Prescribed Mean Curvature Equations for Functions of Bounded Variation

BY

Masayuki ITO

Professor Emeritus, Tokushima University e-mail address: masito7@gmail.com (Received October 14, 2016)

Abstract

Let $L(u) = L(u, \nabla u)$ be a functional on $W^{1,1}(\Omega)$ whose formal Euler-Lagrange equation at the critical point u of L is the prescribed mean curvature equation:

$$-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = g(x,u).$$

Suppose $\mathcal{L}(u) = \mathcal{L}(u, Du)$ is a relaxed functional of L(u), the weakly lower semicontinuous extension of L on the space of functions of bounded variation. How dose the relaxation affect the prescribed mean curvature equation? Instead of an Euler-Lagrange equation, we obtain here the so-called Euler-Lagrange system of equations which the critical points u of \mathcal{L} and their derivatives Du necessarily satisfy.

2010 Mathematics Subject Classification. 49J40, 49J45, 53A10, 26A45.

Introduction

We are concerned here with a Dirichlet boundary value problem (DBVP) of the prescribed mean curvature equation:

$$\begin{cases} -\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = \lambda g(x,u) & \text{in } \Omega, \\ u = 0 & \text{on} \Gamma \end{cases}$$
 (0.1)

Here Ω is a bounded domain in \mathbb{R}^N $(N \geq 2)$ with sufficiently smooth boundary $\Gamma = \partial \Omega$, g is a Carathéodory function and λ a positive real number. The

problem is derived (at least formally) as an Euler-Lagrange equation from a variational problem for the functional

$$L_{\lambda}(u) = \int_{\Omega} a(\nabla u) dx - \lambda \int_{\Omega} G(x, u) dx$$
 (0.2)

on $W_0^{1,1}(\Omega)$, where $a(v) = \sqrt{1+|v|^2}-1$ on $v \in \mathbb{R}^N$ and $G(x,u) = \int_0^u g(x,s)ds$. However, the principal part $\mathcal{A}_0(u) = \int_\Omega a(\nabla u)dx$, called an area functional, is not lower semicontinuous with respect to the weak topology (or even in L_1 -topology) of the space, and neither is L_λ . A standard approach to the variational problem of such a functional is to relax the functional in such a way the resulting functional becomes lower semicontinuous and to seek critical points of the relaxed functional. In the case of L_λ , the relaxed functional \mathcal{L}_λ is defined on $BV(\Omega)$, the space of functions of bounded variation on Ω . The existence of a local minimum point and a non-minimal critical point of \mathcal{L}_λ has been proven by V. K. Le [11, 12].

We here direct our attention to the existence problem of the Euler-Lagrange equation itself like (0.1) for \mathcal{L}_{λ} . How is it expressed if it exists? We cannot use the minimality, of course, to characterize the non-minimal critical points of \mathcal{L}_{λ} . For the non-differentiable functional \mathcal{L}_{λ} , its critical points cannot be defined as zeros of its derivative, and should be done in some indirect way. V. K. Le defines the critical point of \mathcal{L}_{λ} as a solution of a variational inequality. Therefore it is of interest to obtain some Euler-Lagrange equations like (0.1) which critical points necessarily satisfy. Since the critical point u belongs to $BV(\Omega)$, its distributional derivative Du is a bounded measure. Thus the expected Euler-Lagrange equation will involve the measure Du together with u as unknowns. The measure Du can be divided into some parts which are singular each other. For instance, $Du = D^a u + D^s u$, where $D^a u$ (or $D^s u$) is the absolutely continuous (or singular respectively) part with respect to the N-dimensional Lebesgue measure $dx = d\mathcal{L}^N$. And the Euler-Lagrange equation may be described as a system of some equations, each of those governs one part of Du. In that case, we call it the Euler-Lagrange system and refer to it as the prescribed mean curvature equations of (DBVP) since the system itself governs a function $u \in BV(\Omega)$ regarded as a solution of (DBVP). For the critical point u of \mathcal{L}_{λ} defined as a solution of the variational inequality proposed by Le, we obtain the prescribed mean curvature equations of (DBVP). To state our result more precisely, we give some preliminaries and a short summary of results gotten by V. K. Le.

1 Preliminaries and the main result

In this section, we give some preliminaries together with a short summary of the existence results of the critical points of \mathcal{L}_{λ} proved by Le. And then we state the main theorem of the present paper.

The space of functions of bounded variation on Ω is defined by

$$BV(\Omega) = \{ u \in L^1(\Omega) : |Du|_{\Omega} < +\infty \}$$
(1.3)

where

$$|Du|_{\Omega} = \sup \{ \int_{\Omega} u \operatorname{div} \eta \ dx : \eta = (\eta_1, \dots, \eta_N) \in C_c^1(\Omega; \mathbb{R}^N), |\eta| \le 1 \}$$
(1.4)

is called the total variation of u on Ω . Du is the distributional derivative of u, namely,

$$< Du, \eta > = -\int_{\Omega} u \operatorname{div} \eta \ dx$$
 for all $\eta \in C_c^{\infty}(\Omega; \mathbb{R}^N)$,

and it is a \mathbb{R}^N -valued Radon measure on Ω if $u \in BV(\Omega)$. |Du| is a positive Radon measure satisfying

$$|Du|(O) \equiv \int_{O} |Du| = |Du|_{O}$$

for all open set $O \subset \Omega$. $BV(\Omega)$ is a Banach space with the norm $||u|| = ||u||_{L^1(\Omega)} + |Du|_{\Omega}$. It is well known that $BV(\Omega)$ is embedded in $L^{1^*}(\Omega)$ (1* = $\frac{N}{N-1}$) continuously. The function $u \in BV(\Omega)$ has a trace u_{Γ} which is the boundary value of u on Γ if $u \in C^1(\overline{\Omega})$. The mapping $\gamma : BV(\Omega) \to L^1(\Gamma)$ with $\gamma(u) = u_{\Gamma}$ is continuous.

The definition of the area functional $A(u:\Omega) = \int_{\Omega} a(Du)$ has been introduced by E. Giusti [7].

