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Abstract

In this paper, we define the Riemann integral of the Jordan measur-
able function on R?, (d > 1).

Then we study the method of calculation of the Riemann integral.
Further we clarify the convergence properties of the Riemann integral
completely. These facts are the new results.
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Introduction

This paper is the part IT of the series of papers for the study of the axiomatic
method of measure and integration on the Euclidean space. As for the details,
we refer to [1], [3]~[6], [8]~[10].
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In this paper, we define the Riemann integral of Jordan measurable func-
tions on the Jordan measure space (E, Bg, u).

Let E be a measurable set in R?. Then we define that a function f(z) =
f(x1, z2, -+, xq) defined on E is Jordan measurable if it is the Moore-Smith
limit in the sense of uniform convergence of a direct family {fa(z)} of simple
functions in the wider sense on E. Then we define that the Riemann integral
of a measurable function f(z) on E is the Moore-Smith limit

| raya =t [ paeyia

of the direct set of the Riemann integrals of simple functions.

The Riemann integral on E either converges or diverges. The convergence
of the Riemann integral is either the absolute convergence or the conditional
convergence. When the Riemann integral converges conditionally, we have said
until now that this is the improper Riemann integral.

As for the fundamental properties of the Riemann integral, we prove these
for simple functions first. For general measurable functions, we prove these
properties considering them as the limit of the direct family of simple functions.

The outline is that the Jordan measurable functions and the Lebesgue mea-
surable functions are the limits of simple functions. As for their difference
points, other than the definitions of measurable sets, it is essential that the
topologies defining the limits of simple functions are different.

The outline is that a Jordan measurable function is the limit of simple
functions in the sense of the uniform convergence in the wider sense and, on
the other hand, a Lebesgue measurable function is the limit of simple functions
in the sense of pointwise convergence. By considering in such a framework, it
is the point of improvement that we can study the Riemann integral and the
Lebesgue integral by the similar method at many points.

Here I show my heartfelt gratitude to my wife Mutuko for her help of
typesetting this manuscript.

1 Measurable functions

In this section, we define the concept of the measurable functions on R?
and study their fundamental properties. Here we assume d > 1.

In the next section, we define the concept of the Riemann integral of a
measurable function on RY. In the definition of a measurable function and the
Riemann integral, we have to consider the limit in the sense of Moore-Smith
limit. We assume that the d-dimensional Jordan measure space (Rd, B, u) is
defined on R?. We denote a point in R? as z = (21, T2, -+, xq).
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Then we denote a function on R? as f(z) = f(xy, x2, ---, xq4). We
assume that the value of f(x) is a real number or +co. Then we say that such
a function is an extended real valued function.

Now we assume that a set E in R? is a measurable set. Then we say that
E is measurable for simplicity.

Here we divide a set E into the countable measurable subsets Fy1, Fs, Ej3,
--+. Namely, we assume that Fq, Es, E3, --- are mutually disjoint and their
sum is equal to E. We denote this as

(A) E=FEi+FEy+FE3+---.

In the sequel, we consider only the division of F into the countable subsets
using the measurable subsets. We call this the division of F for simplicity.
For two divisions A and A’ of E, we say that A’ is a finer division than
A if every small subset of A’ is included in a certain small subset of A. We
obtain the finer division of A if we divide a certain small subset of the division
A into two measurable subsets. An arbitrary finer division of A is obtained by
the countable iteration of the division of a small subset of A into two subsets.
For two divisions A and A’ of E, we denote A < A’ if A’ is a finer division
of A.
Now we denote the family of all divisions of F as A = A(FE). This relation
< is an order of A.
This is a direct set with respect to the order defined by the finer division.
Namely, this means that we have the following conditions (1)~ (4):
Here, we assume A, A/, A” € A.
1) For all A € A, we have A < A.
2) IfA<A’, A’ <A hold, we have A = A/,
3) fA<A’, A’ <A” hold, we have A < A”.

(
(
(
(4

)
)
)
) For two arbitrary A, A’ € A, there exists a certain A” € A such that
we have A < A", A’ < A”.

