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Abstract

In this paper, we define the Riemann integral of the Jordan measur-
able function on Rd, (d ≥ 1).

Then we study the method of calculation of the Riemann integral.
Further we clarify the convergence properties of the Riemann integral
completely. These facts are the new results.
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Introduction

This paper is the part II of the series of papers for the study of the axiomatic
method of measure and integration on the Euclidean space. As for the details,
we refer to [1], [3]∼[6], [8]∼[10].
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In this paper, we define the Riemann integral of Jordan measurable func-
tions on the Jordan measure space (E, BE , µ).

Let E be a measurable set in Rd. Then we define that a function f(x) =
f(x1, x2, · · · , xd) defined on E is Jordan measurable if it is the Moore-Smith
limit in the sense of uniform convergence of a direct family {f∆(x)} of simple
functions in the wider sense on E. Then we define that the Riemann integral
of a measurable function f(x) on E is the Moore-Smith limit

∫

E

f(x)dx = lim
∆

∫

E

f∆(x)dx

of the direct set of the Riemann integrals of simple functions.
The Riemann integral on E either converges or diverges. The convergence

of the Riemann integral is either the absolute convergence or the conditional
convergence. When the Riemann integral converges conditionally, we have said
until now that this is the improper Riemann integral.

As for the fundamental properties of the Riemann integral, we prove these
for simple functions first. For general measurable functions, we prove these
properties considering them as the limit of the direct family of simple functions.

The outline is that the Jordan measurable functions and the Lebesgue mea-
surable functions are the limits of simple functions. As for their difference
points, other than the definitions of measurable sets, it is essential that the
topologies defining the limits of simple functions are different.

The outline is that a Jordan measurable function is the limit of simple
functions in the sense of the uniform convergence in the wider sense and, on
the other hand, a Lebesgue measurable function is the limit of simple functions
in the sense of pointwise convergence. By considering in such a framework, it
is the point of improvement that we can study the Riemann integral and the
Lebesgue integral by the similar method at many points.

Here I show my heartfelt gratitude to my wife Mutuko for her help of
typesetting this manuscript.

1 Measurable functions

In this section, we define the concept of the measurable functions on Rd

and study their fundamental properties. Here we assume d ≥ 1.
In the next section, we define the concept of the Riemann integral of a

measurable function on Rd. In the definition of a measurable function and the
Riemann integral, we have to consider the limit in the sense of Moore-Smith
limit. We assume that the d-dimensional Jordan measure space (Rd, B, µ) is
defined on Rd. We denote a point in Rd as x = (x1, x2, · · · , xd).

2

Then we denote a function on Rd as f(x) = f(x1, x2, · · · , xd). We
assume that the value of f(x) is a real number or ±∞. Then we say that such
a function is an extended real valued function.

Now we assume that a set E in Rd is a measurable set. Then we say that
E is measurable for simplicity.

Here we divide a set E into the countable measurable subsets E1, E2, E3,
· · · . Namely, we assume that E1, E2, E3, · · · are mutually disjoint and their
sum is equal to E. We denote this as

(∆) : E = E1 + E2 + E3 + · · · .

In the sequel, we consider only the division of E into the countable subsets
using the measurable subsets. We call this the division of E for simplicity.

For two divisions ∆ and ∆′ of E, we say that ∆′ is a finer division than
∆ if every small subset of ∆′ is included in a certain small subset of ∆. We
obtain the finer division of ∆ if we divide a certain small subset of the division
∆ into two measurable subsets. An arbitrary finer division of ∆ is obtained by
the countable iteration of the division of a small subset of ∆ into two subsets.

For two divisions ∆ and ∆′ of E, we denote ∆ ≤ ∆′ if ∆′ is a finer division
of ∆.

Now we denote the family of all divisions of E as ∆ = ∆(E). This relation
≤ is an order of ∆.

This is a direct set with respect to the order defined by the finer division.
Namely, this means that we have the following conditions (1)∼ (4):
Here, we assume ∆, ∆′, ∆′′ ∈ ∆.

(1) For all ∆ ∈ ∆, we have ∆ ≤ ∆.

(2) If ∆ ≤ ∆′, ∆′ ≤ ∆ hold, we have ∆ = ∆′.

(3) If ∆ ≤ ∆′, ∆′ ≤ ∆′′ hold, we have ∆ ≤ ∆′′.

(4) For two arbitrary ∆, ∆′ ∈ ∆, there exists a certain ∆′′ ∈ ∆ such that
we have ∆ ≤ ∆′′, ∆′ ≤ ∆′′.

These fact can be proved as follows.
Because it is evident that (1)∼(3) hold, we prove that (4) holds. Now we

assume that we have the two divisions ∆, ∆′ ∈ ∆ of E such as

(∆) : E = E1 + E2 + E3 + · · · ,

(∆′) : E = F1 + F2 + F3 + · · · .

Then, if we define the division ∆′′ as follows:

(∆′′) : E =
∞∑
i=1

∞∑
j=1

Ei ∩ Fj ,
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it is evident that we have ∆′′ ∈ ∆ and ∆ ≤ ∆′′, ∆′ ≤ ∆′′ hold.
Then (E, BE , µ) is the Jordan measure space. Here BE is the family of all

Jordan measurable sets included in E and µ is the Jordan measure restricted
on BE .

In general, when we have the Jordan measure space (E, BE , µ), we consider
the measurable functions defined on E.

Here we define the simple functions.

