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Abstract

In this paper, we study the Fourier transformation of L}, -functions
1
and LZ-functions. Here we assume that the condition —+- =1, (1 <p <

00, 1 < ¢ < o00) is satisfied. Thereby we prove the structure theorems of
the image spaces FL” and FLZ. We study the convolution fxg of a L.-

loc

function f and a LI -function g. Here assume d > 1. Further we assume
1 1 1

that the condition — = -4+ = -1, (1<p<o0, 1 <g<o0, 1 <7 <0)
p T

is satisfied. This is a generalization of the theory of Fourier transforma-

tions of L2 -functions.
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Introduction

In this paper, we study the Fourier transformation of L{ -functions and
11

Li-functions and some applications. Here we assume that the condition —+— =
q

p
1, (1 <p<oo, 1<q< ) is satisfied. In section 1, we define the Fourier
transformation and the inverse Fourier transformation of L] -functions. We
show some examples of Fourier transformation of L} -functions. We prove
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the inversion formulas of the Fourier transformation and the inverse Fourier
transformation of Lfo ~functions.
In section 2, we prove the structure theorems of the function spaces L

and L? and the structure theorems of the Fourier images FL} = and FLY.

P
loc

In section 3, we study the convolution f * g of a function f in L] = LZ(Rd)

and a function g in L} = LfOC(Rd). Here we assume that the condition

11 1 . .

=24 --1,(1<p<oo, 1 <qg<oo, 1 <r <o) is satisfied.

q r

Here I show my heartfelt gratitude to my wife Mutuko for her help of
typesetting this manuscript.
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1 Fourier transformation of L

In this section, at first we define the Fourier transformation of L}, -functions
and its fundamental properties. Here we assume 1 < p < oo. Let R? be
the d-dimensional Euclidean space. Here assume d > 1. Further we denote
LP = I[P (R%) as usual. If we put L? = LP(R?), we have the inclusion

loc loc

relation LP C L . For the points in R?
w="(z1, T2, -+, za), p="(P1, P2, -**, Pa),
we define the dual inner product by the formula
pr = (p, ) = p171 + pa¥2 + - + PaTa.

Thereby the space R? becomes a self-dual space. We define the norms of z and
p by the formulas

= AT dT T

Ipl = \/p? +p5 4+ ph
Let D = ’D(Rd) be the space of all C*°-functions with compact support in
R%.
Here we define the Fourier transformation Fp of ¢ € D by the relation

(\/Tlﬂ)d/go(x)e_imdac, (p € RY).

FD denotes the space of the Fourier image of D by the Fourier transformation
F.
Here we define the symbol e4(x) by the formula

(Fo)(p) =

e®, (x € RY).
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Then we have the formula
(Fo)0) = [ elarea-ipr)iz, (v e BY

for the Fourier transformation Fp(p).
Further, let D’ = D'(R) be the space of Schwartz distributions on R”.
Here, for the dual pair D’ and D of two TVS’s, we denote the dual inner
product of T'€ D’ and ¢ € D as < T, ¢ > and, for the dual pair (FD)" and
FD, we denote its dual inner product of S € (FD)" and ¢ € FD as < S, ¢ >.
Now assume T € D’. Then, since we have F~1p € D for ¢ € FD, we can
define a continuous linear functional

S:p=<T, Flo>, (p € FD)
and we have S € (FD)'. Namely, we have the equality
<8, p>=<T, Flp>.

Then we define that S is a Fourier transform of 7" and denote it as S = FT.

This is the new definition of the Fourier transformation of D’. Since a
Schwartz distribution is a generalized concept of functions, we had better to
define the Fourier transformation of Schwartz distributions as in the same di-
rection as the Fourier transformation of classical functions. Thus we define the
new type of Fourier transformation of Schwartz distributions.

Therefore, for the Fourier transform FT' € FD' of T € D’, we have the
relation

< FT, Fo>=<T, ¢ >, (p€D).

This is a generalization of Parseval’s formula for L?-functions. Then the Fourier
transformation F is a topological isomorphism from D’ to FD'.
Thus we have the isomorphisms

D'~ FD' = (FD)'.

Here we denote the dual mapping of the Fourier transformation F: D — FD
as F*: (FD) — D'. Then we have the equality

F*F = the identity mapping of D’.
For 1 < p < p’ < oo, we have the inclusion relations

L’ crp

loc loc

c L. CcD.

