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Abstract

We establish that a ring is uniquely π-regular if, and only if, it is a
division ring. This somewhat improves on our result proved for uniquely
von Neumann regular rings in Palestine J. Math. (2018).

1 Introduction and Background

Everywhere in the text of the present paper, all our rings R are assumed to
be associative, containing the identity element 1, which differs from the zero
element 0. Our terminology and notations are mainly in agreement with [4]
and [5]. For instance, a ring R is called regular in the sense of von Neumann
if, for any r ∈ R, there is a ∈ R such that r = rar. Likewise, a ring R is
called strongly regular if, for any r ∈ R, there is x ∈ R with r = r2x. It
is well known that strongly regular rings are exactly the reduced regular rings
which are a subdirect product of division rings. However, there exist even finite
commutative rings which are not regular; e.g., this is the ring Z4. That is why,
a substantial generalization of these two classes is needed as follows: A ring R
is said to be π-regular if, for each r ∈ R, there are n ∈ N and b ∈ R which both
depend on r with rn = rnbrn. Also, a ring R is said to be strongly π-regular
if, for each r ∈ R, there are n ∈ N and y ∈ R which both depend on r with
rn = rn+1y. Now, all finite rings (and even much more, all artinian rings) are
known to be (strongly) π-regular.
In [2] was studied uniquely regular rings as those rings R for which each

elements r ∈ R possesses a unique inner addition a ∈ R such that r = rar.
There was proved that these are precisely the division rings. Our aim here is to
enlarge this affirmation to the classes of π-regular and strongly π-regular rings.
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So, we come to our basic tools.

Definition 1. We shall say that a ring R is uniquely π-regular if, for every
r ∈ R, there are n ∈ N and unique b ∈ R both depending on r such that the
equality rn = rnbrn is valid.

Definition 2. We shall say that a ring R is uniquely strongly π-regular if, for
every r ∈ R, there are n ∈ N and unique y ∈ R both depending on r such that
the equality rn = rn+1y is fulfilled.

The objective here is to find a necessary and sufficient condition when an
arbitrary ring is uniquely π-regular as well as uniquely strongly π-regular. This
will be successfully done in the next section.

2 Main Results

Here we proceed by proving the major assertion that motivated the writing of
this article.

Theorem. A ring is uniquely π-regular ring if, and only if, it is a division
ring.

Proof. ”Necessity”. Let R be a uniquely π-regular ring. We foremost claim
that R is without non-trivial idempotents and nilpotents. In fact, if e is a
non-zero idempotent, then for all m ∈ N one may write that

e = em = em · 1 · em = em · e · em

which enables us that e = 1, as required.
As for the freeness of nilpotent elements, take z ∈ R for which z2 = 0.

Assume in a way of contradiction that there exists n ∈ N such that zn = zndzn

for some unique d ∈ R. If n ≥ 2 it follows that zn = 0 and hence 0 = 0.d.0 =
0.h.0 for any h ∈ R with h ̸= d. But this is impossible. So, n = 1 and we write
z = zdz. One sees that

z(d(1− z(1− zd)))z = zdz = z((1− (1− dz)z)d)z.

Consequently, using the uniqueness, one can deduce that

d− dz(1− zd) = d = d− (1− dz)zd.

These two relations allow us to conclude that dz = zd whence z = z2d = 0,
contrary to our assumption. This finally shows that R does not have non-zero
nilpotents, as claimed.
Furthermore, given 0 ̸= r ∈ R, there are n ∈ N and unique b ∈ R which

both depend on r such that the equality rn = rnbrn holds. Writing

2

rn(b(1− rn(1− rnb)))rn = rnbrn = rn((1− (1− brn)rn)b)rn.

we extract with the aid of uniqueness of the inner element that

b− brn(1− rnb) = b = b− (1− brn)rnb.

which amounts to brn = rnb yielding rn = r2nb. This, however, guarantees that
R must be strongly π-regular, say rn = rn+1y for y = rn−1b ∈ R. According
to [1] and [3], with no loss of generality we may assume that ry = yr. One
next observes that rnyn = (ry)n is an idempotent. In fact, multiplying both
sides of the equality rn = rn+1y by r we obtain that rn+1 = rn+2y and so
substituting it again in the initial equality, we infer that rn = rn+2y2, etc.,
after a final number of steps, we get that rn = r2nyn (actually, in our situation,
b = yn). Now, by what we have detected so far, one checks that rnyn.rnyn =
(r2nyn)yn = rnyn, which substantiates our assertion. Next, utilizing the lack
of non-trivial idempotents established above, it follows that either rnyn = 0
and hence rn = r2nyn = 0, or rnyn = ynrn = 1. In the first case, the lack
of non-trivial nilpotents assures that r = 0. The second case implies that r
inverts in R, i.e., R is a division ring, as wanted.
”Sufficiency”. Suppose now R is a division ring. It is self-evident that

every non-zero element r ∈ R can be uniquely written as ri = rir−iri for all
positive integers i, as required. Therefore, R is a uniquely π-regular ring, as
stated. �
As an immediate consequence, we derive the following criterion.

Corollary. The next four statements are equivalent for a ring R:

(1) R is uniquely π-regular.

(2) R is uniquely strongly π-regular.

(3) R is uniquely regular.

(4) R is a division ring.

In closing, we give some additional comments: Recall that a ring R is π-
boolean if, for any r ∈ R, there exists k ∈ N with r2k = rk. Apparently, boolean
rings are themselves π-boolean choosing k = 1.
Let us now R be such a ring that for every its element r there exist n ∈ N

and invertible u ∈ R such that rn = rnurn. Clearly, the well-known unit-
regular rings are so by taking n = 1. What we can say about the structure of
R if the existing invertible element u is unique for each that r? Is the ring R
either a π-boolean ring or a division ring?

Acknowledgment: It is a author’s pleasure to express sincere thanks to Pro-
fessor Shin-ichi Katayama for his professional management of the current ar-
ticle.
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