These fact can be proved as follows.
Because it is evident that (1)~(3) hold, we prove that (4) holds. Now we
assume that we have the two divisions A, A’ € A of E such as

(A): E=E\+Ey+FEs+---,

(A/)Z E:F1+F2+F3+

Then, if we define the division A” as follows:

(AN)I E:iiEszj’

i=1 j=1
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it is evident that we have A” € A and A < A", A’ < A" hold.

Then (E, Bg, p) is the Jordan measure space. Here Bp is the family of all
Jordan measurable sets included in E and p is the Jordan measure restricted
on Bg.

In general, when we have the Jordan measure space (E, Bg, 1), we consider
the measurable functions defined on E.

Here we define the simple functions.

Definition 1.1 We say that a function f(z) = f(z1, @2, -+, 24) defined
on a measurable set F is a simple function if f(z) is defined by the relation

£l) = e, (@) (1)

for a division A of E:
(A)ZE:El—‘rEQ—‘rEg—‘r'“. (12)

Here «; is equal to a real number, (1 < j < oo0) and they have not to be
mutually different. xg; (z) is the defining function of the set E;, (1 < j < o0).
Then we denote this simple function f(z) as fa(z).

Remark 1.1 A function f(z) is defined by prescribing its domain, its
range and the rule of correspondence defining it. Then, the range of the simple
function f(z) is determined as an at most countable set of real numbers. But,
as for the representation of the simple function such as the formula (1.1), there
are infinitely many types of representation corresponding to the many types of
divisions of E such as the formula (1.2).

Then we define a measurable function as follows. Here R = R U {+oo}
denotes the extended space of real numbers.

Definition 1.2 Let E be a measurable set in R?. Then we define that a
extended real valued function f(z) defined on F is a measurable function if
it satisfies the following conditions (i) and (ii):

(i) When we put E(o0) = {x € E; |f(x)] = oo}, we have E(c0) € B and
u(E(50)) = 0.

(ii) There exists a direct family {fa(z); A € A} of simple functions such
that we have the Moore-Smith limit

lim fa(z) = f(2) (1.3)

which converges uniformly on E\F(oco) in the wider sense.
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Definition 1.2, (ii) is equivalent to the following condition (iii):

(ili) For an arbitrary measurable bounded closed set K in F\F(co) and an
arbitrary positive number € > 0, there exists some Ag € A such that we
have the inequality

[fa(e) = f(2)] <&, (z € K) (1.4)
for any A € A such as Ay < A.

For the simplicity of expression, we say that a measurable function f(z) is
measurable.

Remark 1.2 The Moore-Smith limit in the formula (1.3) means that the
uniform convergence of fa(z) to f(z) in the wider sense when we continue
to divide E\FE(oo) into the countable subsets as being finer, more finer and
infinitely finer.

Remark 1.3 When the division of a measurable set E is given by the
formula (1.2), we denote the diameter of F; by the symbol

0; = sup{d(p, q); p, ¢ € B}, (1 <i < o0).

Then, if we put
d=0(A)= sup 0,

1<i<oo

we have the equality
lim 6(A)=0
AcA

in the sense of the Moore-Smith limit.

Remark 1.4 Now we assume that Ag is a subfamily of A and

lim 6(A)=0
AGAO
in the sense of the Moore-Smith limit.
But, we have not to assume that Ay and A are cofinal. In general, the fact

that we have
lim 6(A) =0
6—0

is not a topological property for the family A of divisions of E.

In general, the limit must be a topological property. Therefore it is the
reason why we must use the Moore-Smith limit in order to define the Riemann
integral.

Example 1.1 Let a set E be a measurable set in R%. Then a simple
function and a continuous function f(z) defined on E are measurable.
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Theorem 1.1 Let a set E be a measurable set in RY. Assume that two
functions f and g are measurable on E. Then the following functions (1)~(10)
defined on E are also measurable:

1) f+g (2 f-9 O3 fg

(4) f/g. Here, for every measurable bounded closed set K in E, there exists
some constant § > 0 such that we have |g| > ¢, (z € K).

(5) «af. Here a is a real constant.
6) [fl. (7) sup(f, g). (8) inf(f, g).
9) [T =sup(f, 0. (10) f~=—inf(f, 0).