Definition 1.1 We say that a function f(x) = f(x1, x2, · · · , xd) defined
on a measurable set E is a simple function if f(x) is defined by the relation

f(x) =

∞∑
j=1

αjχEj (x) (1.1)

for a division ∆ of E:

(∆) : E = E1 + E2 + E3 + · · · . (1.2)

Here αj is equal to a real number, (1 ≤ j < ∞) and they have not to be
mutually different. χEj (x) is the defining function of the set Ej , (1 ≤ j < ∞).
Then we denote this simple function f(x) as f∆(x).

Remark 1.1 A function f(x) is defined by prescribing its domain, its
range and the rule of correspondence defining it. Then, the range of the simple
function f(x) is determined as an at most countable set of real numbers. But,
as for the representation of the simple function such as the formula (1.1), there
are infinitely many types of representation corresponding to the many types of
divisions of E such as the formula (1.2).

Then we define a measurable function as follows. Here R = R ∪ {±∞}
denotes the extended space of real numbers.

Definition 1.2 Let E be a measurable set in Rd. Then we define that a
extended real valued function f(x) defined on E is a measurable function if
it satisfies the following conditions (i) and (ii):

(i) When we put E(∞) = {x ∈ E; |f(x)| = ∞}, we have E(∞) ∈ B and
µ(E(∞)) = 0.

(ii) There exists a direct family {f∆(x); ∆ ∈ ∆} of simple functions such
that we have the Moore-Smith limit

lim
∆

f∆(x) = f(x) (1.3)

which converges uniformly on E\E(∞) in the wider sense.

4

Definition 1.2, (ii) is equivalent to the following condition (iii):

(iii) For an arbitrary measurable bounded closed set K in E\E(∞) and an
arbitrary positive number ε > 0, there exists some ∆0 ∈ ∆ such that we
have the inequality

|f∆(x)− f(x)| < ε, (x ∈ K) (1.4)

for any ∆ ∈ ∆ such as ∆0 ≤ ∆.

For the simplicity of expression, we say that a measurable function f(x) is
measurable.

Remark 1.2 The Moore-Smith limit in the formula (1.3) means that the
uniform convergence of f∆(x) to f(x) in the wider sense when we continue
to divide E\E(∞) into the countable subsets as being finer, more finer and
infinitely finer.

Remark 1.3 When the division of a measurable set E is given by the
formula (1.2), we denote the diameter of Ei by the symbol

δi = sup{d(p, q); p, q ∈ Ei}, (1 ≤ i < ∞).

Then, if we put
δ = δ(∆) = sup

1≤i<∞
δi,

we have the equality
lim

∆∈∆
δ(∆) = 0

in the sense of the Moore-Smith limit.

Remark 1.4 Now we assume that ∆0 is a subfamily of ∆ and

lim
∆∈∆0

δ(∆) = 0

in the sense of the Moore-Smith limit.
But, we have not to assume that ∆0 and ∆ are cofinal. In general, the fact

that we have
lim
δ→0

δ(∆) = 0

is not a topological property for the family ∆ of divisions of E.
In general, the limit must be a topological property. Therefore it is the

reason why we must use the Moore-Smith limit in order to define the Riemann
integral.

Example 1.1 Let a set E be a measurable set in Rd. Then a simple
function and a continuous function f(x) defined on E are measurable.

5
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Theorem 1.1 Let a set E be a measurable set in Rd. Assume that two
functions f and g are measurable on E. Then the following functions (1)∼(10)
defined on E are also measurable:

(1) f + g. (2) f − g. (3) fg.

(4) f/g. Here, for every measurable bounded closed set K in E, there exists
some constant δ > 0 such that we have |g| ≥ δ, (x ∈ K).

(5) αf . Here α is a real constant.

(6) |f |. (7) sup(f, g). (8) inf(f, g).

(9) f+ = sup(f, 0). (10) f− = − inf(f, 0).

Theorem 1.2 Assume that a set E is a measurable set in Rd. Assume
that there exists a sequence {fn} of measurable functions on E and there exists a
certain set E0 of measure 0 such that the sequence {fn} converges to f uniformly
on E\E0 in the wider sense. Then the function f is measurable on E.

Example 1.2 Let f(x) be a function defined on the closed interval [0, 1]d

which is equal to 1 for a rational point x and equal to 0 for the other point.
Then f(x) is not measurable. Here we say that x is a rational point if all the
coordinates x1, x2, · · · , xd are rational numbers.

2 Definition of the Riemann integral

In this section, we define the Riemann integral of a measurable function of
d variables.

We assume that the d-dimensional Jordan measure space (Rd, B, µ) is
defined on Rd. In general, we assume that the domain of integration is a
d-dimensional measurable set which is not necessarily an interval. Further a
subset E of Rd is a general measurable set which is not necessarily bounded.

Then we define the Riemann integral of a extended real valued measurable
function f(x) defined on E.

We define the Riemann integral in the following two cases.

(1) The case where f(x) is a simple function
In this case, f(x) is defined in the formula

f(x) =
∞∑
j=1

αjχEj (x) (2.1)

6

for a division of E:

(∆) : E = E1 + E2 + E3 + · · · . (2.2)

Here we have αj ∈ R, (1 ≤ j < ∞).
Then we define the integral of f(x) on E by the formula

∫

E

f(x)dx =
∞∑
j=1

αjµ(Ej). (2.3)

Here we assume that the series in the right hand side converges absolutely.
The value of the right hand side of the formula (2.3) is determined uniquely

independent to the expression of the simple function f(x) as in the formula
(2.1). Therefore, the definition of the Riemann integral by using the formula
(2.3) is meaningful.

