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Abstract

In this paper, we study the Fourier transformation of Lp
loc-functions

and Lq
c-functions. Here we assume that the condition

1

p
+

1

q
= 1, (1 ≤ p ≤

∞, 1 ≤ q ≤ ∞) is satisfied. Thereby we prove the structure theorems of
the image spaces FLp

loc and FLq
c . We study the convolution f ∗g of a Lr

c-
function f and a Lp

loc-function g. Here assume d ≥ 1. Further we assume

that the condition
1

q
=

1

p
+

1

r
− 1, (1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, 1 ≤ r ≤ ∞)

is satisfied. This is a generalization of the theory of Fourier transforma-
tions of L2

loc-functions.
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Introduction

In this paper, we study the Fourier transformation of Lp
loc-functions and

Lq
c-functions and some applications. Here we assume that the condition

1

p
+
1

q
=

1, (1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞) is satisfied. In section 1, we define the Fourier
transformation and the inverse Fourier transformation of Lp

loc-functions. We
show some examples of Fourier transformation of Lp

loc-functions. We prove
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the inversion formulas of the Fourier transformation and the inverse Fourier
transformation of Lp

loc-functions.
In section 2, we prove the structure theorems of the function spaces Lp

loc

and Lq
c and the structure theorems of the Fourier images FLp

loc and FLq
c .

In section 3, we study the convolution f ∗ g of a function f in Lr
c = Lr

c(R
d)

and a function g in Lp
loc = Lp

loc(R
d). Here we assume that the condition

1

q
=
1

p
+
1

r
− 1, (1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, 1 ≤ r ≤ ∞) is satisfied.

Here I show my heartfelt gratitude to my wife Mutuko for her help of
typesetting this manuscript.

1 Fourier transformation of Lp
loc-functions

In this section, at first we define the Fourier transformation of Lp
loc-functions

and its fundamental properties. Here we assume 1 ≤ p ≤ ∞. Let Rd be
the d-dimensional Euclidean space. Here assume d ≥ 1. Further we denote
Lp
loc = Lp

loc(R
d) as usual. If we put Lp = Lp(Rd), we have the inclusion

relation Lp ⊂ Lp
loc. For the points in Rd

x = t(x1, x2, · · · , xd), p =
t(p1, p2, · · · , pd),

we define the dual inner product by the formula

px = (p, x) = p1x1 + p2x2 + · · ·+ pdxd.

Thereby the space Rd becomes a self-dual space. We define the norms of x and
p by the formulas

|x| =
√
x2
1 + x2

2 + · · ·+ x2
d,

|p| =
√
p21 + p22 + · · ·+ p2d.

Let D = D(Rd) be the space of all C∞-functions with compact support in
Rd.

Here we define the Fourier transformation Fφ of φ ∈ D by the relation

(Fφ)(p) =
1

(
√
2π)d

∫
φ(x)e−ipxdx, (p ∈ Rd).

FD denotes the space of the Fourier image of D by the Fourier transformation
F .

Here we define the symbol ed(x) by the formula

ed(x) =
1

(
√
2π)d

ex, (x ∈ Rd).

2

Then we have the formula

(Fφ)(p) =

∫
φ(x)ed(−ipx)dx, (p ∈ Rd)

for the Fourier transformation Fφ(p).
Further, let D′ = D′(Rd) be the space of Schwartz distributions on Rd.
Here, for the dual pair D′ and D of two TVS’s, we denote the dual inner

product of T ∈ D′ and φ ∈ D as < T, φ > and, for the dual pair (FD)′ and
FD, we denote its dual inner product of S ∈ (FD)′ and φ ∈ FD as < S, φ >.

Now assume T ∈ D′. Then, since we have F−1φ ∈ D for φ ∈ FD, we can
define a continuous linear functional

S : φ →< T, F−1φ >, (φ ∈ FD)

and we have S ∈ (FD)′. Namely, we have the equality

< S, φ >=< T, F−1φ > .

Then we define that S is a Fourier transform of T and denote it as S = FT .
This is the new definition of the Fourier transformation of D′. Since a

Schwartz distribution is a generalized concept of functions, we had better to
define the Fourier transformation of Schwartz distributions as in the same di-
rection as the Fourier transformation of classical functions. Thus we define the
new type of Fourier transformation of Schwartz distributions.