We define the Fourier transformation of f € L? considering it as an element
of D'.

We say that the limit in the sense of the topologies of D’ or FD' is the
limit in the sense of generalized functions.
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Then we give the following definition.

Definition 1.1 We define the Fourier transform (Ff)(p) of f € L by
the relation

(Ff)(p) = lim f(@)ea(—ipr)dx

R—o00 lz|<R

in the sense of generalized functions.
Then we denote F f(p) as

FNw) = [ F@ed-ip)iz, (v e B

Here, when the integration domain is equal to the entire space R?, we omit the
symbol of the integration domain.

Let C = C(R") be the function space of all continuous functions on R,
Then we have the inclusion relation

CclL?

loc*

In general, a continuous function is not necessarily a LP-function. Then we can

define the Fourier transformation of continuous functions considering them as
p .

L, -functions.

Example 1.1 We have the following equality:
(Fl-ia))0) = [ (~iz)"ea(-ipa)do = (VER)'6 ).

Here oo = (a1, g, -+, ag) denotes a multi-index of natural numbers.
Especially, for « =0 = (0, 0, ---, 0), we have the equality

(F1)(p) = / ea(—ipz)dz = (V2m)46(p).

Therefore, the Fourier transform of the constant function is equal

1
(v2m)
to the Dirac measure §. Thereby, in general, the Fourier transform Ff of a
LY -function f is not necessarily a L -function.

Now we give some examples of Fourier transforms of continuous functions.

Example 1.2 Assume d > 1 and 1 < p < oo. The constant function 1
belongs to LY = LP (R"). For R > 0, we put Xg(%) = X|s|<r(z). Then we
have xg € L} . and we have

xr — 1, (R — o0)
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p
loc

in the topology of L; -convergence. Thus we have
XR — 1, (R — OO)

in the topology of D’. Then we have

Lr(p) = / Xr(@)ea(~ipz)dz — / ea(~ipr)dz = 1(p) = (V2r)*5(p)

for R — oo in the topology of FD'.

Example 1.3 For n > 1, we put

Xn(T) = X[—n, n] (z), (z € R).

p

loe and we have

Then, for 1 < p < oo, we have y, € L

Xn — 1, (n — 00)

p
loc

in the topology of L
Thus we have

-convergence.

Xn — 1, (n = o0)

in the topology of D’. Then we have
1ll0) = [ xa@er(-ipn)ds > [ er(-ipa)ds = i(p) = VERS(p)
for n — oo in the topology of FD'.

Example 1.4 We have
1 sinpn

™ p

— d(p), (n — o0)

in the topology of FD'.

Proof =~ We have the equality

" 1 , , 2 sin pn
e1(—ipz)dr = et — T = \/7 .
| et=inn) o =y

Thus we have the conclusion by virtue of Example 1.3.//

Example 1.5 Assume d > 1 and 1 < p < co. Let n = (ny, ng, ---
be a multi-index of positive natural numbers. We denote |n| = ny+na+- -

By using the notation of Example 1.3, we denote

Xn(T) = Xy (T1)Xn, (T2) -+ Xy (Ta), (7 € Rd)v

59

) nd)

+ng.
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Xn (D) = Xy (P1)Xna (P2) -+ Xna(Pa), (p € RY).

Then we have

Xn(p) = (V2m)6(p), (In| — o)

in the topology of FD'.

Proof By virtue of Example 1.3, because we have
Xn, (pj) = V27(p))
for 1 < j < d, we have the conclusion. //
Theorem 1.1 We use the same notation as Example 1.5. Then, for

Xn(x) = Xny (l‘l)an(.'EQ) o 'Xnd(xd)7 (33 € Rd)7

we denote
Xn (D) = Ko (P1)Xna (P2) -+ Xna(pa), (0 € RY).

For f(z) € LY, we put f,(x) = xn(x)f(x). Then we have f,(x) € LP. Now,
when we consider that f, and f are elements of D', we denote their Fourier
transformations as F fr, = fn and Ff = f. Then we have

fo = f. (In] = o)
in the topology of FD'.
Proof When |n| — oo, we have
fal@) = f(2), (x € RY)
Therefore, when |n| — oo, we have

fn =1

p
loc*

in the topology of L

in the topology of D’.
Since we have f,, = x, f, we have the equality
. 1 .

fn= (an)/\ = (\/ﬂ)dﬁn * f

in FD'. Here the symbol * denotes the convolution. By virtue of Example 1.5,
we have

Xn — (V2m)%6, (|n| — o0).
Thus, when |n| — oo, we have

fnszn*f%5*f:f
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in the topology of FD'. //

When we use the notation in Theorem 1.1, we have f,, € LP and

fulp) = / Fo(@)eal—ip)da.