The symbol of the integral in the left hand side of the formula (2.3) is the
abbreviation of the following symbol of the Riemann integral

∫ ∫
· · ·

∫

E

f(x1, x2, · · · , xd)dx1dx2 · · · dxd.

In the sequel, we use this simplified symbol without a special mention.

(2) The case where f(x) is a general measurable function
In this case, we assume that a function f(x) is a general measurable function

defined on E. Then we have a direct family of simple functions {f∆(x); ∆ ∈ ∆}
which converges to f(x) uniformly on E\E(∞) in the wider sense. Here ∆
denotes the direct set of all divisions of E.

Now, when we have the Moore-Smith limit

I = lim
∆

∫

E

f∆(x)dx,

we say that this limit is the Riemann integral of the function f(x) on E and
denote it as

I =

∫

E

f(x)dx.

This value I does not depend on the choice of a direct family of simple
functions {f∆(x); ∆ ∈ ∆} which converges to f(x) uniformly on E\E(∞) in
the wider sense.

We also say that the Riemann integral of f(x) is the multi-integral or the
d-dimensional integral.

In an intuitive sense, the Moore-Smith limit is considered as the limit ob-
tained by the infinite iteration of the divisions of E\E(∞) so that E\E(∞) is
divided as being finer, more finer and infinitely finer.
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Remark 2.1 In the definition of the Riemann integral of a general mea-
surable function f(x) in the above, we define the Riemann integral as the
Moore-Smith limit ∫

E

f(x)dx = lim
∆

∫

E

f∆(x)dx

for a direct family of simple functions {f∆(x); ∆ ∈ ∆} which converges to
f(x) uniformly on E\E(∞) in the wider sense.

Then, as for this Moore-Smith limit, we have either one of the following (1)
and (2):

(1) It converges. (2) It diverges.

Further, in the case of convergence, we have either one of the following (3)
and (4):

(3) It converges absolutely. (4) It converges conditionally.

(1) or (2) mean that we have the Moore-Smith limit or not. As for the
case (3) or (4), we consider it as follows. The Moore-Smith limit converges
absolutely if this Moore-Smith limit does not depend on the choice of the
direct family of simple functions {f∆(x); ∆ ∈ ∆} which approximates f(x).
The Moore-Smith limit converges conditionally if this Moore-Smith limit
depends on the choice of the direct family of simple functions {f∆(x); ∆ ∈ ∆}
which approximates f(x).

Further, we have the similar remarks for the convergence or the divergence
of the Riemann integral of a simple function.

Here we consider the Riemann integral is the narrow sense which is studied
usually until now.

Especially, we assume that E is a measurable bounded closed set and f(x)
is a bounded measurable function defined on E. Then we define the finite
division of E as follows:

(∆) : E = E1 + E2 + · · ·+ En.

Then we consider a simple function

f∆(x) =
n∑

j=1

f(ξj)χEi(x), (ξj ∈ Ej , (1 ≤ j ≤ n)).

Then the Riemann integral f(x) is equal to the Moore-Smith limit

I =

∫

E

f(x)dx = lim
∆

∫

E

f∆(x)dx = lim
∆

n∑
j=1

f(ξj)µ(Ej) (2.4)

8

if it exists. Namely, the Riemann integral of f(x) is defined as the Moore-Smith
limit of the Riemann sum

R∆ =
n∑

j=1

f(ξj)µ(Ej).

This is the definition of the Riemann integral which is defined by the similar
method to Riemann himself

Especially, when E is equal to a closed interval

K = [a1, b1]× [a2, b2]× · · · × [ad, bd],

we represent this Riemann integral as

∫ b1

a1

∫ b2

a2

· · ·
∫ bd

ad

f(x1, x2, · · · , xd)dx1dx2 · · · dxd. (2.5)

In the formula (2.4), we say that E is the domain of integration, f(x) is
the integrand and x is the variables of integration.

Then the integral I is independent of the variables of integration.
We say that f(x) is integrable on E if the limit (2.4) exists. The integrable

function is assumed to be a measurable function
Next we study the Darboux’s theorem and the conditions of integrability

of a measurable function.
Now we assume that E is a measurable bounded closed set in Rd. Further

we assume that a function f(x) is a bounded measurable function on E.
A finite division of the set E is defined as follows:

(∆) : E = E1 + E2 + · · ·+ En.

Let Mi and mi be the supremum and the infimum of f(x) on the subset Ei

respectively, (i = 1, 2, · · · , n). Let M and m be the supremum and the
infimum of f(x) on the set E respectively. Then, if we put

g∆(x) =
n∑

i=1

miχEi(x), (2.6)

h∆(x) =
n∑

i=1

MiχEi(x), (2.7)

we have the Moore-Smith limits

lim
∆

g∆(x) = f(x), (2.8)

lim
∆

h∆(x) = f(x) (2.9)
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∆
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which converge uniformly on E. Now let s∆ and S∆ be the Riemann integrals
of g∆(x) and h∆(x) on E respectively. Namely we have the equalities

s∆ =

∫

E

g∆(x)dx =

n∑
i=1

miµ(Ei), (2.10)

S∆ =

∫

E

h∆(x)dx =

n∑
i=1

Miµ(Ei). (2.11)

Here µ(Ei) denotes the Jordan measure of Ei, (i = 1, 2, · · · , n). Then we
have the inqualities

mµ(E) ≤ s∆ ≤ S∆ ≤ Mµ(E). (2.12)

Here, since µ(E) < ∞ holds, {s∆} and {S∆} for all the divisions ∆ of E are
bounded. Therefore we have

S = inf
∆

S∆, s = sup
∆

s∆. (2.13)

Then we have the inequality
s ≤ S. (2.14)

Thus we have the following Theorem 2.1.