Therefore, for the Fourier transform FT ∈ FD′ of T ∈ D′, we have the
relation

< FT, Fφ >=< T, φ >, (φ ∈ D).

This is a generalization of Parseval’s formula for L2-functions. Then the Fourier
transformation F is a topological isomorphism from D′ to FD′.

Thus we have the isomorphisms

D′ ∼= FD′ ∼= (FD)′.

Here we denote the dual mapping of the Fourier transformation F : D → FD
as F∗ : (FD)′ → D′. Then we have the equality

F∗F = the identity mapping of D′.

For 1 ≤ p < p′ ≤ ∞, we have the inclusion relations

Lp′

loc ⊂ Lp
loc ⊂ L1

loc ⊂ D′.

We define the Fourier transformation of f ∈ Lp
loc considering it as an element

of D′.
We say that the limit in the sense of the topologies of D′ or FD′ is the

limit in the sense of generalized functions.
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Then we give the following definition.

Definition 1.1 We define the Fourier transform (Ff)(p) of f ∈ Lp
loc by

the relation

(Ff)(p) = lim
R→∞

∫

|x|≤R

f(x)ed(−ipx)dx

in the sense of generalized functions.
Then we denote Ff(p) as

(Ff)(p) =

∫
f(x)ed(−ipx)dx, (p ∈ Rd).

Here, when the integration domain is equal to the entire space Rd, we omit the
symbol of the integration domain.

Let C = C(Rd) be the function space of all continuous functions on Rd.
Then we have the inclusion relation

C ⊂ Lp
loc.

In general, a continuous function is not necessarily a Lp-function. Then we can
define the Fourier transformation of continuous functions considering them as
Lp
loc-functions.

Example 1.1 We have the following equality:

(F(−ix)α)(p) =

∫
(−ix)αed(−ipx)dx = (

√
2π)dδ(α)(p).

Here α = (α1, α2, · · · , αd) denotes a multi-index of natural numbers.
Especially, for α = 0 = (0, 0, · · · , 0), we have the equality

(F1)(p) =
∫

ed(−ipx)dx = (
√
2π)dδ(p).

Therefore, the Fourier transform of the constant function
1

(
√
2π)d

is equal

to the Dirac measure δ. Thereby, in general, the Fourier transform Ff of a
Lp
loc-function f is not necessarily a Lp

loc-function.

Now we give some examples of Fourier transforms of continuous functions.

Example 1.2 Assume d ≥ 1 and 1 ≤ p ≤ ∞. The constant function 1
belongs to Lp

loc = Lp
loc(R

d). For R > 0, we put χR(x) = χ|x|≤R(x). Then we
have χR ∈ Lp

loc and we have

χR → 1, (R → ∞)

4

in the topology of Lp
loc-convergence. Thus we have

χR → 1, (R → ∞)

in the topology of D′. Then we have

χ̂R(p) =

∫
χR(x)ed(−ipx)dx →

∫
ed(−ipx)dx = 1̂(p) = (

√
2π)dδ(p)

for R → ∞ in the topology of FD′.

Example 1.3 For n ≥ 1, we put

χn(x) = χ[−n, n](x), (x ∈ R).

Then, for 1 ≤ p ≤ ∞, we have χn ∈ Lp
loc and we have

χn → 1, (n → ∞)

in the topology of Lp
loc-convergence.

Thus we have
χn → 1, (n → ∞)

in the topology of D′. Then we have

χ̂n((p) =

∫
χn(x)e1(−ipx)dx →

∫
e1(−ipx)dx = 1̂(p) =

√
2πδ(p)

for n → ∞ in the topology of FD′.

Example 1.4 We have

1

π

sin pn

p
→ δ(p), (n → ∞)

in the topology of FD′.

Proof　We have the equality

∫ n

−n

e1(−ipx)dx =
1

ip
√
2π
(eipn − e−ipn) =

√
2

π

sin pn

p
.

