆ = −
∑N

j=1 ∂
2/∂x2

j with domain D(A) = H2(RN ) :

∥A1/2u(t)∥2 ≤ C(1 + t)−1 , ∥u′(t)∥2 + ∥Au(t)∥2 ≤ C(1 + t)−2 ,

∥A1/2u′(t)∥2 + ∥u′′(t)∥2 ≤ C(1 + t)−3 for t ≥ 0

(see [5], [8] for a(M) = 1 +Mγ with γ ≥ 1, that is, a(·) ∈ C1([0,∞))).
On the other hand, Ghisi and Gobbino [5] have derived the lower decay

estimate (1.3) for (1.1) (see [9] for bounded domains).

2

The purpose of this paper is to derive the lower decay estimate for ∥u(t)∥2.
For the non-local nonlinear term a(M) ∈ C([0,∞))∩C2((0,∞)), we assume

that as follows :

Hyp.3 |a′′(M)|M2 ≤ K5a(M) for M > 0

with K5 > 0.

We obtain the following lower decay estimate of the solution u(t) of (1.1)
(see Theorem 5.4). Our main result is as follows.

Theorem 1.2 Suppose that the assumption of Theorem 1.1 and Hyp.3 are
fulfilled. Then, the solution u(t) satisfies

∥u(t)∥2 ≥ Ce−βt for t ≥ 0 (1.4)

with some β > 0.

The notations we use in this paper are standard. Positive constants will be
denoted by C and will change from line to line.

2 Local Existence and Energy

We have the following local existence theorem by standard arguments (see
[1], [2], [7], [11] and the references cited therein).

Proposition 2.1 Suppose that Hyp.1 and Hyp.2 are satisfied. If the initial
data (u0, u1) belong to D(A)×D(A1/2), then the problem (1.1) admits a unique
local solution u(t) in the class C0([0, T );D(A))∩C1([0, T );D(A1/2))∩C2([0, T );
H) for some T = T (∥u0∥2, ∥u1∥1) > 0.

Moreover, ∥u(t)∥2 + ∥u′(t)∥1 < ∞ for t ≥ 0, then we can take T = ∞.

In what follows, let u(t) be a solution of (1.1) under the assumption of
Proposition 2.1.

We set that

M(t) = ∥A1/2u(t)∥2 (2.1)

and

E(t) = ρ∥u′(t)∥2 +
∫ M(t)

0

a(µ) dµ (2.2)

for simplicity of the notations.
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Proposition 2.2 Under the assumption of Proposition 2.1, the solution u(t)
of (1.1) satisfies that

E(t) + 2

∫ t

0

∥u′(s)∥2ds = E(0) , (2.3)

M(t) ≤ K−1
1 E(0) , (2.4)

a(M(t)) ≤ K2 +K3(K
−1
1 E(0))γ (≡ I(0) ) , (2.5)

∥u(t)∥2 ≤ 6(∥u0∥2 + ρE(0)) . (2.6)

for t ≥ 0.

Proof. Taking the inner product of (1.1) with 2u′(t), we have

d

dt
E(t) + 2∥u′(t)∥2 = 0 , (2.7)

and integrating (2.7) in time t, we obtain (2.3).
Moreover, it follows from (5.1) and (2.2) that

K1M(t) ≤ E(t) ≤ E(0) ,

and from Hyp.2 that

a(M(t)) ≤ K2 +K3M(t)γ ≤ I(0) .

Taking the inner product of (1.1) with u(t), we have

1

2

d

dt
∥u(t)∥2 + a(M(t))M(t) = ρ

(
∥u′(t)∥2 − d

dt
(u′(t), u(t))

)
,

and we observe from the Young inequality that

∥u(t)∥2 + 2

∫ t

0

a(M(s))M(s) ds

≤ ∥u0∥2 + 2ρ

∫ t

0

∥u′(s)∥2ds+ ∥u0∥2 + ρ∥u1∥2 +
1

2
∥u(t)∥2 + 2ρ2∥u′(t)∥2

and hence

1

2
∥u(t)∥2 + 2

∫ t

0

a(M(s))M(s) ds

≤ 2∥u0∥2 + ρ

(
ρ∥u1∥2 + 2ρ∥u′(t)∥2 + 2

∫ t

0

∥u′(s)∥2ds
)

≤ 2∥u0∥2 + 3ρE(0)

which implies the desired estimate (2.6). □

4

3 Several Estimates

In order to obtain a-priori estimates of the solution u(t), we assume that

ρ
|M ′(t)|
M(t)

≤ 1

K4 + 1
(3.1)

where M(t) is defined by (5.1).