Theorem 1.2 Assume that a set E is a measurable set in R%. Assume
that there exists a sequence { f,,} of measurable functions on E and there exists a
certain set Ey of measure O such that the sequence { f,} converges to f uniformly
on E\Ey in the wider sense. Then the function f is measurable on E.

Example 1.2 Let f(x) be a function defined on the closed interval [0, 1]¢
which is equal to 1 for a rational point z and equal to 0 for the other point.
Then f(z) is not measurable. Here we say that x is a rational point if all the
coordinates z1, x9, ---, x4 are rational numbers.

2 Definition of the Riemann integral

In this section, we define the Riemann integral of a measurable function of
d variables.

We assume that the d-dimensional Jordan measure space (Rd, B, w) is
defined on R?. In general, we assume that the domain of integration is a
d-dimensional measurable set which is not necessarily an interval. Further a
subset E of R is a general measurable set which is not necessarily bounded.

Then we define the Riemann integral of a extended real valued measurable
function f(x) defined on E.

We define the Riemann integral in the following two cases.

(1) The case where f(x) is a simple function
In this case, f(x) is defined in the formula

f(z) = Z QX E; () (2.1)
j=1
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for a division of E:
(A):E:E1+E2+E3+"'. (22)

Here we have a; € R, (1 < j < o0).
Then we define the integral of f(x) on E by the formula

[ e =3 au(e). (2.3)
E =

Here we assume that the series in the right hand side converges absolutely.
The value of the right hand side of the formula (2.3) is determined uniquely
independent to the expression of the simple function f(z) as in the formula
(2.1). Therefore, the definition of the Riemann integral by using the formula
(2.3) is meaningful.
The symbol of the integral in the left hand side of the formula (2.3) is the
abbreviation of the following symbol of the Riemann integral

/// fxy, zo, -+, xg)dxrdas - - dag.
E

In the sequel, we use this simplified symbol without a special mention.

(2) The case where f(x) is a general measurable function

In this case, we assume that a function f(x) is a general measurable function
defined on E. Then we have a direct family of simple functions { fa (z); A € A}
which converges to f(x) uniformly on E\FE(oo) in the wider sense. Here A
denotes the direct set of all divisions of .

Now, when we have the Moore-Smith limit

1=l /E fa(@)de,

we say that this limit is the Riemann integral of the function f(x) on E and

denote it as
I:/ f(z)dx.
E

This value I does not depend on the choice of a direct family of simple
functions {fa(x); A € A} which converges to f(z) uniformly on E\FE(c0) in
the wider sense.

We also say that the Riemann integral of f(z) is the multi-integral or the
d-dimensional integral.

In an intuitive sense, the Moore-Smith limit is considered as the limit ob-
tained by the infinite iteration of the divisions of F\E(co) so that E\E(co) is
divided as being finer, more finer and infinitely finer.
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Remark 2.1 In the definition of the Riemann integral of a general mea-
surable function f(z) in the above, we define the Riemann integral as the

Moore-Smith limit
/ f(ac)dzzlim/ fa(x)dx
E A JEB

for a direct family of simple functions {fa(z); A € A} which converges to
f(z) uniformly on F\ F(oc0) in the wider sense.

Then, as for this Moore-Smith limit, we have either one of the following (1)
and (2):

(1) Tt converges. (2) It diverges.

Further, in the case of convergence, we have either one of the following (3)
and (4):

(3) Tt converges absolutely. (4) It converges conditionally.

(1) or (2) mean that we have the Moore-Smith limit or not. As for the
case (3) or (4), we consider it as follows. The Moore-Smith limit converges
absolutely if this Moore-Smith limit does not depend on the choice of the
direct family of simple functions {fa(z); A € A} which approximates f(x).
The Moore-Smith limit converges conditionally if this Moore-Smith limit
depends on the choice of the direct family of simple functions {fa(z); A € A}
which approximates f(x).

Further, we have the similar remarks for the convergence or the divergence
of the Riemann integral of a simple function.

Here we consider the Riemann integral is the narrow sense which is studied
usually until now.
Especially, we assume that E is a measurable bounded closed set and f(x)

is a bounded measurable function defined on E. Then we define the finite
division of E as follows:

(A): E=Ei+Ey+---+ E,.