Theorem 2.1(Darboux’s theorem) We use the notation in the above.
Then we have the equalities

lim
∆

s∆ = s, lim
∆

S∆ = S (2.15)

in the sense of the Moore-Smith limit.

In the following, we study the integrability conditions of a function f(x).

Theorem 2.2 Assume that a set E is a measurable bounded closed set in
Rd and f(x) is a bounded measurable function on E. Then f(x) is integrable
on E if and only if s = S holds.

We use the notation in the above.
Then we say that vi = Mi −mi is the oscilletion of f(x) on the subset Ei

of the division ∆, (i = 1, 2, · · · , n). Then, because we have

V∆ = S∆ − s∆ =

n∑
i=1

viµ(Ei),

the condition s = S is equivalent to the condition

lim
∆

V∆ = lim
∆

n∑
i=1

viµ(Ei) = 0
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in the sense of the Moore-Smith limit. Hence we have the following Theorem
2.3.

Theorem 2.3 Assume that E and f(x) are the same as in Theorem 2.2.
Then f(x) is integrable if and only if we have the equality

lim
∆

V∆ = lim
∆

n∑
i=1

viµ(Ei) = 0

in the sense of the Moore-Smith limit.

Corollary 2.1 Assume that E and f(x) are the same as in Theorem 2.3.
Then we have the equality

lim
∆

V∆ = lim
∆

n∑
i=1

viµ(Ei) = 0

if and only if, for an arbitrary real number ε > 0, there exists a certain division
∆ of E such that we have

V∆ =

n∑
i=1

viµ(Ei) < ε.

Proposition 2.1 If a function f(x) is integrable on a measurable bounded
closed set E in Rd, f(x) is also integrable on an arbitrary measurable subset
E′ of E.

Here we have the following Theorem 2.4 as the existence theorem of the
Riemann integral.

Theorem 2.4 A continuous function on a measurable bounded closed set
E in Rd is integrable.

Proposition 2.2 If the set B of the discontinuous points of a bounded
measurable function f(x) on a measurable bounded closed set E in Rd has the
Jordan measure 0, f(x) is integrable on E.

3 Fundamental properties of the Riemann inte-
gral

In this section, we study the fundamental properties of the Riemann inte-
gral.

11
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in the sense of the Moore-Smith limit. Hence we have the following Theorem
2.3.

Theorem 2.3 Assume that E and f(x) are the same as in Theorem 2.2.
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n∑
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Proposition 2.1 If a function f(x) is integrable on a measurable bounded
closed set E in Rd, f(x) is also integrable on an arbitrary measurable subset
E′ of E.

Here we have the following Theorem 2.4 as the existence theorem of the
Riemann integral.

Theorem 2.4 A continuous function on a measurable bounded closed set
E in Rd is integrable.

Proposition 2.2 If the set B of the discontinuous points of a bounded
measurable function f(x) on a measurable bounded closed set E in Rd has the
Jordan measure 0, f(x) is integrable on E.

3 Fundamental properties of the Riemann inte-
gral

In this section, we study the fundamental properties of the Riemann inte-
gral.
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Theorem 3.1 Assume that a set E is a measurable set in Rd and a
functions f(x) is integrable on E. If E = E1+E2 is a direct sum decomposition
of E, we have the equality

∫

E

f(x)dx =

∫

E1

f(x)dx+

∫

E2

f(x)dx.

Theorem 3.2 Assume that a set E is a measurable set in Rd and two
functions f(x) and g(x) are integrable on E. Then we have the following
(1)∼(6):

(1) For two constants α and β, αf(x) + βg(x) is also integrable on E and
we have the following equality

∫

E

{αf(x) + βg(x)}dx = α

∫

E

f(x)dx+ β

∫

E

g(x)dx.

(2) If f(x) ≥ 0 holds, we have the inequality

∫

E

f(x)dx ≥ 0.

Further, if f(x) is continuous at an interior point x0 ∈ E and f(x0) > 0
holds, we have the following inequality

∫

E

f(x)dx > 0.

(3) If f(x) ≥ g(x) holds, we have the inequality

∫

E

f(x)dx ≥
∫

E

g(x)dx.

Further, if f(x) and g(x) are continuous at an interior point x0 of E and
f(x0) > g(x0) holds, we have the following inequality

∫

E

f(x)dx >

∫

E

g(x)dx.

(4) |f(x)| is also integrable on E and we have the inequality

|
∫

E

f(x)dx| ≤
∫

E

|f(x)|dx.

(5) f(x)g(x) is also integrable on E.
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(6) If there exists a constant k such that |g(x)| ≥ k > 0 holds on E,
f(x)

g(x)
is

also integrable on E.

Theorem 3.3(The first mean value theorem) Assume that a set E
is a measurable bounded closed set in Rd and a function f(x) is bounded and
integrable on E.

Let M and m be the supremum and the infimum of f(x) on E respectively.
Then there exists a certain real number α such that we have the equality

∫

E

f(x)dx = αµ(E), (m ≤ α ≤ M).