Definition 1.1. Let U be a bounded domain in \mathbb{R}^N . Define an area functional \mathcal{A} on $L^{1^*}(U)$ by

$$\mathcal{A}(u:U) = \sup \{ \int_{U} (\eta_0 + u \operatorname{div} \eta - 1) dx : \hat{\eta} = (\eta_0, \eta) \in C_c^1(U; \mathbb{R} \times \mathbb{R}^N), |\hat{\eta}| \le 1 \}$$
(1.5)

where $\eta = (\eta_1, \dots, \eta_N)$ and $\text{div} \eta = \sum_{i=1}^N \frac{\partial \eta_i}{\partial x_i}$.

Observe that $\mathcal{A} = \mathcal{A}(\cdot : U)$ is a convex functional on $L^{1^*}(U)$ with the effective domain dom $\mathcal{A} = BV(U)$, i.e., $\mathcal{A}(u : U)$ is finite if and only if $u \in BV(U)$, and is lower semicontinuous in L^1 and thus in L^{1^*} -toplogy.

BV(U), and is lower semicontinuous in L^1 and thus in L^{1^*} -toplogy. The relaxation \mathcal{A}_1 of \mathcal{A}_0 on $W_0^{1,1}(\Omega)$ in the introduction, $\mathcal{A}_0(u)=\int_\Omega a(\nabla u)dx$ for $u\in W_0^{1,1}(\Omega)$, is known as the functional on $BV(\Omega)$ defined by

$$\mathcal{A}_1(u) = \mathcal{A}(u:\Omega) + \int_{\Gamma} |u_{\Gamma}| d\mathcal{H}^{N-1} \quad \text{for } u \in BV(\Omega)$$
 (1.6)

The integral in the right-hand side, which is the relaxation term for the boundary condition u = 0 on Γ , can be eliminated by extending function u by taking

the value zero outside Ω . Let $\mathcal B$ be a open ball (with center 0) such that $\overline{\Omega}\subset \mathcal B$ and put

$$\overline{u} = \begin{cases} u & \text{in } \Omega \\ 0 & \text{in } \mathscr{B} \setminus \Omega \end{cases} ,$$

then $\overline{u} \in BV(\mathscr{B})$ and

$$\mathcal{A}_1(u) = \mathcal{A}(\overline{u}: \mathscr{B}).$$

Setting

$$X = \{ u \in BV(\mathscr{B}) : u = 0 \text{ on } \mathscr{B} \setminus \Omega \}$$

we can replace (1.6) by

$$\mathcal{A}(u:\mathscr{B}) = \int_{\mathscr{B}} a(Du) \tag{1.7}$$

for $u \in X$. Remark that the above integral is here a formal and convenient expression of the functional $\mathcal{A}(u:\mathcal{B})$ defined in Definition 1.1. We give later another definition of the integral and prove that the above equality holds for $u \in BV(\mathcal{B})$ with compact support (see (2.35)). Since we only deal with functions in X or $BV(\mathcal{B})$ in what follows, we write simply $\mathcal{A}(\cdot) = \mathcal{A}(\cdot:\mathcal{B})$.

We assume the following conditions:

(A. 1) $g: \mathcal{B} \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function satisfying

$$q(x,\xi) = 0$$
 for $x \in \mathcal{B} \setminus \Omega$.

(A. 2) There exists $q \in (1, 1^*)$ such that

$$|g(x,\xi)| \le d_1 |\xi|^{q-1} + d_2$$
 for a.e. $x \in \mathcal{B}$, all $\xi \in \mathbb{R}$

with some constant d_1 , $d_2 > 0$.

Put

$$G(u) = \int_{\mathcal{D}} G(x, u) dx \tag{1.8}$$

for $u \in L^{1^*}(\mathcal{B})$. By (A. 2), \mathcal{G} is Fréchet differentiable and

$$\langle \mathcal{G}'(u), v \rangle = \int_{\mathscr{B}} g(x, u)v dx$$
 (1.9)

for $v \in L^{1^*}(\mathcal{B})$. The relaxation \mathcal{L}_{λ} of L_{λ} in the introduction is a functional on X denoted by

$$\mathcal{L}_{\lambda}(u) = \mathcal{A}(u) - \lambda \mathcal{G}(u) \tag{1.10}$$

for $u \in X$.

Under (A. 1), (A. 2) and some additional conditions, the existence of a local minimum point and a non-minimal critical point of functional \mathcal{L}_{λ} has been proven by V. K. Le [11]. Since \mathcal{A} is not differentiable, introducing the "weak slope" (in [5]) instead of the derivative and using the mountain pass

argument (in [8]), he proved the existence of the non-minimal critical point of \mathcal{L}_{λ} for small λ , which is, as a result, a solution $u \in X$ of the variational inequality:

$$\mathcal{A}(v) - \mathcal{A}(u) - \lambda \int_{\mathscr{B}} g(x, u)(v - u) dx \ge 0$$
 for all $v \in X$. (1.11)

The minimum point u of \mathcal{L}_{λ} also satisfies (1.11). When a pair (λ, u) satisfies (1.11) λ is called an eigenvalue and u its eigenfunction. By using a Ljusternik-Schnirelmann theory for (1.11), Le [12] also obtained infinite sequence of eigenvalues and eigenfunctions.

Since the functional A is convex on X, the inequality (1.11) implies

$$0 \in \partial \mathcal{A}(u) - \lambda \mathcal{G}'(u) \tag{1.12}$$

where $\partial \mathcal{A}(u)$ is the subdifferential of \mathcal{A} at u. Thus (1.12) or the inequality (1.11) itself can be regard as a weak form of the Euler-Lagrange equation for the critical point of \mathcal{L}_{λ} . Our aim is to obtain a more explicit expression.

For $u \in X$, we denote by u_{Ω} the restriction of u onto Ω , then $u_{\Omega} \in BV(\Omega)$ and

$$Du = Du_{\Omega} - u_{\Gamma} \nu d\mathcal{H}^{N-1}, \tag{1.13}$$

where u_{Γ} is the trace of u_{Ω} on Γ , $u_{\Gamma} = (u_{\Omega})_{\Gamma}$ (see e.g. [1, 2]).