Proposition 3.1 Under the assumption (3.1), the solution u(t) satisfies

∥Au(t)∥2

M(t)
≤ G(t) ≤ G(0) , (3.2)

where

G(t) =
∥Au(t)∥2

M(t)
+ ρQ(t) , (3.3)

Q(t) =
∥A1/2u′(t)∥2∥A1/2u(t)∥2 − |(A1/2u′(t), A1/2u(t))|2

a(M(t))M(t)2
(≥ 0 ) . (3.4)

Proof. We have from (1.1) that

d

dt

∥Au(t)∥2

M(t)

=
1

a(M(t))M(t)2
(2(a(M(t))Au,Au′)M(t)− (a(M(t))Au,Au)M ′(t))

=
1

a(M(t))M(t)2

(
2(∥A1/2u′∥2 + ρ(A1/2u′′, A1/2u′))M(t)

−
(

1
2 |M

′(t)|2 + ρ
(
∥A1/2u′(t)∥2 − 1

2M
′′(t)

)
M ′(t)

))

= −2Q(t) + ρR(t)

where we set

R(t) =
2(A1/2u′′, A1/2u′)M(t) +

(
∥A1/2u′(t)∥2 − 1

2M
′′(t)

)
M ′(t)

a(M(t))M(t)2
.
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Since we observe

d

dt
Q(t)

= −a′(M(t))M ′(t)M(t)2 + 2a(M(t))M(t)M ′(t)

(a(M(t))M(t)2)2

×
(
∥A1/2u′∥2M(t)− 1

4
|M ′(t)|2

)

+
2(A1/2u′′, A1/2u′)M(t) + ∥A1/2u′∥2M ′(t)− 1

2M
′(t)M ′′(t)

a(M(t))M(t)2

= −M ′(t)

M(t)

a′(M(t))M(t) + 2a(M(t))

a(M(t))2M(t)2

(
∥A1/2u′∥2M(t)− 1

4
|M ′(t)|2

)
+R(t)

= −M ′(t)

M(t)

(
2 +

a′(M(t))M(t)

a(M(t))

)
Q(t) +R(t) ,

we have

d

dt

(
∥Au(t)∥2

M(t)
+ ρQ(t)

)

+ 2

(
1 +

ρ

2

M ′(t)

M(t)

(
2 +

a′(M(t))M(t)

a(M(t))

))
Q(t) = 0 .

Moreover, we observe

1 +
ρ

2

M ′(t)

M(t)

(
2 +

a′(M(t))M(t)

a(M(t))

)
≥ 1− 1

2

1

K4 + 1
(2 +K4) ≥ 0

and Q(t) ≥ 0, we have

d

dt
G(t) =

d

dt

(
∥Au(t)∥2

M(t)
+ ρQ(t)

)
≤ 0

which implies the desired estimate (3.2). □

Proposition 3.2 Under the assumption (3.1), the solution u(t) satisfies

∥u′(t)∥2

M(t)
≤ B(0) , (3.5)

where

B(0) = max

{
∥u1∥2

M(0)
,
K4 + 1

K4
I(0)2G(0)

}
. (3.6)

6

Proof. Taking the inner product of (1.1) with 2u′(t)/M(t), we have

ρ
d

dt

∥u′(t)∥2

M(t)
+

(
2 + ρ

M ′(t)

M(t)

)
∥u′(t)∥2

M(t)
= −a(M(t))

M ′(t)

M(t)
(3.7)

≤ 2a(M(t))
∥Au(t)∥∥u′(t)∥

M(t)

≤ a(M(t))2
∥Au(t)∥2

M(t)
+

∥u′(t)∥2

M(t)

where we used the Young inequality.
Since

1 + ρ
M ′(t)

M(t)
≥ K4

K4 + 1
and a(M(t))2

∥Au(t)∥2

M(t)
≤ I(0)2G(0) ,

we have

ρ
d

dt

∥u′(t)∥2

M(t)
+

K4

K4 + 1

∥u′(t)∥2

M(t)
≤ I(0)2G(0)

and hence, we obtain (3.6). □

Remark. If the nonnegative function f(t) satisfies

f ′(t) + af(t) ≤ b , t ≥ 0

with positive constants a and b, then

f(t) ≤ max{f(0) , b/a} , t ≥ 0 .

Indeed, taking

g(t) = max{f(0) , b/a} , t ≥ 0 ,

we see that −ag(t) + b ≤ 0 and g′(t) = 0, and hence,

g′(t) + ag(t) ≥ b and f(0) ≤ g(0) .

Thus, by the comparison principle, we conclude.

4 Global Existence

Theorem 4.1 Suppose that Hyp.1 and Hyp.2 are fulfilled. If the initial data
(u0, u1) belong to D(A)×D(A1/2) are satisfies u0 ̸= 0 and

2ρG(0)
1
2B(0)

1
2 <

1

K4 + 1
, (4.1)
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Q(t) +R(t) ,

we have

d

dt

(
∥Au(t)∥2

M(t)
+ ρQ(t)

)

+ 2

(
1 +

ρ

2

M ′(t)

M(t)

(
2 +

a′(M(t))M(t)

a(M(t))

))
Q(t) = 0 .