Thus we have the conclusion by virtue of Example 1.3.//

Example 1.5 Assume d ≥ 1 and 1 ≤ p ≤ ∞. Let n = (n1, n2, · · · , nd)
be a multi-index of positive natural numbers. We denote |n| = n1+n2+· · ·+nd.
By using the notation of Example 1.3, we denote

χn(x) = χn1(x1)χn2(x2) · · ·χnd
(xd), (x ∈ Rd),

5
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χ̂n(p) = χ̂n1(p1)χ̂n2(p2) · · · χ̂nd
(pd), (p ∈ Rd).

Then we have
χ̂n(p)→ (

√
2π)dδ(p), (|n| → ∞)

in the topology of FD′.

Proof　 By virtue of Example 1.3, because we have

χ̂nj (pj)→
√
2πδ(pj)

for 1 ≤ j ≤ d, we have the conclusion. //

Theorem 1.1 We use the same notation as Example 1.5. Then, for

χn(x) = χn1(x1)χn2(x2) · · ·χnd
(xd), (x ∈ Rd),

we denote
χ̂n(p) = χ̂n1(p1)χ̂n2(p2) · · · χ̂nd

(pd), (p ∈ Rd).

For f(x) ∈ Lp
loc, we put fn(x) = χn(x)f(x). Then we have fn(x) ∈ Lp. Now,

when we consider that fn and f are elements of D′, we denote their Fourier
transformations as Ffn = f̂n and Ff = f̂ . Then we have

f̂n → f̂ , (|n| → ∞)

in the topology of FD′.

Proof When |n| → ∞, we have

fn(x)→ f(x), (x ∈ Rd)

in the topology of Lp
loc. Therefore, when |n| → ∞, we have

fn → f

in the topology of D′.
Since we have fn = χnf , we have the equality

f̂n = (χnf)
∧ =

1

(
√
2π)d

χ̂n ∗ f̂

in FD′. Here the symbol ∗ denotes the convolution. By virtue of Example 1.5,
we have

χ̂n → (
√
2π)dδ, (|n| → ∞).

Thus, when |n| → ∞, we have

f̂n =
1

(
√
2π)d

χ̂n ∗ f̂ → δ ∗ f̂ = f̂

6

in the topology of FD′. //

When we use the notation in Theorem 1.1, we have fn ∈ Lp and

f̂n(p) =

∫
fn(x)ed(−ipx)dx.

Therefore we have the equality

lim
|n|→∞

∫
fn(x)ed(−ipx)dx = f̂(p)

in FD′. In this sense, we use the notation

f̂(p) =

∫
f(x)ed(−ipx)dx

for f̂(p) ∈ FD′. Here we consider this integral in the sense of convergence in
the topology of FD′.

In this case, we say that this integral converges in the sense of generalized
functions.

Similarly, we define the Fourier inverse transformation as follows.

Definition 1.2(Fourier inverse transformation) Assume 1 ≤ p ≤ ∞.
We define the Fourier inverse transformation of g(p) ∈ Lp

loc by the relation

(F−1g)(x) = lim
R→∞

∫

|p|≤R

g(p)ed(ipx)dp

in the sense of generalized functions.
We denote (F−1g)(x) as

(F−1g)(x) =

∫
g(p)ed(ipx)dp.

Theorem 1.2 Let α = (α1, α2, · · · , αd) be a multi-index of natural
numbers. Assume that f(x) ∈ Lp

loc and Dαf(x) ∈ Lp
loc hold for 1 ≤ p ≤ ∞.

Then we have the following (1) and (2):

(1) Dα(Ff)(p) = F((−ix)αf)(p).

(2) (ip)α(Ff)(p) = F(Dαf)(p).

In Theorem 1.2, the symbols xα and Dα etc. are the same as usually used.
NamelyDαf means a Lp

loc-derivatives, andDα(Ff) means, in general, a partial
derivative of Ff in FD′ and so on .
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6
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Next we prove the Fourier inversion formula.
Now we assume f ∈ Lp

loc. Here we assume 1 ≤ p ≤ ∞. Then, since we have

fR(x) ∈ Lp, (0 < R < ∞),

we have
F−1FfR(x) = fR(x), (0 < R < ∞)

in the sense of generalized functions.
Then, since we have

fR(x)→ f(x), (R → ∞)

is the sense of generalized functions, we have the equality

F−1Ff = f.

Therefore we have the following inversion formula.