Let $U \subset \mathbb{R}^N$ be open and $v \in BV(U)$, D^av and D^sv be respectively the absolutely continuous and singular parts of the Radon measure Dv. Denote the density $\frac{D^av}{d\mathscr{L}^N}$ by $\nabla v \in L^1(U)$, then

$$Dv = D^a v + D^s v = \nabla v dx + D^s v.$$

For $u \in X$, by (1.13), we have

$$\begin{split} D^a u = & D^a u_{\Omega} = \nabla u_{\Omega} dx, \\ D^s u = & D^s u_{\Omega} + u_{\Gamma} \nu d\mathcal{H}^{N-1}, \\ Du = & \nabla u_{\Omega} dx + D^s u_{\Omega} - u_{\Gamma} \nu d\mathcal{H}^{N-1}. \end{split}$$

The main result of the present paper ia as follows.

Theorem 1.2. Let $u \in X$ be a solution of the variational inequality (1.11), then there exists $p \in L^{\infty}(\mathcal{B}; \mathbb{R}^N)$ such that

$$-\operatorname{div} p = \lambda g(x, u_{\Omega}) \qquad in \Omega, \qquad (1.14)$$

$$p = \frac{\nabla u_{\Omega}}{\sqrt{1 + |\nabla u_{\Omega}|^2}} \qquad in \ \Omega, \tag{1.15}$$

$$p \cdot D^s u_{\Omega} = |D^s u_{\Omega}| \qquad in \ \Omega, \tag{1.16}$$

$$(\nu \cdot p)u_{\Gamma} = -|u_{\Gamma}| \qquad on \ \Gamma. \tag{1.17}$$

where $\nu \cdot p$ is the weakly-defined trace of the nomal component of p, which lies in $L^{\infty}(\Gamma)$.

Remark 1.3. In the above theorem, we can eliminate p. By (1.15), $p \in L^{\infty}$ is obvious. Substituting (1.15) into (1.14), we have the prescribed mean curvature equation on u_{Ω} :

$$-\operatorname{div}\left(\frac{\nabla u_{\Omega}}{\sqrt{1+|\nabla u_{\Omega}|^{2}}}\right) = \lambda g(x, u_{\Omega}). \quad \text{in } \Omega$$
(1.18)

Substitute (1.15) into (1.16) and (1.17). Then we have

$$\frac{\nabla u_{\Omega} \cdot D^s u_{\Omega}}{\sqrt{1 + |\nabla u_{\Omega}|^2}} = |D^s u_{\Omega}| \quad \text{in}\Omega, \tag{1.19}$$

$$\frac{(\nu \cdot \nabla u_{\Omega})u_{\Gamma}}{\sqrt{1 + |\nabla u_{\Omega}|^2}} = -|u_{\Gamma}| \quad \text{on } \Gamma.$$
 (1.20)

These are the equations on the singular parts in Ω and on Γ .

Therefore, in the case of $D^s u_{\Omega} = 0$, the critical point $u \in X$ has the interior regularity that $u = u_{\Omega}$ belongs to $W^{1,1}(\Omega)$ and it satisfies (1.18). And the boundary condition (1.20) implies

$$u_{\Gamma} = 0 \quad \text{or} \quad (\nu \cdot \nabla u_{\Omega}) = \begin{cases} -\infty & \text{if } u_{\Omega} > 0, \\ +\infty & \text{if } u_{\Omega} < 0, \end{cases}$$

because $\frac{(\nu \cdot \nabla u_{\Omega})}{\sqrt{1+|\nabla u_{\Omega}|^2}} = -\mathrm{sgn}u_{\Gamma}$ means $|\nu \cdot \nabla u_{\Omega}| = |\nabla u_{\Omega}| = +\infty$.

F. Demengel and R. Temam [3] have obtained the similar expression as in Theorem 1.2 for the subdifferntial related to the minimal surface operator. For the similar expression on the subdifferential related to 1-Laplace operator, see B. Kawohl and F. Schuricht [9] and F. Demengel [4].

2 The area functional and its convex conjugate

Let a^* be the convex conjugate of a in \mathbb{R}^N , namely,

$$a^*(p) = \sup\{p \cdot v - a(v) : v \in \mathbb{R}^N\} \text{ for } p \in \mathbb{R}^N.$$

Observe that

$$a^*(p) = \begin{cases} 1 - \sqrt{1 - |p|^2} & \text{if } |p| \le 1, \\ +\infty & \text{otherwise.} \end{cases}$$
 (2.21)

Let $BV_c(\mathscr{B})$ be all of functions in $BV(\mathscr{B})$ with compact support in \mathscr{B} .

Lemma 2.1. For $u \in BV_c(\mathcal{B})$,

$$\mathcal{A}(u) = \sup\{ \int_{\mathscr{B}} u \operatorname{div} p \ dx - \int_{\mathscr{B}} a^*(p) dx : p \in V \}, \tag{2.22}$$

where

$$V = \{ p \in L^1(\mathcal{B} : \mathbb{R}^N) : \operatorname{div} p \in L^N(\mathcal{B}) \}. \tag{2.23}$$

Proof.

1.

$$\mathcal{A}(u) = \sup \{ \int_{\mathscr{B}} u \operatorname{div} \eta \ dx - \int_{\mathscr{B}} a^*(\eta) dx : \eta \in C_c^1(\mathscr{B}; \mathbb{R}^N), |\eta| \le 1 \}.$$
 (2.24)

Indeed, the condition $|\hat{\eta}| \leq 1$ in (1.5) implies

$$|\eta_0| \le \sqrt{1 - |\eta|^2}, \quad |\eta| \le 1.$$

Thus $\int_{\mathscr{B}} \eta_0 dx \leq \int_{\mathscr{B}} \sqrt{1-|\eta|^2} dx$ and the right-hand side of (1.5)(with $U=\mathscr{B}$) is dominated by that of (2.24). On the other hand, the continuous function $0 \leq \sqrt{1-|\eta|^2} \leq 1$ on ${\mathscr B}$ can be approximated by C_0^1 -function ξ with $0 \leq \xi \leq 1$ $\sqrt{1-|\eta|^2}$ in L^1 sense. Thus (2.24) holds. 2. Since $C_c^1(\mathscr{B};\mathbb{R}^N)\subset V$,

$$\mathcal{A}(u) \le \sup\{ \int_{\mathscr{B}} u \operatorname{div} p \ dx - \int_{\mathscr{B}} a^*(p) dx : p \in V \}.$$
 (2.25)