Then we consider a simple function
fa(@) = f(&)xe. (@), (& € Ej, (1<) <n)).
j=1
Then the Riemann integral f(x) is equal to the Moore-Smith limit

1= [ seya =t [ ) =ip3 GE) (24
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if it exists. Namely, the Riemann integral of f(z) is defined as the Moore-Smith
limit of the Riemann sum

Ra = Z F(&)(E;)).

This is the definition of the Riemann integral which is defined by the similar
method to Riemann himself
Especially, when E' is equal to a closed interval

K= [al, bl] X [ag, bg] X - X [ad, bd},

we represent this Riemann integral as

bi pbe ba
/ / f(x1, @2, -+, xg)dxrdas - - - dg. (2.5)

d

In the formula (2.4), we say that F is the domain of integration, f(x) is
the integrand and z is the variables of integration.

Then the integral I is independent of the variables of integration.

We say that f(x) is integrable on F if the limit (2.4) exists. The integrable
function is assumed to be a measurable function

Next we study the Darboux’s theorem and the conditions of integrability
of a measurable function.

Now we assume that E is a measurable bounded closed set in R?. Further
we assume that a function f(z) is a bounded measurable function on E.

A finite division of the set E is defined as follows:

(Ay: E=Fy+E+ -+ E,.
Let M; and m; be the supremum and the infimum of f(z) on the subset E;

respectively, (¢ = 1, 2, --- n). Let M and m be the supremum and the
infimum of f(x) on the set F respectively. Then, if we put

ga(2) = 3 move, (@), (2.6)
=1

ha(x) =Y Mixe,(z), (2.7)
i=1
we have the Moore-Smith limits
lim ga () = f(2), (2.8)

lim ha(w) = f(2) (2.9)
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which converge uniformly on E. Now let spo and Sa be the Riemann integrals
of ga(x) and ha(x) on E respectively. Namely we have the equalities

SA = /E ga(x)dx = ; mip(Ey), (2.10)

Sp = /E ha(z)de =Y Mip(E;). (2.11)
i=1

Here u(E;) denotes the Jordan measure of F;, (i = 1, 2, --- ,n). Then we
have the inqualities
mu(E) < sa < Sa < Mu(E). (2.12)

Here, since p(F) < oo holds, {sa} and {Sa} for all the divisions A of E are
bounded. Therefore we have

S =inf San, s =supsa. (2.13)
A A

Then we have the inequality
s < S. (2.14)

Thus we have the following Theorem 2.1.

Theorem 2.1(Darboux’s theorem) We use the notation in the above.
Then we have the equalities

hin SA =S, llngA =S (2.15)
in the sense of the Moore-Smith limit.
In the following, we study the integrability conditions of a function f(z).

Theorem 2.2  Assume that a set E is a measurable bounded closed set in
R and f(x) is a bounded measurable function on E. Then f(z) is integrable
on E if and only if s =S holds.

We use the notation in the above.
Then we say that v; = M; —m; is the oscilletion of f(x) on the subset E;
of the division A, (i =1, 2, ---, n). Then, because we have

Va=5a—sa=> vin(E),

i=1

the condition s = S is equivalent to the condition

hgnVA = hin ; vi(E;) =0
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in the sense of the Moore-Smith limit. Hence we have the following Theorem
2.3.

Theorem 2.3  Assume that E and f(x) are the same as in Theorem 2.2.
Then f(x) is integrable if and only if we have the equality

hin VA = hgn ; vip(E;) =0
in the sense of the Moore-Smith limit.

Corollary 2.1 Assume that E and f(x) are the same as in Theorem 2.3.
Then we have the equality

hin VA = hgn ; vip(E;) =0

if and only if, for an arbitrary real number € > 0, there exists a certain division
A of E such that we have

n
VA = Z vi(E;) < e.
i=1

Proposition 2.1  If a function f(x) is integrable on a measurable bounded
closed set E in R?, f(x) is also integrable on an arbitrary measurable subset

E' of E.

Here we have the following Theorem 2.4 as the existence theorem of the
Riemann integral.