Theorem 1.3(Inversion formula) Assume 1 ≤ p ≤ ∞, For f(x) ∈ Lp
loc,

we have the following inversion formula

f(x) = lim
R→∞

∫
(FfR)(p)ed(ipx)dp =

∫
ed(ipx)dp

∫
f(y)ed(−ipy)dy.

Here the integral converges in the sense of generalized functions. Namely we
have the equality

F−1Ff = f.

Similarly, for g(p) ∈ Lp
loc, we denote the restriction of g to the closed ball

|p| ≤ T as gT . Then we have the equality

FF−1gT (p) = gT (p), (0 < T < ∞)

in the sense of generalized functions. Then we have

gT (p)→ g(p), (T → ∞)

in the sense of generalized functions, Thus we have the equality

FF−1g(p) = g(p)

in the sense of generalized functions.
Therefore we have the following inversion formula.

Theorem 1.4 (Inversion formula) Assume 1 ≤ p ≤ ∞, For g ∈ Lp
loc,

we have the following inversion formula

g(p) =

∫
(F−1g)(x)ed(−ipx)dx =

∫
ed(−ipx)dx

∫
g(q)ed(iqx)dq.
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Here the integral converges in the sense of generalized functions. Namely we
have the equality

FF−1g = g.

Theorem 1.5 For f ∈ Lp
loc, we have the equalities:

F2f(x) = f(−x), F4f(x) = f(x).

2 Structure theorems

In this section, we study the structure theorems of the function spaces Lp
loc

and Lq
c and the structure theorems of the Fourier images FLp

loc and FLq
c . Here

we assume that the real numbers p and q satisfy the condition

1

p
+
1

q
= 1, (1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞).

Now we choose an exhausting sequence {Kj} of compact sets in Rd which
satisfies the following conditions (i) and (ii): 　　

(i) K1 ⊂ K2 ⊂ · · · ⊂ Rd, Rd =
∞∪
j=1

Kj .

(ii) Kj = cl(int(Kj)), Kj ⊂ int(Kj+1), (j = 1, 2, 3, · · · ).

Then we denote the projective limit of projective system {Lp(Kj)} of Ba-
nach spaces as

lim←−Lp(Kj).

Then we have the isomorphism

Lp
loc

∼= lim←−Lp(Kj)

as TVS’s. Here, since, for each j, the restriction mapping Lp(Kj+1)→ Lp(Kj)
is a weakly compact mapping, Lp

loc is a FS
∗-space.

Further, because the system {Lq(Kj)} of Banach spaces can be considered
as an inductive system, we denote the inductive limit as

lim−→Lq(Kj).

Then we have the isomorphism

Lq
c
∼= lim−→Lq(Kj)
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c . Here
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nach spaces as
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Then we have the isomorphism
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loc
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as TVS’s. Here, since, for each j, the restriction mapping Lp(Kj+1)→ Lp(Kj)
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∗-space.

Further, because the system {Lq(Kj)} of Banach spaces can be considered
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∼= lim−→Lq(Kj)
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as TVS’s. Here Lq
c denotes the TVS of all L

q-functions with compact support.
Then, since, for each j, the inclusion mapping Lq(Kj)→ Lq(Kj+1) is a weakly
compact mapping, Lq

c is a DFS
∗-space.

Since Lp(Kj) and Lq(Kj) are the dual pair of Banach spaces, we have the
isomorphism

Lp
loc

∼= (Lq
c)

′

as TVS’s. Here (Lq
c)

′ denotes the dual space of Lq
c and we define the dual inner

product of f ∈ Lp
loc and g ∈ Lq

c by the equality

< f, g >=

∫
f(x)g(x)dx.

Here the dual inner product is a bilinear functional which defines the duality
relation of the pair of two TVS’s Lp

loc and Lq
c .

Because Lp
loc is a FS

∗-space and Lq
c is a DFS

∗-space, Lp
loc and Lq

c are reflex-
ive. Thus we have the following theorem.

Theorem 2.1 We use the the notation in the above. Assume that two
real numbers satisfy the condition

1

p
+
1

q
= 1, (1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞).

Then we have the following isomorphisms (1) and (2):

(1) Lp
loc

∼= (Lq
c)

′ ∼= (Lp
loc)

′′.