Moreover, we observe

1 +
ρ

2

M ′(t)

M(t)

(
2 +

a′(M(t))M(t)

a(M(t))

)
≥ 1− 1

2

1

K4 + 1
(2 +K4) ≥ 0

and Q(t) ≥ 0, we have

d

dt
G(t) =

d

dt

(
∥Au(t)∥2

M(t)
+ ρQ(t)

)
≤ 0

which implies the desired estimate (3.2). □

Proposition 3.2 Under the assumption (3.1), the solution u(t) satisfies

∥u′(t)∥2

M(t)
≤ B(0) , (3.5)

where

B(0) = max

{
∥u1∥2

M(0)
,
K4 + 1

K4
I(0)2G(0)

}
. (3.6)

6

Proof. Taking the inner product of (1.1) with 2u′(t)/M(t), we have

ρ
d

dt

∥u′(t)∥2

M(t)
+

(
2 + ρ

M ′(t)

M(t)

)
∥u′(t)∥2

M(t)
= −a(M(t))

M ′(t)

M(t)
(3.7)

≤ 2a(M(t))
∥Au(t)∥∥u′(t)∥

M(t)

≤ a(M(t))2
∥Au(t)∥2

M(t)
+

∥u′(t)∥2

M(t)

where we used the Young inequality.
Since

1 + ρ
M ′(t)

M(t)
≥ K4

K4 + 1
and a(M(t))2

∥Au(t)∥2

M(t)
≤ I(0)2G(0) ,

we have

ρ
d

dt

∥u′(t)∥2

M(t)
+

K4

K4 + 1

∥u′(t)∥2

M(t)
≤ I(0)2G(0)

and hence, we obtain (3.6). □

Remark. If the nonnegative function f(t) satisfies

f ′(t) + af(t) ≤ b , t ≥ 0

with positive constants a and b, then

f(t) ≤ max{f(0) , b/a} , t ≥ 0 .

Indeed, taking

g(t) = max{f(0) , b/a} , t ≥ 0 ,

we see that −ag(t) + b ≤ 0 and g′(t) = 0, and hence,

g′(t) + ag(t) ≥ b and f(0) ≤ g(0) .

Thus, by the comparison principle, we conclude.

4 Global Existence

Theorem 4.1 Suppose that Hyp.1 and Hyp.2 are fulfilled. If the initial data
(u0, u1) belong to D(A)×D(A1/2) are satisfies u0 ̸= 0 and

2ρG(0)
1
2B(0)

1
2 <

1

K4 + 1
, (4.1)

7
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then the problem (1.1) admits a unique global solution u(t) in the class

C0([0,∞);D(A)) ∩ C1([0,∞);D(A1/2)) ∩ C2([0,∞);H)

and the solution u(t) satisfies

∥u(t)∥2 ≤ 6(∥u0∥2 + ρE(0)) , (4.2)

E(t) ≤ E(0) , a(M(t)) ≤ I(0) , (4.3)

ρ
|M ′(t)|
M(t)

≤ 1

K4 + 1
, (4.4)

∥Au(t)∥2

M(t)
≤ G(0) ,

∥u′(t)∥2

M(t)
≤ B(0) . (4.5)

Proof. Let u(t) be a solution on [0, T ]. Since we observe from (3.2), (3.5), and
(4.1) that

ρ
|M ′(0)|
M(0)

≤ 2ρ
∥u1∥
M(0)

1
2

∥Au0∥
M(0)

1
2

≤ 2ρB(0)
1
2G(0) <

1

K4 + 1
,

putting

T = sup{t ∈ [0,∞)
�� ρ |M

′(s)|
M(s)

<
1

K4 + 1
for 0 ≤ s < t} ,

we see that T1 > 0. If T1 < T , we have

ρ
|M ′(t)|
M(t)

<
1

K4 + 1
for 0 ≤ t < T1 , and ρ

|M ′(T1)|
M(T1)

=
1

K4 + 1
.

Again, from (3.2), (3.5), and (4.1) it follows that

ρ
|M ′(t)|
M(t)

≤ 2ρ
∥u′(t)∥
M(t)

1
2

∥Au(t)∥
M(t)

1
2

≤ 2ρB(0)
1
2G(0) <

1

K4 + 1

for 0 ≤ t ≤ T , and hence, we obtain T1 ≥ T , and we see that the solution u(t)
satisfies the estimates (2.3)–(2.6), (3.2), and (3.5), which implies (4.2)–(4.5).

Taking the inner product of (1.1) with 2Au′(t)/a(M(t)), we have

d

dt

(
ρ
∥A1/2u′(t)∥2

a(M(t))
+ ∥Au(t)∥2

)

+ 2

(
1 +

ρ

2

a′(M(t))M(t)

a(M(t))

M ′(t)

M(t)

)
∥A1/2u′(t)∥2

a(M(t))
= 0 .

Since

1 +
ρ

2

a′(M(t))M(t)

a(M(t))

M ′(t)

M(t)
≥ 1− K4

2
ρ
|M ′(t)|
M(t)

≥ 1− K4

2

1

K4 + 1
≥ 0 ,

8

we have

d

dt

(
ρ
∥A1/2u′(t)∥2

a(M(t))
+ ∥Au(t)∥2

)
≤ 0 ,

and hence,

∥A1/2u′(t)∥2 + ∥Au(t)∥2 ≤ C for 0 ≤ t ≤ T .

Thus, we observe that ∥u(t)∥2+∥u′(t)∥1 ≤ C, and by the second statement
of Proposition 2.1, we conclude that the problem (1.1) admits a unique global
solution. □

5 Lower Decay Estimates

Proposition 5.1 Under the assumption of Theorem 4.1, it holds that

M(t) ≥ Ce−αt for t ≥ 0 (5.1)

with some α > 0.