Theorem 2.4 A continuous function on a measurable bounded closed set
E in R is integrable.

Proposition 2.2 If the set B of the discontinuous points of a bounded
measurable function f(x) on a measurable bounded closed set E in R? has the
Jordan measure 0, f(x) is integrable on E.

3 Fundamental properties of the Riemann inte-
gral

In this section, we study the fundamental properties of the Riemann inte-
gral.
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Theorem 3.1 Assume that a set E is a measurable set in R and a
functions f(x) is integrable on E. If E = Ey+ E5 is a direct sum decomposition
of E, we have the equality

/f(af)dw= fl)yde+ [ f(z)dz.
E E; Eo>

Theorem 3.2 Assume that a set E is a measurable set in R® and two
functions f(x) and g(x) are integrable on E. Then we have the following

(1)~(6):

(1)  For two constants « and B, af(x)+ Bg(x) is also integrable on E and
we have the following equality

af(x z)hdr = « x)dx x)dx.
[ tas@ + sa@yds = [ j@yto+5 [ gta)
(2) If f(x) > 0 holds, we have the inequality

/E f(z)dx > 0.

Further, if f(x) is continuous at an interior point xo € E and f(xo) > 0
holds, we have the following inequality

/E F@)de > 0.

(3) If f(x) > g(x) holds, we have the inequality

Lf@MZLMMM

Further, if f(x) and g(x) are continuous at an interior point xo of E and
f(xo) > g(xo) holds, we have the following inequality

/Ef(x)da:>/Eg(x)dm.

(4) |f(x)] is also integrable on E and we have the inequality

|/Ef(:c)dx|§/E |f(a)|d.

(5) f(x)g(x) is also integrable on E.
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(6) If there exists a constant k such that |g(z)| > k > 0 holds on E, f@) is

9()

also integrable on E.

Theorem 3.3(The first mean value theorem) Assume that a set E
is a measurable bounded closed set in R® and a function f(z) is bounded and
integrable on E.

Let M and m be the supremum and the infimum of f(x) on E respectively.
Then there exists a certain real number o such that we have the equality

/E f(@)dz = ap(E), (m < a < M),

Especially, if f(x) is continuous on the measurable bounded closed domain
E, there exists a certain & in E such that o = f(&) holds.

Extending Theorem 3.3, we have the mean value theorem of the following
type.

Theorem 3.4(The first mean value theorem) Assume that we have
the following (1)~ (iii):

(i) E is a measurable bounded closed domain in RY.
(ii) A function f(x) is continuous on E.

(iii) A function p(x) is bounded and integrable on E and o(x) has the definite
sign in the weak sense.

Then we have the equality

| t@etado = 1) [ plads
E E
for a certain point £ € E.

Here we give the lemma which is the result necessary for the proof of the
theorem in the above.

Lemma 3.1 Assume that a set E is a measurable bounded closed domain
and a function f(x) is bounded and integrable on E.

Then there exists at least one continuous point of f(x) in E. Therefore
there exist the continuous points of f(x) densely in E.

Theorem 3.5 Assume that a set E is a bounded measurable set in R®
and K = [ay, b1] X [az, bo] X -+ X [ag, bg] is a bounded closed interval including
E. Assume that a function f(x) is bounded and integrable on E.
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. @), (zeB),
f@) _{ 0, (zeK\E)

formally. Then we have the following equality

/E f(2)dz = /K f(@)xp(@)dr.

4 TIterated integral

In this section, we study the iterated integral.

In order to calculate the d-dimensional integral actually, it is suitable to
calculate it by the iteration of the 1-dimensional integrals. In the following, we
study this iterated integral.

At first, we prepare the notation.

We denote a variable © = (z1, x2, -+, zq) as x = (21, /), 2/ =
(x2, --+, xq) and we denote f(x) = f(x1, a').