(2) Lq
c
∼= (Lp

loc)
′ ∼= (Lq

c)
′′.

Theorem 2.2 Assume 1 ≤ q ≤ ∞. Then the function space D is dense
in Lq

c .

Proof Assume 1 ≤ q ≤ ∞. Then we prove that D = D(Rd) is dense in
Lq
c = Lq

c(R
d). Now we choose a exhausting sequence {Kj} of compact sets in

Rd. Here we define DKj is the subspace of D which is composed of the functions
in D whose supports are included in Kj . Then we have the isomorphisms

D ∼= lim−→DKj
∼=

∞∪
j=1

DKj .

Further we have the isomorphisms

Lq
c
∼= lim−→Lq(Kj) ∼=

∞∪
j=1

Lq(Kj).

10

Then, because DKj is dense in Lq(Kj) for each j ≥ 1, we have proved that D
is dense in Lq

c . //

Corollary 2.1 Assume 1 ≤ p ≤ ∞. Let V be a complete TVS and let T be
a linear mapping from Lp

loc into V . Then the following (1) ∼ (3) are equivalent:

(1) T is continuous with respect to the strong topology of Lp
loc.

(2) T is continuous with respect to the weak topology of Lp
loc.

(3) T is continuous with respect to the induced topology on Lp
loc from the

topology of D′

Then, because we have the inclusion relation Lq
c ⊂ Lq, we define the Fourier

transformation of a Lq
c-function g(x) by using the Fourier transformation of a

Lq-function

Fg(p) =

∫
g(x)ed(−ipx)dx.

Further we define the Fourier transformation of a Lp
loc-function f by the

relation

Ff(p) = lim
j→∞

∫

Kj

f(x)ed(−ipx)dx

in the sense of generalized functions in D′ and FD′.
By virtue of the definition of the Fourier transformation of f ∈ Lp

loc, we
have the equality

< Ff, Fg >=< f, g >

for any g ∈ D.
Since a Lq

c-function g has the compact support, there exists some Kj such
that supp(g) ⊂ Kj holds by the definition of {Kj}. Therefore, for an arbitrary
k ≥ j, we have the equalities

< fKk
, g >=

∫

Kk

fKk
(x)g(x)dx =

∫

Kj

f(x)g(x)dx =< f, g > .

Here fKk
(x) denotes the image of f(x) ∈ Lp

loc by the restriction mapping
Lp
loc → Lp(Kk).
Since we have the equality

∫
FfKk

(p)Fg(−p)dp =

∫
fKk

(x)g(x)dx

by virtue of Parseval’s formula, we have the equality

lim
k→∞

∫
FfKk

(p)Fg(−p)dp = lim
k→∞

∫
fKk

(x)g(x)dx

11
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as TVS’s. Here Lq
c denotes the TVS of all L

q-functions with compact support.
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compact mapping, Lq

c is a DFS
∗-space.

Since Lp(Kj) and Lq(Kj) are the dual pair of Banach spaces, we have the
isomorphism

Lp
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′ denotes the dual space of Lq
c and we define the dual inner

product of f ∈ Lp
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c by the equality
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∫
f(x)g(x)dx.

Here the dual inner product is a bilinear functional which defines the duality
relation of the pair of two TVS’s Lp

loc and Lq
c .

Because Lp
loc is a FS

∗-space and Lq
c is a DFS

∗-space, Lp
loc and Lq

c are reflex-
ive. Thus we have the following theorem.

Theorem 2.1 We use the the notation in the above. Assume that two
real numbers satisfy the condition
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1
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= 1, (1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞).

Then we have the following isomorphisms (1) and (2):

(1) Lp
loc

∼= (Lq
c)

′ ∼= (Lp
loc)

′′.

(2) Lq
c
∼= (Lp

loc)
′ ∼= (Lq

c)
′′.

Theorem 2.2 Assume 1 ≤ q ≤ ∞. Then the function space D is dense
in Lq

c .

Proof Assume 1 ≤ q ≤ ∞. Then we prove that D = D(Rd) is dense in
Lq
c = Lq

c(R
d). Now we choose a exhausting sequence {Kj} of compact sets in

Rd. Here we define DKj is the subspace of D which is composed of the functions
in D whose supports are included in Kj . Then we have the isomorphisms

D ∼= lim−→DKj
∼=

∞∪
j=1

DKj .