Proof. Taking the inner product of (1.1) with 2u′(t)/M(t)2, we have

d

dt

(
ρ
∥u′(t)∥2

M(t)2
+

a(M(t))

M(t)

)
+ 2

(
1 + ρ

M ′(t)

M(t)

)
∥u′(t)∥2

M(t)2

=
−2a(M(t)) + a′(M(t))M(t)

M(t)

M ′(t)

M(t)

≤ C
a(M(t))

M(t)

M ′(t)

M(t)
≤ α

a(M(t))

M(t)

with some α > 0, where we used Hyp.2 and (4.4).
Since 1 + ρM ′(t)/M(t) ≥ 0, we have

d

dt

(
ρ
∥u′(t)∥2

M(t)2
+

a(M(t))

M(t)

)
≤ α

(
ρ
∥u′(t)∥2

M(t)2
+

a(M(t))

M(t)

)

and hence, we obtain

ρ
∥u′(t)∥2

M(t)2
+

a(M(t))

M(t)
≤ Ceαt or M(t) ≥ Ce−αt

where we used the assumption that a(M(t)) ≥ K1 > 0. □

Proposition 5.2 Under the assumption of Theorem 4.1, it holds that

∥A1/2u′(t)∥2

M(t)
≤ C for t ≥ 0 . (5.2)

9
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then the problem (1.1) admits a unique global solution u(t) in the class

C0([0,∞);D(A)) ∩ C1([0,∞);D(A1/2)) ∩ C2([0,∞);H)

and the solution u(t) satisfies

∥u(t)∥2 ≤ 6(∥u0∥2 + ρE(0)) , (4.2)

E(t) ≤ E(0) , a(M(t)) ≤ I(0) , (4.3)

ρ
|M ′(t)|
M(t)

≤ 1

K4 + 1
, (4.4)

∥Au(t)∥2

M(t)
≤ G(0) ,

∥u′(t)∥2

M(t)
≤ B(0) . (4.5)

Proof. Let u(t) be a solution on [0, T ]. Since we observe from (3.2), (3.5), and
(4.1) that

ρ
|M ′(0)|
M(0)

≤ 2ρ
∥u1∥
M(0)

1
2

∥Au0∥
M(0)

1
2

≤ 2ρB(0)
1
2G(0) <

1

K4 + 1
,

putting

T = sup{t ∈ [0,∞)
�� ρ |M

′(s)|
M(s)

<
1

K4 + 1
for 0 ≤ s < t} ,

we see that T1 > 0. If T1 < T , we have

ρ
|M ′(t)|
M(t)

<
1

K4 + 1
for 0 ≤ t < T1 , and ρ

|M ′(T1)|
M(T1)

=
1

K4 + 1
.

Again, from (3.2), (3.5), and (4.1) it follows that

ρ
|M ′(t)|
M(t)

≤ 2ρ
∥u′(t)∥
M(t)

1
2

∥Au(t)∥
M(t)

1
2

≤ 2ρB(0)
1
2G(0) <

1

K4 + 1

for 0 ≤ t ≤ T , and hence, we obtain T1 ≥ T , and we see that the solution u(t)
satisfies the estimates (2.3)–(2.6), (3.2), and (3.5), which implies (4.2)–(4.5).

Taking the inner product of (1.1) with 2Au′(t)/a(M(t)), we have

d

dt

(
ρ
∥A1/2u′(t)∥2

a(M(t))
+ ∥Au(t)∥2

)

+ 2

(
1 +

ρ

2

a′(M(t))M(t)

a(M(t))

M ′(t)

M(t)

)
∥A1/2u′(t)∥2

a(M(t))
= 0 .

Since

1 +
ρ

2

a′(M(t))M(t)

a(M(t))

M ′(t)

M(t)
≥ 1− K4

2
ρ
|M ′(t)|
M(t)

≥ 1− K4

2

1

K4 + 1
≥ 0 ,

8

we have

d

dt

(
ρ
∥A1/2u′(t)∥2

a(M(t))
+ ∥Au(t)∥2

)
≤ 0 ,

and hence,

∥A1/2u′(t)∥2 + ∥Au(t)∥2 ≤ C for 0 ≤ t ≤ T .

Thus, we observe that ∥u(t)∥2+∥u′(t)∥1 ≤ C, and by the second statement
of Proposition 2.1, we conclude that the problem (1.1) admits a unique global
solution. □

5 Lower Decay Estimates

Proposition 5.1 Under the assumption of Theorem 4.1, it holds that

M(t) ≥ Ce−αt for t ≥ 0 (5.1)

with some α > 0.