Theorem 4.1 Assume that a function f(x) is bounded and integrable on
a bounded closed interval

K = || lai, bi] ={x = (21, w2, -+, za); a; < x; < by, (1 <0< d)}

d
i1

K2

If we put

we have the following (1) and (2):
(1) If there exists

f(xlv I/)
K’

for an arbitrary x1 € a1, b1], we have the following equality

/K flx)dz = /:1{/[(/ flx1, 2')dx"}dxy. (4.1)
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(2) If there exists
b1

f(x1, 2')dry

ay

for an arbitrary ¥’ € K', we have the following equality

/K flx)dz = / /{ " flxy, ')dxy }da'. (4.2)

ai

Further we can study the (d — 1)-dimensional integral with respect to '
in the similar way. This integral comes to the iterations of the 1-dimensional
integrals inductively.

Further, we consider the section with respect to the other coordinate z; of
the variable by the same method.
Thereby we have the following Corollary.

Corollary 4.1 If a function f(z) is continuous on a bounded closed in-

terval .
K = H [a‘ia bi]a

i=1

we have the following equality

/ f(z)dx :/ dwil/ da;, - flzy, @, -+, xq)dx;,.
K a a a

i1 ig ig

Here (i1, i9, ---, iq) s an arbitrary permutation of (1, 2, --- ,n).

Theorem 4.2 Let E be a measurable bounded closed set in R® and let

K =

i

d
[Cli, bz]
=1

be an arbitrary closed interval including E. Let xg(x) be the defining function
of E. If a function f(x) is bounded and integrable on E, we put

{ f(@), (z€E),

F@=V0  werp

and we denote it as f*(x) = f(x)xg(x) formally. Then we have the following
equality

[tz = [ s
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Theorem 4.3  Assume that E' is a measurable bounded closed set in R~
and two functions ¢1(z") and p2(x') are continuous on E' such as pi(a’) <
pao(x’) holds for 2’ € E'. Then the bounded closed set

E={z= (21, 2'); 2’ € E', p1(2) <1 < pa(a’)}

is measurable and its Jordan measure is equal to

W) = [ foala) = er(a))a

Theorem 4.4 Assume that E, E’, ©1 and @y are the same as in Theorem
4.3. If a function f(x) is continuous on E, we have the following equality

@2 (")
/ f(x)dx:/ da:’/ f(x1, 2')dwy.
E ! p1(z’)

Theorem 4.5 Assume that E is a measurable bounded closed set in R?

and

d

K = H [ai, bl]

i=1
is an arbitrary bounded closed interval including E. For 1 < i < d, E(x;) be
the section of x by the hyperplane which is orthogonal to the x;-axis through
x; € la;, b;]. Then we assume that E(x;) is the measurable bounded closed set
in R for all z; € [as, b]. Then, if a function f(x) is continuous on E, we
have the following equality

b;
/ f(x)dx :/ dmi/ flay, @, -+, xq)di;.
E a; E(z;)

Here we denote &; = (x1, -+, Ti—1, Tit1, *** , Td)-

5 Method of calculation of the Riemann inte-
gral

In this section, we study one method of calculation of the Riemann integral.
This is the method of approximating the domain of integration of the Riemann
integral by using the direct family of measurable bounded closed sets. Until
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now, this is considered as the improper Riemann integral. The new definition
of the Riemann integral includes the case of the improper Riemann integral
already. The remarkable point is the method of calculation of the Riemann
integral.

Assume that the domain of integration E' is a general measurable set. Then
the Jordan measure of the boundary E of E is 0.

Now we define that a direct family {E,; « € A} of the measurable bounded
closed sets included in E converges to E if, for an arbitrary measurable
bounded closed set K included in F, there exists a certain ag € A such that
K C E, holds for a > ay.

Then we say that the direct family {E,} is an approximating direct
family of E.

Especially, put A = {1, 2, 3, ---}. Then we say that a sequence {F,}
monotonously converges to £ if £y C F, C--- C E, C --- holds.

In general, if a sequence {E,, } converges to E and we put E;UE;U- - -UE,, =
H,, (n=1, 2.3, ---), then the sequence {H,} converges to E monotonously.

Assume that an integrand f(x) is a measurable function on E. When we
put E(c0) = {z € E; |f(z)| = oo}, we say that a point in E(c0) is a singular
point of f(z). Then we assume that E(co) € B holds and it has the Jordan
measure 0. Thus E\E(oco) is also a measurable set.