Further we have the isomorphisms

Lq
c
∼= lim−→Lq(Kj) ∼=

∞∪
j=1

Lq(Kj).
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Then, because DKj is dense in Lq(Kj) for each j ≥ 1, we have proved that D
is dense in Lq

c . //

Corollary 2.1 Assume 1 ≤ p ≤ ∞. Let V be a complete TVS and let T be
a linear mapping from Lp

loc into V . Then the following (1) ∼ (3) are equivalent:

(1) T is continuous with respect to the strong topology of Lp
loc.

(2) T is continuous with respect to the weak topology of Lp
loc.

(3) T is continuous with respect to the induced topology on Lp
loc from the

topology of D′

Then, because we have the inclusion relation Lq
c ⊂ Lq, we define the Fourier

transformation of a Lq
c-function g(x) by using the Fourier transformation of a

Lq-function

Fg(p) =

∫
g(x)ed(−ipx)dx.

Further we define the Fourier transformation of a Lp
loc-function f by the

relation

Ff(p) = lim
j→∞

∫

Kj

f(x)ed(−ipx)dx

in the sense of generalized functions in D′ and FD′.
By virtue of the definition of the Fourier transformation of f ∈ Lp

loc, we
have the equality

< Ff, Fg >=< f, g >

for any g ∈ D.
Since a Lq

c-function g has the compact support, there exists some Kj such
that supp(g) ⊂ Kj holds by the definition of {Kj}. Therefore, for an arbitrary
k ≥ j, we have the equalities

< fKk
, g >=

∫

Kk

fKk
(x)g(x)dx =
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Kj

f(x)g(x)dx =< f, g > .

Here fKk
(x) denotes the image of f(x) ∈ Lp

loc by the restriction mapping
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Since we have the equality

∫
FfKk

(p)Fg(−p)dp =

∫
fKk

(x)g(x)dx
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=

∫
fKj (x)g(x)dx =

∫
FfKj (p)Fg(−p)dp.

Especially, supposing that we have the relations

DKj ⊂ Lp(Kj), g ∈ DKj ,

we have the equality

∫
Ff(p)Fg(−p)dp =

∫
f(x)g(x)dx.

We can choose a compact set Kj arbitrarily. Thus, if we consider an arbi-
trary g ∈ D, we have g ∈ DKj for some j ≥ 1. Thus we have the equality in
the above for an arbitrary g ∈ D.

Then, because the dual inner product

< f, g >=

∫
f(x)g(x)dx

is defined for an arbitrary f ∈ Lp
loc and g ∈ Lq

c , we have the equality

< Ff, Fg >=

∫
Ff(p)Fg(−p)dp =

∫
f(x)g(x)dx =< f, g >

for an arbitrary f ∈ Lp
loc and an arbitrary g ∈ Lq

c .

Now we choose one exhausting sequence {Kj} of compact sets in Rd as in
the above.

Then, for the sequence

Lr(K1) ⊂ Lr(K2) ⊂ · · · , (1 ≤ r ≤ ∞, r = p or q),

we have the isomorphisms

Lq
c
∼= lim−→Lq(Kj), L

p
loc

∼= lim←−Lp(Kj).

Further we have the isomorphisms

Lq
c
∼=

∞∪
j=1

Lq(Kj), L
p
loc

∼=
∞∩
j=1

Lp(Kj).

Then we have the isomorphisms

FLr(Kj) ∼= Lr(Kj), (j = 1, 2, 3, · · · )

for 1 ≤ r ≤ ∞ and r = p or q. Further, for the sequence

FLr(K1) ⊂ FLr(K2) ⊂ · · · , (1 ≤ r ≤ ∞, r = p or q),

12

we have the isomorphisms

FLq
c
∼= lim−→FLq(Kj) ∼= lim−→Lq(Kj) ∼= Lq

c ,

FLp
loc

∼= lim←−FLp(Kj) ∼= lim←−Lp(Kj) ∼= Lp
loc.

Then we have the relations

FLp
loc ⊂ FD′, FLp

loc ̸= Lp
loc.

Therefore we have the following theorem.