Especially, if f(x) is continuous on the measurable bounded closed domain
E, there exists a certain ξ in E such that α = f(ξ) holds.

Extending Theorem 3.3, we have the mean value theorem of the following
type.

Theorem 3.4(The first mean value theorem) Assume that we have
the following (i)∼(iii):

(i) E is a measurable bounded closed domain in Rd.

(ii) A function f(x) is continuous on E.

(iii) A function φ(x) is bounded and integrable on E and φ(x) has the definite
sign in the weak sense.

Then we have the equality
∫

E

f(x)φ(x)dx = f(ξ)

∫

E

φ(x)dx

for a certain point ξ ∈ E.

Here we give the lemma which is the result necessary for the proof of the
theorem in the above.

Lemma 3.1 Assume that a set E is a measurable bounded closed domain
and a function f(x) is bounded and integrable on E.

Then there exists at least one continuous point of f(x) in E. Therefore
there exist the continuous points of f(x) densely in E.

Theorem 3.5 Assume that a set E is a bounded measurable set in Rd

and K = [a1, b1]× [a2, b2]×· · ·× [ad, bd] is a bounded closed interval including
E. Assume that a function f(x) is bounded and integrable on E.

13
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Theorem 3.1 Assume that a set E is a measurable set in Rd and a
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(6) If there exists a constant k such that |g(x)| ≥ k > 0 holds on E,
f(x)
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is

also integrable on E.

Theorem 3.3(The first mean value theorem) Assume that a set E
is a measurable bounded closed set in Rd and a function f(x) is bounded and
integrable on E.

Let M and m be the supremum and the infimum of f(x) on E respectively.
Then there exists a certain real number α such that we have the equality

∫

E

f(x)dx = αµ(E), (m ≤ α ≤ M).

Especially, if f(x) is continuous on the measurable bounded closed domain
E, there exists a certain ξ in E such that α = f(ξ) holds.

Extending Theorem 3.3, we have the mean value theorem of the following
type.

Theorem 3.4(The first mean value theorem) Assume that we have
the following (i)∼(iii):

(i) E is a measurable bounded closed domain in Rd.

(ii) A function f(x) is continuous on E.

(iii) A function φ(x) is bounded and integrable on E and φ(x) has the definite
sign in the weak sense.

Then we have the equality
∫

E

f(x)φ(x)dx = f(ξ)

∫
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φ(x)dx

for a certain point ξ ∈ E.

Here we give the lemma which is the result necessary for the proof of the
theorem in the above.

Lemma 3.1 Assume that a set E is a measurable bounded closed domain
and a function f(x) is bounded and integrable on E.

Then there exists at least one continuous point of f(x) in E. Therefore
there exist the continuous points of f(x) densely in E.

Theorem 3.5 Assume that a set E is a bounded measurable set in Rd

and K = [a1, b1]× [a2, b2]×· · ·× [ad, bd] is a bounded closed interval including
E. Assume that a function f(x) is bounded and integrable on E.
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Put

f∗(x) =

{
f(x), (x ∈ E),

0, (x ∈ K\E)

formally. Then we have the following equality

∫

E

f(x)dx =

∫

K

f(x)χE(x)dx.

4 Iterated integral

In this section, we study the iterated integral.
In order to calculate the d-dimensional integral actually, it is suitable to

calculate it by the iteration of the 1-dimensional integrals. In the following, we
study this iterated integral.

At first, we prepare the notation.
We denote a variable x = (x1, x2, · · · , xd) as x = (x1, x′), x′ =

(x2, · · · , xd) and we denote f(x) = f(x1, x
′).

Theorem 4.1 Assume that a function f(x) is bounded and integrable on
a bounded closed interval

K =

d∏
i=1

[ai, bi] = {x = (x1, x2, · · · , xd); ai ≤ xi ≤ bi, (1 ≤ i ≤ d)}.

If we put

K ′ =
d∏

i=2

[ai, bi],

we have the following (1) and (2):

(1) If there exists ∫

K′
f(x1, x

′)

for an arbitrary x1 ∈ [a1, b1], we have the following equality

∫

K

f(x)dx =

∫ b1

a1

{
∫

K′
f(x1, x

′)dx′}dx1. (4.1)
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(2) If there exists ∫ b1

a1

f(x1, x
′)dx1

for an arbitrary x′ ∈ K ′, we have the following equality

∫

K

f(x)dx =

∫

K′
{
∫ b1

a1

f(x1, x
′)dx1}dx′. (4.2)

Further we can study the (d − 1)-dimensional integral with respect to x′

in the similar way. This integral comes to the iterations of the 1-dimensional
integrals inductively.

Further, we consider the section with respect to the other coordinate xi of
the variable x by the same method.

Thereby we have the following Corollary.

Corollary 4.1 If a function f(x) is continuous on a bounded closed in-
terval

K =
n∏

i=1

[ai, bi],

we have the following equality

∫

K

f(x)dx =

∫ bi1

ai1

dxi1

∫ bi2

ai2

dxi2 · · ·
∫ bid

aid

f(x1, x2, · · · , xd)dxid .

Here (i1, i2, · · · , id) is an arbitrary permutation of (1, 2, · · · , n).