Further we assume that f(x) is bounded and integrable on an arbitrary mea-
surable bounded closed set in E\E(co). Then when the direct family {I(E,)}
defined by the formula

I(Ea) = /E f(2)de

for an approximating direct family {F,} of F\F(co) converges, we have the

equality
/ flx)dx = lim/ f(x)dx
E « JE,

for the Moore-Smith limit
I =1lim I(E,).

Then the Moore-Smith limit lim, I(E,) does not depend on the choice of the
approximating direct family { £, } of F\ F(c0) if the Riemann integral converges
absolutely. Further the Moore-Smith limit in the above takes the various value
of the integral depending on the choice of the approximating direct family { £, }
if the Riemann integral converges conditionally. This Moore-Smith limit does
not exist if the Riemann integral diverges.

Remark 5.1 Until now, we say that the Riemann integral calculated by
using the approximating direct family {F,} as in the above is the improper
Riemann integral. Nevertheless, we see that the definition of the Riemann
integral in this paper includes the definition of the improper Riemann integral.
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Now, for a measurable function f(x) on E, we put
fH (@) =sup(f(z), 0), f~(z) = —inf(f(z), 0).
Then we have the following relations
[f@)] = (@) 20, [f(@)| = f~(x) 2 0,

f@)=f"(@) = f~ (@), [f@)| =T (@) + [ (@)
Hence f(z) is integrable if and only if f*(z) and f~(z) are integrable. Then
we have the equality

/Ef(x)dx:/Eer(x)dx—/E [ (z)dx.

Here we have the relations concerning the convergence and divergence of the
Riemann integral of f(z) on E in the following table.

Table 5.1 Convergence and divergence
of the Riemann integral

conv.=convergence, div.=divergence,
abs.conv.=absolute convergence,

cond.conv.=conditional convergence.

[t [s@las | [ @ | [ @
E E E E
abs.conv. conv. conv. conv.

div. div. conv. div.

div. div. div. conv.
cond.conv. or div. | div. div. div.

We have the following properties of the Riemann integral.

Theorem 5.1 Assume that E is a measurable subset of R%. Assume
that a function f(x) is measurable and nonnegative on E and the set E(co) of
its singular points has the Jordan measure 0. Then if lim, I(E,) exists for a
certain approzimating direct family {Es} of E\E(c0), the Riemann integral of
f(x) on E converges absolutely.

Theorem 5.2 Let E, f(x) and E(c0) be the same as in Theorem 5.1.

Then
/ f(x)dz
E
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converges absolutely if and only if

H) = /H F(x)dz

is bounded for all measurable bounded closed set H included in E\FE(c0).

Theorem 5.3 Assume that E is a measurable bounded set in R® and a
function f(x) is Riemann integrable on E. Further assume that f(x) > 0 holds.
Assume that a sequence {E,} of measurable subsets of E satisfies the following
conditions (1) and (2):

(1)  f(x) is Riemann integrable on E,, (n > 1).
(2) We have u(E\FE,) — 0, (n — 00).
Then we have the equality

lim f d:C—/ f(z (5.1)

n—oo

Remark 5.2 If a function f(z) is not Riemann integral on E in Theorem

5.3, we have
/ f(@)dx = +o0.
E

Then, if the other conditions are the same as in Theorem 5.3, the equality
(5.1) holds in the sense that the left hand side of the formula (5.1) diverges to
+00.

Proposition 5.1 Let E be a measurable set in R®. Let f(z) be a extended
real valued measurable function on E. Further assume that E(c0) is the set of
the singular points of f(x) and p(E(co)) = 0 holds. Assume that a direct
family {fa(x)} of simple functions converges to f(x) uniformly on E\FE(c0) in
the wider sense and a direct family {Eq} of measurable bounded closed sets is
an approximating direct family of E\E(oc). Then we consider two equalities of
the Riemann integral as follows:

| raa =t [ fa@aa

(I1) /f dx—hm f()

Then the convergence or the divergence of the Riemann integrals in (I) or
(IT) are equivalent. Further the absolute convergence or the conditional conver-
gence of the Riemann integrals (I) or (II) are equivalent.
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6 Change of variables

In this section, we prove the formula of the change of variables of the d-
dimensional integral.