Theorem 2.3 　We use the notation in the above. Then we have the
following isomorphisms (1) ∼ (4):

(1) Lq
c
∼= lim−→Lq(Kj) ∼=

∞∪
j=1

Lq(Kj).

(2) FLq
c
∼= lim−→FLq(Kj).

(3) FLq(Kj) ∼= Lq(Kj), (j = 1, 2, 3, · · · ).

(4) FLq
c
∼= Lq

c , FLq
c ̸= Lq

c .

Further we have the following theorem.

Theorem 2.4 We use the notation in the above. Then we have the fol-
lowing isomorphisms (1) ∼ (3) and the relation (4):

(1) Lp
loc

∼= lim←−Lp(Kj) ∼=
∞∩
j=1

Lp(Kj) ∼= (Lq
c)

′.

(2) FLp
loc

∼= lim←−FLp(Kj).

(3) FLp
loc

∼= Lp
loc.

(4) Lp
loc ⊂ D′, FLp

loc ⊂ FD′, FLp
loc ̸= Lp

loc.

Theorem 2.5 We use the notation in the above. If f ∈ Lp
loc and Ff ∈

Lp
loc are satisfied, we have the equality

Ff(p) = lim
R→∞

∫

|x|≤R

f(x)ed(−ipx)dx, (p ∈ Rd)

in the topology of Lp
loc.
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=
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Then we have the relations

FLp
loc ⊂ FD′, FLp
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Therefore we have the following theorem.

Theorem 2.3 　We use the notation in the above. Then we have the
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Theorem 2.6 We use the notation in the above. If f ∈ Lp
loc and F−1f ∈

Lp
loc are satisfied, we have the equality

F−1f(x) = lim
R→∞

∫

|p|≤R

f(p)ed(ipx)dp, (x ∈ Rd)

in the topology of Lp
loc.

We remark that functions in D or S satisfy the conditions of Theorem 2.5
and Theorem 2.6.

3 Convolution

In this section, we study the convolution f ∗ g of a function f in Lr
c =

Lr
c(R

d) and a function g in Lp
loc = Lp

loc(R
d). Here assume d ≥ 1. Further

assume that three real numbers p, q and r satisfy the following condition

1

q
=
1

p
+
1

r
− 1, (1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, 1 ≤ r ≤ ∞).

We define the convolution f ∗ g of f ∈ Lr
c and g ∈ Lp

loc by the relation

(f ∗ g)(x) =
∫

f(x− y)g(y)dy.

Then we have the equality
∫

f(x− y)g(y)dy =

∫
g(x− y)f(y)dy.

Therefore we have the following theorem.

Theorem 3.1 We use the notation in the above. For f ∈ Lr
c and g ∈ Lp

loc,
we have f ∗ g ∈ Lq

loc. Further we have the equality

f ∗ g = g ∗ f.

Theorem 3.2 We use the notation in the above. Let α = (α1, α2, · · · , αd)
be a multi-index of natural numbers. Then, for f ∈ Lr

c and g ∈ Lp
loc, we have

the equality
Dα(f ∗ g) = (Dαf) ∗ g = f ∗ (Dαg)

in Lq
loc. Here the partial derivatives are considered in the sense of topologies of

Lr
c and Lp

loc and Lq
loc.

14

Corollary 3.1 We use the notation in the above. Assume f ∈ Lr
c . Then

the linear transformation of Lp
loc defined by the convolution

Tf : g → f ∗ g, (g ∈ Lp
loc)

is a continuous linear mapping from Lp
loc into Lq

loc.

Now assume that {gn} is a sequence of Lp
loc-functions and it converges to

g ∈ Lp
loc in the topology of L

p
loc. Namely, assume that gn → g, (n → ∞) in the

topology of Lp
loc. Then we have

Tf (gn)→ Tf (g), (n → ∞).

in the topology of Lq
loc

Corollary 3.2 We use the notation in the above. Assume g ∈ Lp
loc. Then

the linear mapping Tg = f ∗ g, (f ∈ Lr
c) defined by the convolution is a contin-

uous linear mapping from Lr
c into Lq

loc.

Therefore, if a sequence {fn} of Lr
c-functions converges to f ∈ Lr

c in the
topology of Lr

c , we have

Tg(fn)→ Tg(f), (n → ∞)

in the topology of Lq
loc. Here the convolution of a function f in L

r
c and a function

g in Lp
loc is a separately continuous bilinear mapping Lr

c × Lp
loc → Lq

loc.