Proof. Taking the inner product of (1.1) with 2u′(t)/M(t)2, we have

d

dt

(
ρ
∥u′(t)∥2

M(t)2
+

a(M(t))

M(t)

)
+ 2

(
1 + ρ

M ′(t)

M(t)

)
∥u′(t)∥2

M(t)2

=
−2a(M(t)) + a′(M(t))M(t)

M(t)

M ′(t)

M(t)

≤ C
a(M(t))

M(t)

M ′(t)

M(t)
≤ α

a(M(t))

M(t)

with some α > 0, where we used Hyp.2 and (4.4).
Since 1 + ρM ′(t)/M(t) ≥ 0, we have

d

dt

(
ρ
∥u′(t)∥2

M(t)2
+

a(M(t))

M(t)

)
≤ α

(
ρ
∥u′(t)∥2

M(t)2
+

a(M(t))

M(t)

)

and hence, we obtain

ρ
∥u′(t)∥2

M(t)2
+

a(M(t))

M(t)
≤ Ceαt or M(t) ≥ Ce−αt

where we used the assumption that a(M(t)) ≥ K1 > 0. □

Proposition 5.2 Under the assumption of Theorem 4.1, it holds that

∥A1/2u′(t)∥2

M(t)
≤ C for t ≥ 0 . (5.2)

9
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Proof. Taking the inner product of (1.1) with (2Au′(t)+ ρ−1Au(t))/M(t), we
have

d

dt

(
ρ
∥A1/2u′(t)∥2

M(t)
+ a(M(t))

∥Au(t)∥2

M(t)
+

(Au(t), u′(t))

M(t)

)

+

(
1 + ρ

M ′(t)

M(t)

)
∥A1/2u′(t)∥2

M(t)
+

a(M(t))

ρ

∥Au(t)∥2

M(t)
+

1

2

|M ′(t)|2

M(t)2

= − (a(M(t)) + a′(M(t))M(t))
M ′(t)

M(t)

∥Au(t)∥2

M(t)
− 1

2ρ

M ′(t)

M(t)
. (5.3)

Moreover, taking (5.3) + (3.7)× ρ−1K−1
1 , we have

d

dt
F (t) +

(
1 + ρ

M ′(t)

M(t)

)
∥A1/2u′(t)∥2

M(t)
+

a(M(t))

ρ

∥Au(t)∥2

M(t)
+

1

2

|M ′(t)|2

M(t)2

+
1

ρK1

(
2 + ρ

M ′(t)

M(t)

)
∥u′(t)∥2

M(t)
= R(t)

where

F (t) =H(t) +
(Au(t), u′(t))

M(t)
,

H(t) =ρ
∥A1/2u′(t)∥2

M(t)
+ a(M(t))

∥Au(t)∥2

M(t)
+

1

K1

∥u′(t)∥2

M(t)
(≥ 0 ) ,

R(t) =− (a(M(t)) + a′(M(t))M(t))
M ′(t)

M(t)

∥Au(t)∥2

M(t)
− 1

2ρ

M ′(t)

M(t)

− a(M(t))

ρK1

M ′(t)

M(t)
.

Since we observe from the Young inequality and Hyp.1 that

|(Au(t), u′(t))|
M(t)

≤ K1

2

∥Au(t)∥2

M(t)
+

1

2K1

∥u′(t)∥2

M(t)

≤ a(M(t))

2

∥Au(t)∥2

M(t)
+

1

2K1

∥u′(t)∥2

M(t)
,

and from (4.4) that

1 + ρ
M ′(t)

M(t)
≥ K4

K4 + 1
(> 0 )

and from (4.3)–(4.5) that

|R(t)| ≤ C
|M ′(t)|
M(t)

≤ C ,

10

we have

d

dt
F (t) + νF (t) ≤ C

with some ν > 0, and hence,

F (t) ≤ C or H(t) ≤ C

which implies the desired estimate (5.2). □

Proposition 5.3 Under the assumption of Theorem 4.1 and Hyp.3, it holds
that

∥u′′(t)∥2

M(t)
≤ C for t ≥ 0 . (5.4)

Proof. Taking the inner product of (1.1) with (2u′′(t) + ρ−1u′(t))/M(t), we
have

d

dt

(
ρ
∥u′′(t)∥2

M(t)
+ a(M(t))

∥A1/2u′(t)∥2

M(t)
+

a′(M(t))M(t)

2

|M ′(t)|2

M(t)2
(5.5)

+
1

2ρ

∥u′(t)∥2

M(t)
+

(u′′(t), u′(t))

M(t)

)
+

(
1 + ρ

M ′(t)

M(t)

)
∥u′′(t)∥2

M(t)

+
a(M(t))

ρ

∥A1/2u′(t)∥2

M(t)
+

a′(M(t))M(t)

2ρ

|M ′(t)|2

M(t)2

= (−a(M(t)) + 3a′(M(t))M(t))
M ′(t)

M(t)

∥A1/2u′(t)∥2

M(t)

+
1

2

(
−a′(M(t))M(t) + a′′(M(t))M(t)2

)(M ′(t)

M(t)

)3

− M ′(t)

M(t)

(
1

2ρ

∥u′(t)∥2

M(t)
+

(u′′(t), u′(t))

M(t)

)
.