Theorem 4.2 Let E be a measurable bounded closed set in Rd and let

K =
d∏

i=1

[ai, bi]

be an arbitrary closed interval including E. Let χE(x) be the defining function
of E. If a function f(x) is bounded and integrable on E, we put

f∗(x) =

{
f(x), (x ∈ E),

0, (x ∈ K\E)

and we denote it as f∗(x) = f(x)χE(x) formally. Then we have the following
equality ∫

E

f(x)dx =

∫

K

f(x)χE(x)dx.
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Put
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f∗(x) =

{
f(x), (x ∈ E),

0, (x ∈ K\E)

and we denote it as f∗(x) = f(x)χE(x) formally. Then we have the following
equality ∫

E

f(x)dx =

∫

K

f(x)χE(x)dx.
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Theorem 4.3 Assume that E′ is a measurable bounded closed set in Rd−1

and two functions φ1(x
′) and φ2(x

′) are continuous on E′ such as φ1(x
′) ≤

φ2(x
′) holds for x′ ∈ E′. Then the bounded closed set

E = {x = (x1, x
′); x′ ∈ E′, φ1(x

′) ≤ x1 ≤ φ2(x
′)}

is measurable and its Jordan measure is equal to

µ(E) =

∫

E′
{φ2(x

′)− φ1(x
′)}dx′.

Theorem 4.4 Assume that E, E′, φ1 and φ2 are the same as in Theorem
4.3. If a function f(x) is continuous on E, we have the following equality

∫

E

f(x)dx =

∫

E′
dx′

∫ φ2(x
′)

φ1(x′)

f(x1, x
′)dx1.

Theorem 4.5 Assume that E is a measurable bounded closed set in Rd

and

K =
d∏

i=1

[ai, bi]

is an arbitrary bounded closed interval including E. For 1 ≤ i ≤ d, E(xi) be
the section of x by the hyperplane which is orthogonal to the xi-axis through
xi ∈ [ai, bi]. Then we assume that E(xi) is the measurable bounded closed set
in Rd−1 for all xi ∈ [ai, bi]. Then, if a function f(x) is continuous on E, we
have the following equality

∫

E

f(x)dx =

∫ bi

ai

dxi

∫

E(xi)

f(x1, x2, · · · , xd)dx̌i.

Here we denote x̌i = (x1, · · · , xi−1, xi+1, · · · , xd).

5 Method of calculation of the Riemann inte-
gral

In this section, we study one method of calculation of the Riemann integral.
This is the method of approximating the domain of integration of the Riemann
integral by using the direct family of measurable bounded closed sets. Until
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now, this is considered as the improper Riemann integral. The new definition
of the Riemann integral includes the case of the improper Riemann integral
already. The remarkable point is the method of calculation of the Riemann
integral.

Assume that the domain of integration E is a general measurable set. Then
the Jordan measure of the boundary Ė of E is 0.

Now we define that a direct family {Eα;α ∈ A} of the measurable bounded
closed sets included in E converges to E if, for an arbitrary measurable
bounded closed set K included in E, there exists a certain α0 ∈ A such that
K ⊂ Eα holds for α ≥ α0.

Then we say that the direct family {Eα} is an approximating direct
family of E.

Especially, put A = {1, 2, 3, · · · }. Then we say that a sequence {En}
monotonously converges to E if E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ · · · holds.

In general, if a sequence {En} converges to E and we put E1∪E2∪· · ·∪En =
Hn, (n = 1, 2. 3, · · · ), then the sequence {Hn} converges to E monotonously.

Assume that an integrand f(x) is a measurable function on E. When we
put E(∞) = {x ∈ E; |f(x)| = ∞}, we say that a point in E(∞) is a singular
point of f(x). Then we assume that E(∞) ∈ B holds and it has the Jordan
measure 0. Thus E\E(∞) is also a measurable set.

Further we assume that f(x) is bounded and integrable on an arbitrary mea-
surable bounded closed set in E\E(∞). Then when the direct family {I(Eα)}
defined by the formula

I(Eα) =

∫

Eα

f(x)dx

for an approximating direct family {Eα} of E\E(∞) converges, we have the
equality ∫

E

f(x)dx = lim
α

∫

Eα

f(x)dx

for the Moore-Smith limit
I = lim

α
I(Eα).

Then the Moore-Smith limit limα I(Eα) does not depend on the choice of the
approximating direct family {Eα} of E\E(∞) if the Riemann integral converges
absolutely. Further the Moore-Smith limit in the above takes the various value
of the integral depending on the choice of the approximating direct family {Eα}
if the Riemann integral converges conditionally. This Moore-Smith limit does
not exist if the Riemann integral diverges.

Remark 5.1 Until now, we say that the Riemann integral calculated by
using the approximating direct family {Eα} as in the above is the improper
Riemann integral. Nevertheless, we see that the definition of the Riemann
integral in this paper includes the definition of the improper Riemann integral.
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Now, for a measurable function f(x) on E, we put

f+(x) = sup(f(x), 0), f−(x) = − inf(f(x), 0).

Then we have the following relations

|f(x)| ≥ f+(x) ≥ 0, |f(x)| ≥ f−(x) ≥ 0,

f(x) = f+(x)− f−(x), |f(x)| = f+(x) + f−(x).

Hence f(x) is integrable if and only if f+(x) and f−(x) are integrable. Then
we have the equality

∫

E

f(x)dx =

∫

E

f+(x)dx−
∫

E

f−(x)dx.

Here we have the relations concerning the convergence and divergence of the
Riemann integral of f(x) on E in the following table.

Table 5.1 Convergence and divergence
of the Riemann integral




conv.=convergence, div.=divergence,

abs.conv.=absolute convergence,

cond.conv.=conditional convergence.