3. By (2.21), $\int_{\mathscr{B}} a^*(p) dx = +\infty$ if $a^* \circ p \notin L^1(\mathscr{B})$. Therefor, V in the right-hand side of (2.25) can be replaced by V_1 :

$$V_{1} = \{ p \in L^{1}(\mathcal{B}; \mathbb{R}^{N}) : a^{*} \circ p \in L^{1}(\mathcal{B}), \operatorname{div} p \in L^{N}(\mathcal{B}) \}$$
$$= \{ p \in L^{\infty}(\mathcal{B}; \mathbb{R}^{N}) : |p|_{\infty} \leq 1, \operatorname{div} p \in L^{N}(\mathcal{B}) \}$$
(2.26)

Since u has a compact support $K \equiv \text{supp}[u]$,

$$\int_{\mathscr{B}} u \operatorname{div} p \ dx = \int_{K} u \operatorname{div} p \ dx.$$

Let O_1 , O_2 be open sets with $K \subset O_1 \subset \subset O_2 \subset \mathscr{B}$ and ψ be C^{∞} -function with $0 \le \psi \le 1$, $\psi = 1$ on O_1 and $\psi = 0$ outside O_2 . Then $\operatorname{div}(\psi p) = \operatorname{div} p$ on K and $|\psi p| \leq |p|$. By the monotonicity of $a^*(p)$ with respect to |p|,

$$\mathcal{A}(u) = \sup \{ \int_{\mathscr{B}} u \operatorname{div} p \ dx - \int_{\mathscr{B}} a^*(p) dx : p \in V \}$$
$$= \sup \{ \int_{\mathscr{B}} u \operatorname{div} p \ dx - \int_{\mathscr{B}} a^*(p) dx : p \in V_1, \ \operatorname{supp} p \subset \mathscr{B} \}.$$

4. To complete proof, it is sufficient to approximate the above integrals by ones whose p is replaced by functions $\eta \in C^1_c(\mathcal{B}; \mathbb{R}^N)$ with $|\eta| \leq 1$. Let ρ_ϵ be a standard mollifier and set $p_\epsilon = \rho_\epsilon * p$. Then $p_\epsilon \in C^1_c(\mathcal{B}; \mathbb{R}^N)$ with $|p_\epsilon| \leq 1$ for small $\epsilon > 0$ and

$$p_{\epsilon_j} \to p$$
 a.e.,
 $\operatorname{div} p_{\epsilon_i} = \rho_{\epsilon_i} * \operatorname{div} p \to \operatorname{div} p$ in $L^N(\mathscr{B})$,

as $\epsilon_i \to 0$. Thus

$$\int_{\mathscr{B}} u \operatorname{div} p_{\epsilon_j} dx \to \int_{\mathscr{B}} u \operatorname{div} p \ dx,$$

and, by the Lebesgue's dominated convergence theorem,

$$\int_{\mathscr{B}} a^*(p_{\epsilon_j}) dx \to \int_{\mathscr{B}} a^*(p) dx.$$

Remark. Set

$$W = \{ p \in L^{\infty}(\mathcal{B}; \mathbb{R}^N) : \operatorname{div} p \in L^N(\mathcal{B}) \}.$$

Since $V_1 \subset W \subset V$, as we state in the proof, for $u \in BV_c(\mathscr{B})$ we have

$$\mathcal{A}(u) = \sup \{ \int_{\mathscr{B}} u \operatorname{div} p \ dx - \int_{\mathscr{B}} a^*(p) dx : p \in V \}$$
$$= \sup \{ \int_{\mathscr{B}} u \operatorname{div} p \ dx - \int_{\mathscr{B}} a^*(p) dx : p \in W \}$$
$$= \sup \{ \int_{\mathscr{B}} u \operatorname{div} p \ dx - \int_{\mathscr{B}} a^*(p) dx : p \in V_1 \}$$

and we can impose p on its compact support in \mathscr{B} . Moreover, since a^* is even, the above integral $\int_{\mathscr{B}} u \operatorname{div} p \ dx$ can be replaced by $\pm \int_{\mathscr{B}} u \operatorname{div} p \ dx$.

Let U be a bounded domain in \mathbb{R}^N . For any $u \in BV(U)$ and any $p \in W(U) = \{p \in L^{\infty}(U; \mathbb{R}^N) : \operatorname{div} p \in L^N(U)\}$, define the distribution $p \cdot Du$ by

$$\int_{U} \varphi(p \cdot Du) = -\int_{U} (\operatorname{div} p) u \varphi dx - \int_{U} (p \cdot \nabla \varphi) u dx \qquad (2.27)$$

for all $\varphi \in C_c^{\infty}(U)$. R. Kohn and R. Temam ([10] Proposition 1.1) have shown that $p \cdot Du$ is a bounded measure with $|p \cdot Du| \leq ||p||_{\infty}|Du|$ and obtained the Green's formula:

$$\int_{\partial U} (p \cdot \nu) u_{\partial U} \phi d\mathcal{H}^{N-1} = \int_{U} (p \cdot Du) \phi + \int_{U} (\operatorname{div} p) u \phi dx + \int_{U} (p \cdot \nabla \phi) u dx \quad (2.28)$$

for all $\phi \in C^1(\overline{U})$.