Moreover, taking (5.5)+(3.7), we have

d

dt
G(t) +

(
1 + ρ

M ′(t)

M(t)

)
∥u′′(t)∥2

M(t)
+

a(M(t))

ρ

∥A1/2u′(t)∥2

M(t)

+
a′(M(t))M(t)

2ρ

|M ′(t)|2

M(t)2
+

(
2 + ρ

M ′(t)

M(t)

)
∥u′(t)∥2

M(t)
= S(t)

11
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Proof. Taking the inner product of (1.1) with (2Au′(t)+ ρ−1Au(t))/M(t), we
have

d

dt

(
ρ
∥A1/2u′(t)∥2

M(t)
+ a(M(t))

∥Au(t)∥2

M(t)
+

(Au(t), u′(t))

M(t)

)

+

(
1 + ρ

M ′(t)

M(t)

)
∥A1/2u′(t)∥2

M(t)
+

a(M(t))

ρ

∥Au(t)∥2

M(t)
+

1

2

|M ′(t)|2

M(t)2

= − (a(M(t)) + a′(M(t))M(t))
M ′(t)

M(t)

∥Au(t)∥2

M(t)
− 1

2ρ

M ′(t)

M(t)
. (5.3)

Moreover, taking (5.3) + (3.7)× ρ−1K−1
1 , we have

d

dt
F (t) +

(
1 + ρ

M ′(t)

M(t)

)
∥A1/2u′(t)∥2

M(t)
+

a(M(t))

ρ

∥Au(t)∥2

M(t)
+

1

2

|M ′(t)|2

M(t)2

+
1

ρK1

(
2 + ρ

M ′(t)

M(t)

)
∥u′(t)∥2

M(t)
= R(t)

where

F (t) =H(t) +
(Au(t), u′(t))

M(t)
,

H(t) =ρ
∥A1/2u′(t)∥2

M(t)
+ a(M(t))

∥Au(t)∥2

M(t)
+

1

K1

∥u′(t)∥2

M(t)
(≥ 0 ) ,

R(t) =− (a(M(t)) + a′(M(t))M(t))
M ′(t)

M(t)

∥Au(t)∥2

M(t)
− 1

2ρ

M ′(t)

M(t)

− a(M(t))

ρK1

M ′(t)

M(t)
.

Since we observe from the Young inequality and Hyp.1 that

|(Au(t), u′(t))|
M(t)

≤ K1

2

∥Au(t)∥2

M(t)
+

1

2K1

∥u′(t)∥2

M(t)

≤ a(M(t))

2

∥Au(t)∥2

M(t)
+

1

2K1

∥u′(t)∥2

M(t)
,

and from (4.4) that

1 + ρ
M ′(t)

M(t)
≥ K4

K4 + 1
(> 0 )

and from (4.3)–(4.5) that

|R(t)| ≤ C
|M ′(t)|
M(t)

≤ C ,

10

we have

d

dt
F (t) + νF (t) ≤ C

with some ν > 0, and hence,

F (t) ≤ C or H(t) ≤ C

which implies the desired estimate (5.2). □

Proposition 5.3 Under the assumption of Theorem 4.1 and Hyp.3, it holds
that

∥u′′(t)∥2

M(t)
≤ C for t ≥ 0 . (5.4)

Proof. Taking the inner product of (1.1) with (2u′′(t) + ρ−1u′(t))/M(t), we
have

d

dt

(
ρ
∥u′′(t)∥2

M(t)
+ a(M(t))

∥A1/2u′(t)∥2

M(t)
+

a′(M(t))M(t)

2

|M ′(t)|2

M(t)2
(5.5)

+
1

2ρ

∥u′(t)∥2

M(t)
+

(u′′(t), u′(t))

M(t)

)
+

(
1 + ρ

M ′(t)

M(t)

)
∥u′′(t)∥2

M(t)

+
a(M(t))

ρ

∥A1/2u′(t)∥2

M(t)
+

a′(M(t))M(t)

2ρ

|M ′(t)|2

M(t)2

= (−a(M(t)) + 3a′(M(t))M(t))
M ′(t)

M(t)

∥A1/2u′(t)∥2

M(t)

+
1

2

(
−a′(M(t))M(t) + a′′(M(t))M(t)2

)(M ′(t)

M(t)

)3

− M ′(t)

M(t)

(
1

2ρ

∥u′(t)∥2

M(t)
+

(u′′(t), u′(t))

M(t)

)
.

Moreover, taking (5.5)+(3.7), we have

d

dt
G(t) +

(
1 + ρ

M ′(t)

M(t)

)
∥u′′(t)∥2

M(t)
+

a(M(t))

ρ

∥A1/2u′(t)∥2

M(t)

+
a′(M(t))M(t)

2ρ

|M ′(t)|2

M(t)2
+

(
2 + ρ

M ′(t)

M(t)

)
∥u′(t)∥2

M(t)
= S(t)

11
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where

G(t) =K(t) +
(u′′(t), u′(t))

M(t)
,

K(t) =ρ
∥u′′(t)∥2

M(t)
+ a(M(t))

∥A1/2u′(t)∥2

M(t)
+

a′(M(t))M(t)

2

|M ′(t)|2

M(t)2

+

(
1

2ρ
+ ρ

)
∥u′(t)∥2

M(t)
,

S(t) = (−a(M(t)) + 3a′(M(t))M(t))
M ′(t)

M(t)

∥A1/2u′(t)∥2

M(t)

+
1

2

(
−a′(M(t))M(t) + a′′(M(t))M(t)2

)(M ′(t)

M(t)

)3

− M ′(t)

M(t)

(
1

2ρ

∥u′(t)∥2

M(t)
+

(u′′(t), u′(t))

M(t)

)
− a(M(t))

M ′(t)

M(t)
.