Now we assume that a Cl-mapping = ¢(u) from an open set U’ in u-space
onto an open set U in z-space one to one. Then if we have

d(x)  O(xy, 22, -+, Tq)
O(uw)  O(uy, ug, -+, uq)

on U’, the inverse mapping u = ¢~ !(z) is C'-class on U. Assume that the
closure of the domain of integration is a bounded set included in the open set
U, and E and E’ correspond one to one by the mapping ¢. Then the closure of
E’ is a bounded set included in U’ and the boundary E of E and the boundary
E' of E' correspond one to one.

Then we have the following Theorem 6.1.

Theorem 6.1 Assume that a C'-mapping x = o(u) maps an open set U’
0
1 u-space onto an open set U in x-space one to one and we have J = aEx; #0.
u
Assume that E' is a bounded measurable set such that E' is included in U’.
Put o(E') = E. Then E is a bounded measurable set such that E is included

in U and we have the equality

u(e) = [ 150

Theorem 6.2  We use the same notation as in Theorem 6.1. Then, if f(x)
s bounded and integrable on E, we have the following formula of the change of
variables
I(x)

[ r@iz = [ pet) G

Theorem 6.3 Assume that U’ and U are both the bounded measurable
open sets and a Cl-mapping x* = p(u) maps U’ onto U one to one. Further

o) # 0 holds on U’ and J is bounded. Then, if f(z) is

O(u)
bounded and integrable on U, we have the following formula of the change of
variables )

[ t@is= [ ot

assume that J =
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Theorem 6.4 Assume that U’ and U are two measurable subsets in u-
space and x-space respectively which are not necessarily bounded. Further, as-
sume that a Ct-mapping x = ¢(u) maps U’ onto U. Then put

N ={uelU’; J(u) =0}
I(x)
J =
for )
N and N’ are 0 and U'\N' is mapped onto U\N one to one. Here let S be
the set of the singular points of a function f(x) and put ¢=*(S) = S’. Here
assume that the Jordan measures of S and S’ are 0. Then, if a function f(x)

18 Riemann integrable on U, we have the following formula of the change of
variables

and put N = @(N"). Then assume that the Jordan measures of

[ s@a = [ stetniiln
U U’

Example 6.1(Polar coordinates of R?) The polar coordinates (r, 6, ¢)
of a point P(z, y, z) of 3-dimensional Euclidean space R? is defined by the
C'-mapping

d: z=rsinfcosp, y =rsinfsiny, z =rcosb,

(r>0,0<0<m 0<¢<2n)

from rfp-space to xyz-space. Then assume that E’ is a measurable subset of
rfp-space and put ®(E’) = E. If a function f(z, y, z) is integrable on F, we
have the following formula

/ f(z, y, 2)dxdydz
E

= f(rsinfcos g, rsinfsinp, rcosf)r? sin fdrdddy.
E/

Example 6.2(Polar coordinates of Rd) The polar coordinates (r, 601,
0o, -+, 04-1) of a point P(x1, xa, -+, x4) of d-dimensional Euclidean space
is defined by the C'-mapping
x1 = 1 cos by,
r9 = rsin by cos by,
r3 = rsin f sin 65 cos O3,

Tg_1 =7rsinf;sinfy---sinfy_scosby_1,

rg=rsinf;sinfy---sinfy_osinfy_1,
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(7"20, 0§917 927 “'79d72§7r7 0§9d71<2ﬂ—)

from r10; - - - 04_1-space to x129 - - - T4-space. Then assume that £’ is a measur-
able subset of r6; - - - 04_1-space and put ®(E’) = E. Then, if a function f(z)
is integrable on E, we have the following formula of the change of variables

By N =

/ f(xla Lo, -y xd)dx1d$2~~~dxd
E

= f(rcosfy, rsinby cosbsy, -,
E/

rsinfy sinfy ---sinfy_ocosfy_1, rsinfysinfy - - -
sin 04_9 sin Hd_l)rdfl(sin 01)d*2(sin 92)‘1*3 e

sin Gd,gdrd91d92 s d@dfgdedfl.
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