For $u \in BV_c(\mathcal{B})$ and $p \in W$, define $p \cdot Du$ by (2.27) with $U = \mathcal{B}$. Choosing $\varphi \in C_c^{\infty}(\mathcal{B})$ with $\varphi = 1$ on suppu, we have

$$\int_{\mathscr{B}} p \cdot Du = -\int_{\mathscr{B}} (\operatorname{div} p) u dx. \tag{2.29}$$

For $u \in X$, the restriction u_{Ω} of u on Ω belongs to $BV(\Omega)$. Defining $p \cdot Du_{\Omega}$ by (2.27)with $U = \Omega$ and $u = u_{\Omega}$, we have

$$\int_{\partial\Gamma} (p \cdot \nu) u_{\Gamma} \phi d\mathcal{H}^{N-1} = \int_{\Omega} (p \cdot Du_{\Omega}) \phi + \int_{\Omega} (\operatorname{div} p) u_{\Omega} \phi dx + \int_{\Omega} (p \cdot \nabla \phi) u_{\Omega} dx.$$
(2.30)

Any $\varphi \in C_c^{\infty}(\mathscr{B})$ can be regard as $\varphi \in C^1(\overline{\Omega})$ and

$$\int_{\mathscr{B}} (\mathrm{div} u) \varphi dx + \int_{\mathscr{B}} (p \cdot \nabla \varphi) u dx = \int_{\Omega} (\mathrm{div} u_{\Omega}) \varphi dx + \int_{\Omega} (p \cdot \nabla \varphi) u_{\Omega} dx.$$

By (2.27)(with $U=\mathcal{B}$), (2.30) and the above equation, we have

$$-\int_{\mathscr{B}}\varphi(p\cdot Du)=\int_{\Gamma}(p\cdot \nu)u_{\Gamma}\varphi d\mathscr{H}^{N-1}-\int_{\Omega}(p\cdot Du_{\Omega})\varphi dx$$

for all $\varphi \in C_c^{\infty}(\mathcal{B})$. Thus,

$$p \cdot Du = p \cdot Du_{\Omega} - (p \cdot \nu)u_{\Gamma}d\mathcal{H}^{N-1}$$
(2.31)

for $u \in X$.

Remark. Choose $p = e_i$ $(1 \le i \le N)$ in the canonical basis $\{e_1, \dots, e_N\}$ of \mathbb{R}^N . Then (2.31) yields (1.13).

Remark 2.2. By (2.29) and the remark given after the proof of Lemma 2.1,

$$\mathcal{A}(u) = \sup\{\pm \int_{\mathscr{B}} u \operatorname{div} p \ dx - \int_{\mathscr{B}} a^*(p) dx : p \in Y\}$$
$$= \sup\{\mp \int_{\mathscr{B}} p \cdot Du - \int_{\mathscr{B}} a^*(p) dx : p \in Y\}$$
(2.32)

for $u\in BV_c(\mathcal{B})$, where $Y=V_1$, W, $V_{1,c}=\{p\in V_1: \mathrm{supp}[p]\subset \mathcal{B}\}$ or $W_c=\{p\in W: \mathrm{supp}[p]\subset \mathcal{B}\}.$

Define a functional \mathcal{A}^* on W by

$$\mathcal{A}^*(p) = \int_{\mathscr{B}} a^*(p) dx \tag{2.33}$$

for $p \in W$. Then

$$\mathcal{A}^*(p) \begin{cases} \leq |\mathscr{B}| & \text{if } p \in V_1, \\ = \infty & \text{otherwise.} \end{cases}$$

Since the right-hand side of (2.32) is determined ony by Du, we denote it by $\mathcal{B}(Du)$.

Definition 2.3. For $u \in BV_c(\mathcal{B})$, Define a functional \mathcal{B} of the Radon measure Du by

$$\mathcal{B}(Du) = \sup \{ \int_{\mathscr{R}} p \cdot Du - \mathcal{A}^*(p) : p \in V_1 \}.$$
 (2.34)

Remark 2.4. By (2.32), of course,

$$\mathcal{B}(Du) = \mathcal{A}(u)$$

$$= \sup\{-\int_{\mathscr{B}} u \operatorname{div} p \ dx - \mathcal{A}^*(p) : p \in Y\}$$

$$= \sup\{\int_{\mathscr{B}} p \cdot Du - \mathcal{A}^*(p) : p \in Y\}$$

where $Y = V_1, V_{1,c}, W$ or W_c .

For a Radon measure $\mu = \mu^a + \mu^s$, where $\mu^a = f(x)dx$, μ^s be respectively the absolute continuous and singular parts with respect to the Lebesgue measure, define a measure $a(\mu)$ by $a(\mu) = a(f(x))dx + a_{\infty}(\mu^s)$, where $a_{\infty}(x) = \lim_{t \to \infty} a(tx)/t = |x|$, i.e.,

$$a(\mu) = a(f(x))dx + |\mu^s|.$$

F. Demengel and R. Temam [3] have shown

$$\int_{\mathscr{R}} \varphi a(\mu) = \sup \{ \int_{\mathscr{R}} \varphi p \cdot d\mu - \int_{\mathscr{R}} \varphi a^*(p) dx : p \in V_1 \}$$

for all $\varphi \in C_c^{\infty}(\mathcal{B})$ with $\varphi \geq 0$. Let $u \in BV_c(\mathcal{B})$. Put $\mu = Du = \nabla u dx + D^s u$. Choosing φ with $\varphi = 1$ on supp[u], we have

$$\int_{\mathscr{B}} a(Du) = \sup \{ \int_{\mathscr{B}} p \cdot Du - \int_{\mathscr{B}} a^*(p) dx : p \in V_1 \}.$$

Thus

$$\int_{\mathscr{B}} a(Du) = \int_{\mathscr{B}} a(\nabla u) dx + |D^{s}u|(\mathscr{B})$$

$$= \mathcal{B}(Du)$$

$$= \mathcal{A}(u)$$
(2.35)

for $u \in BV_c(\mathcal{B})$. This shows that the equation (1.7) holds for the measure a(Du) defined above.

Denote by $[Du]_{\overline{\Omega}}$ the restriction of Du on $\overline{\Omega}$. By the monotonicity of a(v) with respect to |v| and the above equation,

$$\mathcal{B}([Du]_{\overline{\Omega}}) \leq \mathcal{B}(Du).$$

For $h \in W^{1,1}(\mathscr{B})$ with compact support, we write simply $\mathcal{B}(\nabla h) = \mathcal{B}(\nabla h dx)$, i.e.,

 $\mathcal{B}(\nabla h) = \int_{\mathscr{B}} a(\nabla h) dx.$

Lemma 2.5. Let $p \in W$, then

$$\int_{\overline{\Omega}} a^*(p)dx = \sup\{-\int_{\mathscr{R}} u \operatorname{div} p \ dx - \mathcal{B}(Du) : u \in X\}$$
 (2.36)

Remark. (2.36) hold even if the left-hand side equals to $+\infty$. Proof of Lemma 2.5.