∫

E

f(x)dx

∫

E

|f(x)|dx
∫

E

f+(x)dx

∫

E

f−(x)dx

abs.conv. conv. conv. conv.

div. div. conv. div.

div. div. div. conv.

cond.conv. or div. div. div. div.

We have the following properties of the Riemann integral.

Theorem 5.1 Assume that E is a measurable subset of Rd. Assume
that a function f(x) is measurable and nonnegative on E and the set E(∞) of
its singular points has the Jordan measure 0. Then if limα I(Eα) exists for a
certain approximating direct family {Eα} of E\E(∞), the Riemann integral of
f(x) on E converges absolutely.

Theorem 5.2 Let E, f(x) and E(∞) be the same as in Theorem 5.1.
Then ∫

E

f(x)dx
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converges absolutely if and only if

I(H) =

∫

H

f(x)dx

is bounded for all measurable bounded closed set H included in E\E(∞).

Theorem 5.3 Assume that E is a measurable bounded set in Rd and a
function f(x) is Riemann integrable on E. Further assume that f(x) ≥ 0 holds.
Assume that a sequence {En} of measurable subsets of E satisfies the following
conditions (1) and (2):

(1) f(x) is Riemann integrable on En, (n ≥ 1).

(2) We have µ(E\En) → 0, (n → ∞).

Then we have the equality

lim
n→∞

∫

En

f(x)dx =

∫

E

f(x)dx. (5.1)

Remark 5.2 If a function f(x) is not Riemann integral on E in Theorem
5.3, we have ∫

E

f(x)dx = +∞.

Then, if the other conditions are the same as in Theorem 5.3, the equality
(5.1) holds in the sense that the left hand side of the formula (5.1) diverges to
+∞.

Proposition 5.1 Let E be a measurable set in Rd. Let f(x) be a extended
real valued measurable function on E. Further assume that E(∞) is the set of
the singular points of f(x) and µ(E(∞)) = 0 holds. Assume that a direct
family {f∆(x)} of simple functions converges to f(x) uniformly on E\E(∞) in
the wider sense and a direct family {Eα} of measurable bounded closed sets is
an approximating direct family of E\E(∞). Then we consider two equalities of
the Riemann integral as follows:

(I)

∫

E

f(x)dx = lim
∆

∫

E

f∆(x)dx.

(II)

∫

E

f(x)dx = lim
α

∫

Eα

f(x)dx.

Then the convergence or the divergence of the Riemann integrals in (I) or
(II) are equivalent. Further the absolute convergence or the conditional conver-
gence of the Riemann integrals (I) or (II) are equivalent.
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Now, for a measurable function f(x) on E, we put
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We have the following properties of the Riemann integral.

Theorem 5.1 Assume that E is a measurable subset of Rd. Assume
that a function f(x) is measurable and nonnegative on E and the set E(∞) of
its singular points has the Jordan measure 0. Then if limα I(Eα) exists for a
certain approximating direct family {Eα} of E\E(∞), the Riemann integral of
f(x) on E converges absolutely.

Theorem 5.2 Let E, f(x) and E(∞) be the same as in Theorem 5.1.
Then ∫

E

f(x)dx
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converges absolutely if and only if

I(H) =

∫

H

f(x)dx

is bounded for all measurable bounded closed set H included in E\E(∞).

Theorem 5.3 Assume that E is a measurable bounded set in Rd and a
function f(x) is Riemann integrable on E. Further assume that f(x) ≥ 0 holds.
Assume that a sequence {En} of measurable subsets of E satisfies the following
conditions (1) and (2):

(1) f(x) is Riemann integrable on En, (n ≥ 1).

(2) We have µ(E\En) → 0, (n → ∞).

Then we have the equality

lim
n→∞

∫

En

f(x)dx =

∫

E

f(x)dx. (5.1)

Remark 5.2 If a function f(x) is not Riemann integral on E in Theorem
5.3, we have ∫

E

f(x)dx = +∞.

Then, if the other conditions are the same as in Theorem 5.3, the equality
(5.1) holds in the sense that the left hand side of the formula (5.1) diverges to
+∞.

Proposition 5.1 Let E be a measurable set in Rd. Let f(x) be a extended
real valued measurable function on E. Further assume that E(∞) is the set of
the singular points of f(x) and µ(E(∞)) = 0 holds. Assume that a direct
family {f∆(x)} of simple functions converges to f(x) uniformly on E\E(∞) in
the wider sense and a direct family {Eα} of measurable bounded closed sets is
an approximating direct family of E\E(∞). Then we consider two equalities of
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∫

E

f(x)dx = lim
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∫

E

f∆(x)dx.
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6 Change of variables

In this section, we prove the formula of the change of variables of the d-
dimensional integral.

Now we assume that a C1-mapping x = φ(u) from an open set U ′ in u-space
onto an open set U in x-space one to one. Then if we have

J =
∂(x)

∂(u)
=

∂(x1, x2, · · · , xd)

∂(u1, u2, · · · , ud)
̸= 0

on U ′, the inverse mapping u = φ−1(x) is C1-class on U . Assume that the
closure of the domain of integration is a bounded set included in the open set
U , and E and E′ correspond one to one by the mapping φ. Then the closure of
E′ is a bounded set included in U ′ and the boundary Ė of E and the boundary
Ė′ of E′ correspond one to one.

Then we have the following Theorem 6.1.

Theorem 6.1 Assume that a C1-mapping x = φ(u) maps an open set U ′

in u-space onto an open set U in x-space one to one and we have J =
∂(x)

∂(u)
̸= 0.