Since we observe from the Young inequality that

|(u′′(t), u′(t))|
M(t)

≤ ρ

2

∥u′′(t)∥2

M(t)
+

1

2ρ

∥u′(t)∥2

M(t)

and from (4.4) that

1 + ρ
M ′(t)

M(t)
≥ K4

K4 + 1
(> 0 )

and from (4.3)–(4.5), (5.2) that

|S(t)| ≤ C +
K4

2(K4 + 1)

∥u′(t)∥2

M(t)
,

we have

d

dt
G(t) + νG(t) ≤ C

with some ν > 0, and hence,

G(t) ≤ 0 or K(t) ≤ 0

which implies the desired estimate (5.4). □

Theorem 5.4 Suppose that the assumption of Theorem 4.1 and Hyp.3 are
fulfilled. Then, the solution u(t) satisfies

∥u(t)∥2 ≥ Ce−βt for t ≥ 0 (5.6)

with some β ≥ α > 0.

12

Proof. Using (1.1), we observe that

d

dt

M(t)

∥u(t)∥2
=

1

∥u(t)∥4
(
2(Au(t), u′(t))∥u(t)∥2 − 2M(t)(u(t), u′(t))

)

=
−2

∥u(t)∥2

(
ρ(Au(t)− M(t)

∥u(t)∥2
u(t), u′′(t))

+a(M(t))((Au(t)− M(t)

∥u(t)∥2
u(t), Au(t))

)

and

(Au(t)− M(t)

∥u(t)∥2
u(t), Au(t)) = ∥Au(t)− M(t)

∥u(t)∥2
u(t)∥2 .

Thus, we have

d

dt

M(t)

∥u(t)∥2
+

2a(M(t))

∥u(t)∥2
∥Au(t)− M(t)

∥u(t)∥2
u(t)∥2

=
−2ρ

∥u(t)∥2
ρ(Au(t)− M(t)

∥u(t)∥2
u(t), u′′(t))

≤ 2ρ
1

∥u(t)∥
∥Au(t)− M(t)

∥u(t)∥2
u(t)∥∥u

′′(t)∥
∥u(t)∥

≤ 2K1

∥u(t)∥2
∥Au(t)− M(t)

∥u(t)∥2
u(t)∥2 + ρ2

2K1

∥u′′(t)∥2

∥u(t)∥2
,

and moreover, by a(M(t)) ≥ K1 > 0,

d

dt

M(t)

∥u(t)∥2
≤ C

∥u′′(t)∥2

∥u(t)∥2
= C

∥u′′(t)∥
M(t)

M(t)

∥u(t)∥2
≤ ν

M(t)

∥u(t)∥2

with some ν ≥ 0, where we used (5.4). Therefore, we obtain

M(t)

∥u(t)∥2
≤ Ceνt

and hence

∥u(t)∥2 ≥ Ce−νtM(t) ≥ Ce−νte−αt = Ce−βt

with some β ≥ α > 0, where we used (5.1). □

References

[1] A. Arosio and S. Garavaldi, On the mildly degenerate Kirchhoff string,
Math. Methods Appl. Sci. 14 (1991) 177–195.

13



Lower Decay Estimates for Non-Degenerate Kirchhoff Type Dissipative Wave Equations 51

where

G(t) =K(t) +
(u′′(t), u′(t))

M(t)
,

K(t) =ρ
∥u′′(t)∥2

M(t)
+ a(M(t))

∥A1/2u′(t)∥2

M(t)
+

a′(M(t))M(t)

2

|M ′(t)|2

M(t)2

+

(
1

2ρ
+ ρ

)
∥u′(t)∥2

M(t)
,

S(t) = (−a(M(t)) + 3a′(M(t))M(t))
M ′(t)

M(t)

∥A1/2u′(t)∥2

M(t)

+
1

2

(
−a′(M(t))M(t) + a′′(M(t))M(t)2

)(M ′(t)

M(t)

)3

− M ′(t)

M(t)

(
1

2ρ

∥u′(t)∥2

M(t)
+

(u′′(t), u′(t))

M(t)

)
− a(M(t))

M ′(t)

M(t)
.

Since we observe from the Young inequality that

|(u′′(t), u′(t))|
M(t)

≤ ρ

2

∥u′′(t)∥2

M(t)
+

1

2ρ

∥u′(t)∥2

M(t)

and from (4.4) that

1 + ρ
M ′(t)

M(t)
≥ K4

K4 + 1
(> 0 )

and from (4.3)–(4.5), (5.2) that

|S(t)| ≤ C +
K4

2(K4 + 1)

∥u′(t)∥2

M(t)
,

we have

d

dt
G(t) + νG(t) ≤ C

with some ν > 0, and hence,

G(t) ≤ 0 or K(t) ≤ 0

which implies the desired estimate (5.4). □

Theorem 5.4 Suppose that the assumption of Theorem 4.1 and Hyp.3 are
fulfilled. Then, the solution u(t) satisfies

∥u(t)∥2 ≥ Ce−βt for t ≥ 0 (5.6)

with some β ≥ α > 0.