1. Fix any $u \in X$. Let $\varphi \in C_0^{\infty}(\mathcal{B})$ satisfying $0 \leq \varphi \leq 1$ and $\varphi = 1$ on $\overline{\Omega}$, then $\varphi p \in W_c$ for all $p \in W$. Since $\operatorname{supp}[Du] \subset \overline{\Omega}$, by the definition 2.3 and Remark 2.4, we have

$$\mathcal{B}(Du) \ge \int_{\overline{\Omega}} p \cdot Du - \int_{\mathscr{B}} a^*(\varphi p) dx,$$

for all $p \in W$. Letting $\varphi \searrow \chi_{\overline{\Omega}}$ yields

$$\mathcal{B}(Du) \ge \int_{\overline{\Omega}} p \cdot Du - \int_{\overline{\Omega}} a^*(p) dx,$$

Thus,

$$\int_{\overline{\Omega}} a^*(p) dx \ge \sup \{ \int_{\mathscr{B}} p \cdot Du - \mathcal{B}(Du) : u \in X \}$$

$$= \sup \{ -\int_{\mathscr{B}} u \operatorname{div} p \, dx - \mathcal{B}(Du) : u \in X \}$$
(2.37)

for all $p \in W$.

2. Define a functional A on $L^1(\mathcal{B}; \mathbb{R}^N)$ by

$$A(g) = \int_{\mathscr{Q}} a(g)dx$$
 for $g \in L^1(\mathscr{B}; \mathbb{R}^N)$.

I. Eckeland and R. Temam have shown that the convex conjugate A^* of A on the dual space $L^{\infty}(\mathcal{B}; \mathbb{R}^N)$ is given by $A^*(\cdot) = \int_{\mathscr{B}} a^*(\cdot) dx$ (see Lemma1.1. Chap. V [6]), namely,

$$\begin{split} \int_{\mathscr{B}} a^*(q) dx &= A^*(q) \\ &= \sup \{ \int_{\mathscr{B}} q \cdot g dx - \int_{\mathscr{B}} a(g) dx : g \in L^1(\mathscr{B}; \mathbb{R}^N) \} \end{split}$$

for all $q \in L^{\infty}(\mathcal{B}; \mathbb{R}^N)$. Set $q = \chi_{\overline{\Omega}} p$, then

$$\int_{\overline{\Omega}} a^*(p) dx = \sup \{ \int_{\overline{\Omega}} p \cdot g dx - \int_{\mathscr{B}} a(g) dx : g \in L^1(\mathscr{B}; \mathbb{R}^N) \}$$

Note that, for $g \in L^1(\mathcal{B}; \mathbb{R}^N)$, $\chi_{\overline{\Omega}} g \in L^1(\mathcal{B}; \mathbb{R}^N)$ and $\int_{\mathcal{B}} a(g) dx \ge \int_{\mathcal{B}} a(\chi_{\overline{\Omega}} g) dx = \int_{\overline{\Omega}} a(g) dx$. Thus

$$\int_{\overline{\Omega}} a^*(p) dx = \sup \{ \int_{\overline{\Omega}} p \cdot g dx - \int_{\overline{\Omega}} a(g) dx : g \in L^1(\mathscr{B}; \mathbb{R}^N) \}
\leq \sup \{ \int_{\overline{\Omega}} p \cdot Du dx - \int_{\overline{\Omega}} a(Du) : u \in BV(\mathscr{B}) \}
= \sup \{ \int_{\mathscr{B}} p \cdot Du dx - \int_{\mathscr{B}} a(Du) : u \in X \}
= \sup \{ -\int_{\mathscr{B}} u \operatorname{div} p \, dx - \int_{\mathscr{B}} a(Du) : u \in X \}.$$
(2.38)

(2.37) and (2.38) show the lemma.

Since $\mathcal{B}(Du) = \mathcal{A}(u)$, by Lemma 2.5,

$$\int_{\overline{\Omega}} a^*(p) dx = \sup\{-\int_{\mathscr{B}} u \operatorname{div} p \ dx - \mathcal{A}(u) : u \in X\}$$

for $p \in W$. The right-hand side is depending only on $\pm \operatorname{div} p \in L^N(\mathscr{B})$. Set

$$Z = \{ z \in L^N(\mathscr{B}) : z = -\operatorname{div} p, \ p \in W_c \}, \tag{2.39}$$

and define a functional \mathcal{A}^* on $L^N(\mathcal{B})$ by

$$\underline{\mathcal{A}^*}(z) = \begin{cases} \sup\{-\int_{\mathscr{B}} uzdx - \mathcal{A}(u) : u \in X\} & \text{if } z \in \mathbb{Z} \\ +\infty & \text{otherwise} \end{cases}$$
 (2.40)

Note that $\underline{\mathcal{A}}^*(z) = \mathcal{A}^*(-p) = \mathcal{A}^*(p) = \underline{\mathcal{A}}^*(-z)$.

Lemma 2.6. \underline{A}^* is lower semicontinuous with respect to L^N -topology.

Proof It is sufficient to show that the set $\{z \in L^N(\mathscr{B}) : \underline{A^*}(z) \leq \alpha\}$ is closed for any $\alpha \in \mathbb{R}$. Suppose the sequence $\{z_n\}$ satisfies $\underline{A^*}(z_n) \leq \alpha$ and $z_n \to z$ in $L^N(\mathscr{B})$. Thus, $z_n = -\text{div}p_n$ and $|p_n|_{\infty} \leq 1$ and we may assume $\text{supp}[p_n] \subset O$ for an open set O with $\overline{\Omega} \subset O \subset \mathscr{B}$. There is a subsequence $\{p_{n'}\}$ and $p \in L^{\infty}(\mathscr{B}; \mathbb{R}^N)$ such that

$$p_{n'} \to p$$
 weakly*,

thus $|p|_{\infty} \leq 1$ and supp $[p] \subset O$. Since

$$\int_{\mathscr{B}} z_{n'} \varphi dx = -\int_{\mathscr{B}} (\operatorname{div} p_{n'}) \varphi dx = \int_{\mathscr{B}} p_{n'} \cdot \nabla \varphi dx$$

$$\to \int_{\mathscr{B}} p \cdot \nabla \varphi dx = -\int_{\mathscr{B}} (\operatorname{div} p) \varphi dx,$$
and
$$\int_{\mathscr{B}} z_{n'} \varphi dx \to \int_{\mathscr{B}} z \varphi dx$$

for all $\varphi \in C_c^{\infty}(\mathscr{B})$. Thus z = -divp. Since $z_{n'} \to z$ and

$$\int_{\mathscr{B}} uz_{n'}dx - \mathcal{A}(u) \le \alpha,$$

$$\int_{\mathscr{B}} uzdx - \mathcal{A}(u) = \underline{\mathcal{A}}^*(z) \le \alpha.$$

This shows the lemma.