Assume that E′ is a bounded measurable set such that E′ is included in U ′.
Put φ(E′) = E. Then E is a bounded measurable set such that E is included

in U and we have the equality

µ(E) =

∫

E′
|∂(x)
∂(u)

|du.

Theorem 6.2 We use the same notation as in Theorem 6.1. Then, if f(x)
is bounded and integrable on E, we have the following formula of the change of
variables ∫

E

f(x)dx =

∫

E′
f(φ(u))|∂(x)

∂(u)
|du.

Theorem 6.3 Assume that U ′ and U are both the bounded measurable
open sets and a C1-mapping x = φ(u) maps U ′ onto U one to one. Further

assume that J =
∂(x)

∂(u)
̸= 0 holds on U ′ and J is bounded. Then, if f(x) is

bounded and integrable on U , we have the following formula of the change of
variables ∫

E

f(x)dx =

∫

U ′
f(φ(u))|∂(x)

∂(u)
|du.
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Theorem 6.4 Assume that U ′ and U are two measurable subsets in u-
space and x-space respectively which are not necessarily bounded. Further, as-
sume that a C1-mapping x = φ(u) maps U ′ onto U . Then put

N ′ = {u ∈ U ′; J(u) = 0}

for J =
∂(x)

∂(u)
and put N = φ(N ′). Then assume that the Jordan measures of

N and N ′ are 0 and U ′\N ′ is mapped onto U\N one to one. Here let S be
the set of the singular points of a function f(x) and put φ−1(S) = S′. Here
assume that the Jordan measures of S and S′ are 0. Then, if a function f(x)
is Riemann integrable on U , we have the following formula of the change of
variables ∫

U

f(x)dx =

∫

U ′
f(φ(u))|J(u)|du.

Example 6.1(Polar coordinates of R3) The polar coordinates (r, θ, φ)
of a point P (x, y, z) of 3-dimensional Euclidean space R3 is defined by the
C1-mapping

Φ : x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ,

(r ≥ 0, 0 ≤ θ ≤ π, 0 ≤ φ < 2π)

from rθφ-space to xyz-space. Then assume that E′ is a measurable subset of
rθφ-space and put Φ(E′) = E. If a function f(x, y, z) is integrable on E, we
have the following formula∫

E

f(x, y, z)dxdydz

=

∫

E′
f(r sin θ cosφ, r sin θ sinφ, r cos θ)r2 sin θdrdθdφ.

Example 6.2(Polar coordinates of Rd) The polar coordinates (r, θ1,
θ2, · · · , θd−1) of a point P (x1, x2, · · · , xd) of d-dimensional Euclidean space
is defined by the C1-mapping

Φ :




x1 = r cos θ1,

x2 = r sin θ1 cos θ2,

x3 = r sin θ1 sin θ2 cos θ3,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xd−1 = r sin θ1 sin θ2 · · · sin θd−2 cos θd−1,

xd = r sin θ1 sin θ2 · · · sin θd−2 sin θd−1,

21



Axiomatic Method of Measure and Integration (II) 37

6 Change of variables

In this section, we prove the formula of the change of variables of the d-
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(r ≥ 0, 0 ≤ θ1, θ2, · · · , θd−2 ≤ π, 0 ≤ θd−1 < 2π)

from r1θ1 · · · θd−1-space to x1x2 · · ·xd-space. Then assume that E′ is a measur-
able subset of rθ1 · · · θd−1-space and put Φ(E′) = E. Then, if a function f(x)
is integrable on E, we have the following formula of the change of variables

∫

E

f(x1, x2, · · · , xd)dx1dx2 · · · dxd

=

∫

E′
f(r cos θ1, r sin θ1 cos θ2, · · · ,

r sin θ1 sin θ2 · · · sin θd−2 cos θd−1, r sin θ1 sin θ2 · · ·
sin θd−2 sin θd−1)r

d−1(sin θ1)
d−2(sin θ2)

d−3 · · ·
sin θd−2drdθ1dθ2 · · · dθd−2dθd−1.
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Abstract

We consider the Cauchy problem for non-degenerate Kirchhoff
type dissipative wave equations ρu′′ + a

(
∥A1/2u(t)∥2

)
Au+ u′ = 0

and (u(0), u′(0)) = (u0, u1), where u0 ̸= 0. We derive the lower
decay estimate ∥u(t)∥2 ≥ Ce−βt for t ≥ 0 with β > 0 for the
solution u(t).
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1 Introduction

Let H be a real Hilbert space with inner product (·, ·) and norm ∥ · ∥. Let
A be a linear operator on H with dense domain D(A). We assume that the
operator A is self-adjoint and nonnegative such that (Av, v) ≥ 0 for v ∈ D(A).
The α-th power of A with dense domain D(Aα) is denoted by Aα for α > 0, and

the graph-norm of Aα is denoted by ∥v∥α =
(
∥v∥2 + ∥Aαv∥2

) 1
2 for v ∈ D(Aα).

We use that ∥A1/2v∥2 = (Av, v) for v ∈ D(A1/2).
We study on the Cauchy problem for the non-degenerate Kirchhoff type

dissipative wave equations :

{
ρu′′ + a

(
∥A1/2u(t)∥2

)
Au+ u′ = 0 , t ≥ 0

(u(0), u′(0)) = (u0, u1) ∈ D(A)×D(A1/2) ,
(1.1)
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