Theorem 3.3 We use the notation in the above. Assume f ∈ Lr
c and

g ∈ Lp
loc. Then we have the equality

F(f ∗ g) = (
√
2π)dF(f)F(g).
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Theorem 2.6 We use the notation in the above. If f ∈ Lp
loc and F−1f ∈

Lp
loc are satisfied, we have the equality

F−1f(x) = lim
R→∞

∫

|p|≤R

f(p)ed(ipx)dp, (x ∈ Rd)

in the topology of Lp
loc.

We remark that functions in D or S satisfy the conditions of Theorem 2.5
and Theorem 2.6.

3 Convolution

In this section, we study the convolution f ∗ g of a function f in Lr
c =

Lr
c(R

d) and a function g in Lp
loc = Lp

loc(R
d). Here assume d ≥ 1. Further

assume that three real numbers p, q and r satisfy the following condition

1

q
=
1

p
+
1

r
− 1, (1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, 1 ≤ r ≤ ∞).

We define the convolution f ∗ g of f ∈ Lr
c and g ∈ Lp

loc by the relation

(f ∗ g)(x) =
∫

f(x− y)g(y)dy.

Then we have the equality
∫

f(x− y)g(y)dy =

∫
g(x− y)f(y)dy.

Therefore we have the following theorem.

Theorem 3.1 We use the notation in the above. For f ∈ Lr
c and g ∈ Lp

loc,
we have f ∗ g ∈ Lq

loc. Further we have the equality

f ∗ g = g ∗ f.

Theorem 3.2 We use the notation in the above. Let α = (α1, α2, · · · , αd)
be a multi-index of natural numbers. Then, for f ∈ Lr

c and g ∈ Lp
loc, we have

the equality
Dα(f ∗ g) = (Dαf) ∗ g = f ∗ (Dαg)

in Lq
loc. Here the partial derivatives are considered in the sense of topologies of

Lr
c and Lp

loc and Lq
loc.
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Corollary 3.1 We use the notation in the above. Assume f ∈ Lr
c . Then

the linear transformation of Lp
loc defined by the convolution

Tf : g → f ∗ g, (g ∈ Lp
loc)

is a continuous linear mapping from Lp
loc into Lq

loc.

Now assume that {gn} is a sequence of Lp
loc-functions and it converges to

g ∈ Lp
loc in the topology of L

p
loc. Namely, assume that gn → g, (n → ∞) in the

topology of Lp
loc. Then we have

Tf (gn)→ Tf (g), (n → ∞).

in the topology of Lq
loc

Corollary 3.2 We use the notation in the above. Assume g ∈ Lp
loc. Then

the linear mapping Tg = f ∗ g, (f ∈ Lr
c) defined by the convolution is a contin-

uous linear mapping from Lr
c into Lq

loc.

Therefore, if a sequence {fn} of Lr
c-functions converges to f ∈ Lr

c in the
topology of Lr

c , we have

Tg(fn)→ Tg(f), (n → ∞)

in the topology of Lq
loc. Here the convolution of a function f in L

r
c and a function

g in Lp
loc is a separately continuous bilinear mapping Lr

c × Lp
loc → Lq

loc.

Theorem 3.3 We use the notation in the above. Assume f ∈ Lr
c and

g ∈ Lp
loc. Then we have the equality

F(f ∗ g) = (
√
2π)dF(f)F(g).
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The author was kindly informed by Mr. Y. Kogoshi that there is the
following mistake in page 37 after our Theorem of our paper. In page 37 under
our theorem, we defined η for the cyclotomic field Q(pk). But our example of
the Gaussian period η is actually defined for the case k = 1, i.e. for the prime
p cases. So we must correct the definition of g and η in page 37 as follows:

Let g be a primitive root mod p and e be a fixed divisor of n = p− 1. Put
f = n/e and define

ηi =

f−1∑
j=0

ζe(i,j) (1 ≤ i ≤ e),

where e(i, j) = gej+i−1. Let us denote the Gaussian period η1 by η. Then
K = Q(η) is a cyclic extension over Q of degree e.
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