Note that, for any $z \in Z$, if $\underline{A}^*(z)$ is finite then z = -divp with $p \in W_c$ and

$$\underline{\mathcal{A}}^*(z) = \int_{\overline{\Omega}} a^*(p) dx. \tag{2.41}$$

3 Proof of Theorem 1.2

Proposition 3.1. Let $u \in X$ and suppose that there exists $z \in L^N(\mathscr{B})$ holding the inequality,

$$A(v) - A(u) \ge \lambda \int_{\mathscr{B}} z(v - u) dx \quad \text{for all } v \in X.$$
 (3.42)

Then there exists $p \in V_1$ with -divp = z such that

$$p = \frac{\nabla u_{\Omega}}{\sqrt{1 + |\nabla u_{\Omega}|^2}} \quad in \ \Omega, \tag{3.43}$$

$$p \cdot D^s u_{\Omega} = |D^s u_{\Omega}| \quad \text{in } \Omega, \tag{3.44}$$

$$(\nu \cdot p)u_{\Gamma} = -|u_{\Gamma}| \quad on \ \Gamma. \tag{3.45}$$

Proof.

1. We may assume that z in (3.42) has a compact support in \mathscr{B} . Indeed, if not, by applying Lemma 4.1 in Appendix, we have $p \in W_c$ satisfying z = -divp

on $\overline{\Omega}$. Thus we can replace z in the inequality by $\hat{z} \equiv -\text{div}p$ which has a compact support.

2. Thus there exists z = -divp with p in W_c such that

$$\int_{\mathscr{B}} zudx - \mathcal{A}(u) \ge \int zvdx - \mathcal{A}(v) \quad \text{for all } v \in X.$$

Since $u \in X$, this implies

$$\int_{\mathscr{B}} zudx - \mathcal{A}(u) = \sup \{ \int_{\mathscr{B}} zvdx - \mathcal{A}(v) : v \in X \}$$
$$= \sup \{ -\int_{\mathscr{B}} v \operatorname{div} p \ dx - \mathcal{A}(v) : v \in X \}$$
$$= \mathcal{A}^*(p) = \underline{\mathcal{A}}^*(z).$$

The left-hand side is finite and so is $\mathcal{A}^*(p)$. Hence, $p \in V_{1,c}$ and by (2.41)

$$-\int_{\mathscr{B}} u \operatorname{div} p \ dx - \mathcal{A}(u) = \int_{\overline{\Omega}} a^*(p) dx,$$
$$\int_{\mathscr{B}} p \cdot Du dx - \int_{\mathscr{B}} a(Du) = \int_{\overline{\Omega}} a^*(p) dx.$$

Note that the domain \mathscr{B} of integration in the left-hand side can be regard as $\overline{\Omega}$ because the support of Du is in it. Since $Du = Du_{\Omega} - u_{\Gamma}\nu d\mathscr{H}^{n-1}$ and $Du_{\Omega} = \nabla u_{\Omega} dx + D^s u_{\Omega}$, we have

$$egin{aligned} &\int_{\Omega} p \cdot
abla u_{\Omega} dx + \int_{\Omega} p \cdot D^{s} u_{\Omega} - \int_{\Gamma} (p \cdot
u) u_{\Gamma} d\mathscr{H}^{N-1} \ &- \int_{\Omega} a(
abla u_{\Omega}) dx - \int_{\Omega} |D^{s} u_{\Omega}| - \int_{\Gamma} |u_{\Gamma}| d\mathscr{H}^{N-1} \ &= \int_{\Omega} a^{*}(p) dx, \ &0 = \int_{\Omega} (a^{*}(p) - ((p \cdot
abla u_{\Omega}) - a(
abla u_{\Omega}))) dx \ &+ \int_{\Omega} (|D^{s} u_{\Omega}| - (p \cdot D^{s} u_{\Omega})) \ &+ \int_{\Gamma} (|u_{\Gamma}| + (p \cdot
u) u_{\Gamma}) d\mathscr{H}^{N-1}. \end{aligned}$$

Note that each integrand of the three terms of the last equation is nonnegative. Hence the equation implies the integrands vanish identically.

$$a^{*}(p) = p \cdot \nabla u_{\Omega} - a(\nabla u_{\Omega})$$

$$p \cdot D^{s} u_{\Omega} = |D^{s} u_{\Omega}|$$

$$(p \cdot \nu)u_{\Gamma} = -|u_{\Gamma}|$$
(3.46)

(3.46) implies $p = a'(\nabla u_{\Omega})$ which is equal to (3.43). Other two equations are (3.44) and (3.45).

Proof of Theorem 1.2

Since $u \in X$ is a solution of variational inequality (1.11), setting z = g(x, u) and noting supp $[g(x, u)] \subset \overline{\Omega}$, apply Proposition 3.1.

Remark 3.2. Finally, we illustrate an analogy between our approach developed here and the process in the theoretical mechanics deriving the Hamilton's canonical form from the Euler-Lagrange equation. In what follows, we often describe formally without the mathematical accuracy.