Therefore we have the equality

lim / fol@)ea(—ipx)dz = f(p)

[n|—o00

in FD'. In this sense, we use the notation
f0) = [ f@ea(-ipr)da

for f (p) € FD'. Here we consider this integral in the sense of convergence in
the topology of FD'.

In this case, we say that this integral converges in the sense of generalized
functions.

Similarly, we define the Fourier inverse transformation as follows.

Definition 1.2(Fourier inverse transformation) Assume 1 < p < oc.

We define the Fourier inverse transformation of g(p) € Li,. by the relation

(Flg)(w) = Jim | |<Rg(p)€d(ip:v)dp

in the sense of generalized functions.
We denote (F~1g)(x) as

(Flg)(x) = / 9(p)ealipz)dp.

Theorem 1.2 Let a = (a1, ag, -+, ag) be a multi-index of natural
numbers. Assume that f(z) € LV = and D*f(x) € LY hold for 1 < p < cc.

loc loc

Then we have the following (1) and (2):
(1) D*(Ff)(p) = F((=ix)*f)(p).
(2)  (ip)*(Ff)p) = F(D*f)(p).
In Theorem 1.2, the symbols 2% and D etc. are the same as usually used.

Namely D® f means a L} -derivatives, and D®(F f) means, in general, a partial
derivative of Ff in FD’ and so on .
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Next we prove the Fourier inversion formula.

Now we assume f € Llpoc. Here we assume 1 < p < oo. Then, since we have

fr(z) € LP, (0 < R < o0),

we have

F1Ffr(z) = fr(x), (0 < R < o)

in the sense of generalized functions.
Then, since we have

fr(x) = f(z), (R — o0)
is the sense of generalized functions, we have the equality
FIFf=1.
Therefore we have the following inversion formula.

Theorem 1.3(Inversion formula) Assumel < p < oo, For f(z) € L |
we have the following inversion formula

R— o0

f@) = Jim [ (Ffr)(p)ealipr)dp = / ealipz)dp / F@)ea(~ipy)dy.

Here the integral converges in the sense of generalized functions. Namely we
have the equality
FlFrf=1f

Similarly, for g(p) € L1, ., we denote the restriction of g to the closed ball

Ip| < T as gr. Then we have the equality
FFgr(p) = gr(p), (0<T < o)
in the sense of generalized functions. Then we have
gr(p) = 9(p), (T — o0)
in the sense of generalized functions, Thus we have the equality

FF 'g(p) = g(p)

in the sense of generalized functions.
Therefore we have the following inversion formula.

p

Theorem 1.4 (Inversion formula) Assumel <p < oo, For g € L},

we have the following inversion formula

o(p) = / (F'g)(@)ea(—ipe)de = / ea(—ipz)da / g(@)ealiqz)dq.
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Here the integral converges in the sense of generalized functions. Namely we
have the equality
FF lg=g.

Theorem 1.5 For f € L. | we have the equalities:

loc?

F2f(z) = f(~a), F'f(x) = f(2).

2 Structure theorems

In this section, we study the structure theorems of the function spaces Li, .

and LJ and the structure theorems of the Fourier images FL{, . and FLJ. Here

we assume that the real numbers p and ¢ satisfy the condition
1 1
—+-=1,(1<p<oo, 1<g<o0).
P q

Now we choose an exhausting sequence {K;} of compact sets in R? which
satisfies the following conditions (i) and (ii):

(i) KycK,c--cR' R'=[]JK;.
j=1
(11) Kj - Cl(int(Kj))v Kj C int(Kj-i-l)’ (] = 13 23 37 o )

Then we denote the projective limit of projective system {LP(K;)} of Ba-

nach spaces as
lim L ().
Then we have the isomorphism

LP

loc

= lim LP(K;)

as TVS’s. Here, since, for each j, the restriction mapping L? (K1) — L?(Kj;)

is a weakly compact mapping, L}  is a FS*-space.