12

Proof. Using (1.1), we observe that

d

dt

M(t)

∥u(t)∥2
=

1

∥u(t)∥4
(
2(Au(t), u′(t))∥u(t)∥2 − 2M(t)(u(t), u′(t))

)

=
−2

∥u(t)∥2

(
ρ(Au(t)− M(t)

∥u(t)∥2
u(t), u′′(t))

+a(M(t))((Au(t)− M(t)

∥u(t)∥2
u(t), Au(t))

)

and

(Au(t)− M(t)

∥u(t)∥2
u(t), Au(t)) = ∥Au(t)− M(t)

∥u(t)∥2
u(t)∥2 .

Thus, we have

d

dt

M(t)

∥u(t)∥2
+

2a(M(t))

∥u(t)∥2
∥Au(t)− M(t)

∥u(t)∥2
u(t)∥2

=
−2ρ

∥u(t)∥2
ρ(Au(t)− M(t)

∥u(t)∥2
u(t), u′′(t))

≤ 2ρ
1

∥u(t)∥
∥Au(t)− M(t)

∥u(t)∥2
u(t)∥∥u

′′(t)∥
∥u(t)∥

≤ 2K1

∥u(t)∥2
∥Au(t)− M(t)

∥u(t)∥2
u(t)∥2 + ρ2

2K1

∥u′′(t)∥2

∥u(t)∥2
,

and moreover, by a(M(t)) ≥ K1 > 0,

d

dt

M(t)

∥u(t)∥2
≤ C

∥u′′(t)∥2

∥u(t)∥2
= C

∥u′′(t)∥
M(t)

M(t)

∥u(t)∥2
≤ ν

M(t)

∥u(t)∥2

with some ν ≥ 0, where we used (5.4). Therefore, we obtain

M(t)

∥u(t)∥2
≤ Ceνt

and hence

∥u(t)∥2 ≥ Ce−νtM(t) ≥ Ce−νte−αt = Ce−βt

with some β ≥ α > 0, where we used (5.1). □

References

[1] A. Arosio and S. Garavaldi, On the mildly degenerate Kirchhoff string,
Math. Methods Appl. Sci. 14 (1991) 177–195.

13



Kosuke Ono52

[2] A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string,
Trans. Amer. Math. Soc. 348 (1996) 305–330.

[3] G.F. Carrier, On the non-linear vibration problem of the elastic string,
Quart. Appl. Math. 3 (1945) 157–165.

[4] R.W. Dickey, Infinite systems of nonlinear oscillation equations with linear
damping, SIAM J. Appl. Math. 19 (1970) 208–214.

[5] M. Ghisi and M. Gobbino, Hyperbolic-parabolic singular perturbation for
mildly degenerate Kirchhoff equations: time-decay estimates, J. Differen-
tial Equations 245 (2008) 2979–3007.

[6] G. Kirchhoff, Vorlesungen über Mechanik, Teubner, Leipzig, 1883.

[7] K. Ono, Global existence and decay properties of solutions for some mildly
degenerate nonlinear dissipative Kirchhoff strings, Funkcial. Ekvac. 40
(1997) 255–270.

[8] K. Ono, Decay estimates of solutions for mildly degenerate Kirchhoff type
dissipative wave equations in unbounded domains Asymptot. Anal. 88
(2014) 75–92.

[9] K. Ono, Lower decay estimates for non-degenerate dissipative wave equa-
tions of Kirchhoff type Sci. Math. Japonicae 77 (2014) 415–425.

[10] K. Ono, Asymptotic behavior of solutions for Kirchhoff type dissipative
wave equations in unbounded domains J. Math. Tokushima Univ., 61
(2017) 37–54.

[11] W.A. Strauss, On continuity of functions with values in various Banach
spaces, Pacific J. Math. 19 (1966) 543–551.

14

On Restricted Wythoff’s Nim

By

Shin-ichi Katayama and Tomoya Kubo

Shin-ichi Katayama
Department of Mathematical Sciences, Graduate School of Science and Technology,

Tokushima University, Minamijosanjima-cho 2-1, Tokushima 770-8506, JAPAN

e-mail address : shinkatayama@tokushima-u.ac.jp

and
Tomoya Kubo

Graduate School of Integrated Arts and Sciences, Tokushima University,

Minamijosanjima-cho 1-1, Tokushima 770-8502, JAPAN

e-mail address : itiji banji@me.com

Received October 12 2018

Abstract

We shall study the following restricted Wythoff’s Nim. Let
Si (1 ≤ i ≤ 3) be the set of positive integers. Each player can
remove the number of tokens s1 ∈ S1 from the first pile and s2 ∈ S2

from the second pile and remove the same number of tokens s3 ∈ S3

from both piles. We shall identify (m,n) to a position of this nim,
where m is the number of tokens in the first pile and n is the num-
ber of tokens in the second pile. In the case |S2| < ∞, we will show
the Sprague-Grundy sequence(or simply G-sequences) gS(m,n) is
periodic for fixed m.

2010 Mathematics Subject Classification. Primary 91A46; Sec-
ondary 91A05

1 Introduction

In his paper [1], C. L. Bouton introduced the 2-player impartial combinatorial
game, which is now called nim game. In [6], W. A. Wythoff modified the rule

1