Further, because the system {L(kK)} of Banach spaces can be considered
as an inductive system, we denote the inductive limit as

limy L9(E; ).
Then we have the isomorphism

L~ @Lq(Kj)
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as TVS’s. Here LY denotes the TVS of all Li-functions with compact support.
Then, since, for each j, the inclusion mapping L(K;) — L9(K;11) is a weakly
compact mapping, L¢ is a DFS*-space.
Since LP(K;) and L(K;) are the dual pair of Banach spaces, we have the
isomorphism
Lige = (L)

loc

as TVS’s. Here (LY)’ denotes the dual space of L? and we define the dual inner
product of f € LY ~and g € L? by the equality

loc

<fg>= / f(@)g(z)dz.

Here the dual inner product is a bilinear functional which defines the duality
relation of the pair of two TVS’s L} ~and LY.
Because L} is a FS*-space and L? is a DFS*-space, L

ive. Thus we have the following theorem.

P

q :
loe and L are reflex

Theorem 2.1 We use the the notation in the above. Assume that two
real numbers satisfy the condition

1 1

—+-=1, (1<p<oo, 1 <g< o).
P q

Then we have the following isomorphisms (1) and (2):
(1) Ly

loc

= (Lg)/ = (Lfoc)u'

(2) L4==(LP ) = (L4)".

loc

Theorem 2.2 Assume 1 < g < oco. Then the function space D is dense
i LY.

Proof Assume 1 < ¢ < co. Then we prove that D = D(Rd) is dense in
LI = LY(R"). Now we choose a exhausting sequence {K;} of compact sets in
R®. Here we define D Kk, is the subspace of D which is composed of the functions
in D whose supports are included in K;. Then we have the isomorphisms

oo
D = lim D, = UDKJ"
j=1
Further we have the isomorphisms
o0

LI =1l L9(K;) 2= | L9(K;).

j=1
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Then, because Dy, is dense in LY(Kj) for each j > 1, we have proved that D
is dense in LY. //

Corollary 2.1 Assumel < p < oco. LetV be a complete TVS and let T be
a linear mapping from LY. into V. Then the following (1) ~ (3) are equivalent:

loc

(1) T is continuous with respect to the strong topology of LY

loc*

(2) T is continuous with respect to the weak topology of LY

loc*

(3) T is continuous with respect to the induced topology on LY = from the

topology of D’

loc

Then, because we have the inclusion relation LY C L9, we define the Fourier
transformation of a LZ-function g(z) by using the Fourier transformation of a
Li-function

Fg(p) = /g(x)ed(*ipx)dx.

Further we define the Fourier transformation of a L?

loe-function f by the
relation

Ffp) = lim [ fle)ea(—ipr)d
‘]*)OO KJ
in the sense of generalized functions in D’ and FD'.
By virtue of the definition of the Fourier transformation of f € LP
have the equality

loc? we

< Ff, Fg>=<f, g>

for any g € D.

Since a Li-function g has the compact support, there exists some K; such
that supp(g) C K holds by the definition of {K;}. Therefore, for an arbitrary
k > j, we have the equalities

<= [ it dxf/ f@)g(@)de =< f, g > .

Here fg, (z) denotes the image of f(x) € LV
L7 2 LP(K).

loc
Since we have the equality

/fka(p)fg(fp)dp: /ka(x)g(w)dx

by virtue of Parseval’s formula, we have the equality

by the restriction mapping

loc

lim / F [r () Fg(=p)dp = lim / fr(2)g(x)dx

k—o0
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= / fi, (2)g(x)dr = / F fx,;(p)Fg(=p)dp
Especially, supposing that we have the relations
DK_]- C Lp(Kj), g < DK].,

we have the equality

/ Ff(p)Fa(—p)dp = / f(@)g(x)dz

We can choose a compact set K; arbitrarily. Thus, if we consider an arbi-
trary g € D, we have g € Dk, for some j > 1. Thus we have the equality in
the above for an arbitrary g € D.

Then, because the dual inner product

<f g>= / f(@)g(x)dz

is defined for an arbitrary f € LI and g € L4, we have the equality

loc
< Ff, Fg>= /]—‘f VFg(—p)dp = /f x)dr =< f, g >

for an arbitrary f € LY and an arbitrary g € LY.

Now we choose one exhausting sequence {K;} of compact sets in R? as in
the above.
Then, for the sequence

L'(Ky)CL'(Ky)C--+, (1<r<oo, r=porgq),

we have the isomorphisms

Lq NlﬂLq ’ loc ]LLP

Further we have the isomorphisms

U 7 loc = ﬂ LP(KJ)

Then we have the isomorphisms

IIZ

FL'(K;)=L"(Kj), (j=1,2,3,--+)
for 1 <r < oo and r = p or q. Further, for the sequence

FL'(Ky) C FL"(Ks) C -+ ,(1<r<o0, r=porgq),
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loc™

we have the isomorphisms

FLY = ling FLI(K,) = lim L9(K;) = LY,
.7-'L{DOC ~ L}"L”( )= LLP( )= Lfoc
Then we have the relations
‘FL{)OC c ‘FD/ ‘FL{)OC # Lloc
Therefore we have the following theorem.
Theorem 2.3 We use the notation in the above. Then we have the

following isomorphisms (1) ~ (4):
(1) L= lim LYK U LYK

(2) FLI = lim FLI(K;).
(3) FLUK,)=LIK;), (j=1,2 3, ).
(4) FLI~ L4, FLI + L1

Further we have the following theorem.

Theorem 2.4 We use the notation in the above.

lowing isomorphisms (1) ~ (3) and the relation (4):
(1) LD, = lim L7(, ﬂm Loy

(2) FLY, =lim FLP(K;).

loc

(3) FLU =L

loc loc*

(4) L} .cD, FLV

loc

CFD', FLY  # L} .

Theorem 2.5 We use the notation in the above. If f € LY

LP

loe 0T€ satisfied, we have the equality

Then we have the fol-

and Ff €

loc

Ff(p) = lim f(@)eq(—ipx)dx, (p € Rd)

in the topology of L

loc*
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Theorem 2.6 We use the notation in the above. If f € LP
are satisfied, we have the equality

and F~1f €

loc

LP

loc
F~lf(z) = lim f(p)ealipx)dp, (x € RY)

in the topology of LY

loc®

We remark that functions in D or § satisfy the conditions of Theorem 2.5
and Theorem 2.6.

3 Convolution

In this section, we study the convolution f * ¢ of a function f in L] =
L7(RY) and a function g in L = LP (R%). Here assume d > 1. Further

loc loc
assume that three real numbers p, ¢ and r satisfy the following condition

We define the convolution f g of f € L. and g € L

(@) = [ £ =)oty

Then we have the equality

/f(x —y)g(y)dy = /g(z —y)f(y)dy.

Therefore we have the following theorem.

by the relation

loc

Theorem 3.1  We use the notation in the above. For f € L” and g € L
we have f g € Ll . Further we have the equality

loc?

frg=g*[.

Theorem 3.2  We use the notation in the above. Let a = (a1, g, -+, ag)
be a multi-index of natural numbers. Then, for f € L. and g € L¥ | we have
the equality

loc?

D*(fxg) = (D"f)*g=f*(D")
in L1

e Here the partial derivatives are considered in the sense of topologies of
L' and LY. . and L

loc loc®
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Corollary 3.1 We use the notation in the above. Assume f € L.. Then

the linear transformation of Lt . defined by the convolution

Tp: g— fxg, (g€ Lt)

. . ) , p q
is a continuous linear mapping from Ly, into L], .

foc—functions and it converges to

Namely, assume that g, — g, (n — 00) in the

Now assume that {g,} is a sequence of L
geLi . in thi topology of LY .

topology of L; .. Then we have

Tf(gn) - Tf(g)v (TL - OO)

q
loc

in the topology of L

Corollary 3.2  We use the notation in the above. Assume g € L}, .. Then
the linear mapping Ty = f* g, (f € L) defined by the convolution is a contin-
uous linear mapping from LY into L .
Therefore, if a sequence {f,} of Ll -functions converges to f € L in the

topology of L7, we have

Ty(fn) = Ty(f), (n— o0)

Here the convolution of a function f in L] and a function
— L]

loc*

q
loc*

is a separately continuous bilinear mapping L7 x LI

in the topology of L
g in LY

loc

Theorem 3.3 We use the notation in the above. Assume f € L7 and
g € LY . Then we have the equality

loc®

F(f x9) = (V2m)F(f)F(g).
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