Let regard our functional \mathcal{L}_{λ} as a Lagrangean of the form

$$\mathcal{L}_{\lambda}(u, Du) = \mathcal{B}(Du) - \lambda \mathcal{G}(u). \tag{3.47}$$

In the case of a smooth u, its Euler-Lagrange equation is given by the second order differential equation in (0.1). For the functional \mathcal{L}_{λ} involving the Radon measure Du, we cannot derive directly such an equation. By using the Legendre transformation

$$\mathcal{A}^*(p) = \sup\{ \int_{\mathcal{R}} p \cdot Du dx - \mathcal{B}(Du) : u \in X \}, \tag{3.48}$$

the equation in which $\mathcal{A}^*(p)$ replaced $\int_{\overline{\Omega}} a^*(p) dx$ is given in Lemma 2.5, and setting the Hamiltonian

$$\mathcal{H}(u,p) = \mathcal{A}^*(p) - \lambda \mathcal{G}(u), \tag{3.49}$$

we introduce a system of the first oder differential equations

$$\begin{cases} Du = -\frac{\partial \mathcal{H}}{\partial p} = -\frac{\partial \mathcal{A}^*}{\partial p}, \\ D \cdot p = \frac{\partial \mathcal{H}}{\partial u} = -\lambda \frac{\partial \mathcal{G}}{\partial u} \end{cases}$$
(3.50)

In the theoretical dynamics, the canonical form governing the motion of a mass has the same type as (3.50) where u and $p = \mathcal{B}'(Du)$ represent the position and the momentum of the mass respectively and $D = \frac{d}{dt}$. As we stated in the above, (3.48) is written formally

$$\underline{\mathcal{A}^*}(z) = \sup\{ < z, u > -\mathcal{A}(u) : u \in X \}$$

where A(u) = B(Du), z = -divp. The variational inequality (1.11) implies

$$\lambda \int_{\mathscr{B}} gudx - \mathcal{A}(u) = \underline{\mathcal{A}}^*(\lambda g) = \mathcal{A}^*(p)$$

with $\lambda g = -\text{div}p$. By Lemma 2.5(the key lemma),

$$\int_{\overline{\Omega}} a^*(p) dx = \int_{\mathscr{B}} (-\operatorname{div} p) u dx - \mathcal{A}(u)$$
$$= \int_{\mathscr{B}} (-\operatorname{div} p) u dx - \int_{\mathscr{B}} a(Du))$$

By using $Du = \nabla u_{\Omega} dx + D^s u_{\Omega} - u_{\Gamma} \nu d\mathcal{H}^{n-1}$,

$$\int_{\mathscr{B}} (a^*(p) - p \cdot \nabla u_{\Omega} - a(\nabla u_{\Omega})) dx$$

$$+ \int_{\mathscr{B}} (|D^s u| - p \cdot D^s u)$$

$$+ \int_{\Gamma} (|u_{\Gamma}| + (p \cdot \nu)) d\mathscr{H}^{N-1}$$

$$= 0.$$

By this, instead of the formal relation $p = \mathcal{B}'(Du)$ between the momentum and the velocity, we obtained more explicit relations (3.43)-(3.45) in Proposition 3.1.

Since
$$\mathcal{A}^*(p) = \int_{\mathscr{B}} a^*(p) dx$$
 and $\mathcal{G}(u) = \int_{\mathscr{B}} G(x, u) dx$,
 $< \frac{\partial \mathcal{A}^*}{\partial p}, \phi >= \int_{\mathcal{B}} (a^*)'(p) \cdot \phi dx = -\int_{\mathscr{B}} \frac{p \cdot \phi}{\sqrt{1 - |p|^2}} dx$,
 $< \frac{\partial \mathcal{G}}{\partial u}, \varphi >= \int_{\mathscr{B}} g(x, u) \varphi dx$,

we can write the equations in (3.50) in weak form:

$$\begin{split} < u, -\mathrm{div} \phi > &= < \frac{p}{\sqrt{1 - |p|^2}}, \phi > \quad \text{for all} \ \ \phi \in C_c^\infty(\mathscr{B}; \mathbb{R}^N), \\ < p, \nabla \varphi > &= -\lambda < g, \varphi > \qquad \text{for all} \ \ \varphi \in C_c^\infty(\mathscr{B}; \mathbb{R}). \end{split}$$

Hence

$$Du = \nabla u_{\Omega} = \frac{p}{\sqrt{1 - |p|^2}},$$

which is equivalent (3.43), and

$$\operatorname{div} p = -\lambda g(x, u).$$

4 Appendix.

Lemma 4.1. For any $z \in L^N(\mathscr{B})$, there exists $\hat{z} \in L^N(\mathscr{B})$ with compact support such that $z = \hat{z}$ on $\overline{\Omega}$ and $\hat{z} = -\text{div} p$ for some $p \in L^\infty(\mathscr{B}; \mathbb{R}^N)$ with compact support in \mathscr{B} .

Proof.

Let O_1, O_2 be open sets satisfying $\overline{\Omega} \subset O_1 \subset \subset O_2 \subset \subset \mathscr{B}$, and ψ be a C_c^{∞} -funftion such that $0 \leq \psi \leq 1$, $\psi = 1$ on $\overline{O_1}$ and $\psi = 0$ outside O_2 . Let l_i be a line parallel to x_i -axis, say, $l_i = \{(x_1, \cdots, x_{i-1}, \xi, x_{i+1}, \cdots, x_N) : \xi \in \mathbb{R}\}$. For each $y_i = (x_1, \cdots, x_{i-1}, x_{i+1}, \cdots, x_N) \in \mathbb{R}^{N-1}$, we write simply $l_i = \{(\xi, y_i) : \xi \in \mathbb{R}\}$. The line segment $l_i \cap \mathscr{B}$ can be expressed by l_i with $|\xi| < R_i$ for some $R_i = R_i(y_i) > 0$. Set $z_0 = \frac{1}{N} \psi z$ and

$$w_i(x) = -\int_{-R_i}^{x_i} z_0(\xi, y_i) d\xi$$

for $|x_i| \leq R_i$ and $1 \leq i \leq N$. Then

$$w_i \in L^{\infty}(\mathscr{B}), \quad \frac{\partial w_i}{\partial x_i} = -z_0.$$

Denote $w = (w_1, \dots, w_N)$ and set $p = \psi w$, then p has a support in $\overline{O_2}$, belongs to $L^{\infty}(\mathcal{B}; \mathbb{R}^N)$ and is equal to w in $\overline{O_1}$. Hence, $\hat{z} = -\text{div}p$ has a compact support in $\overline{O_2}$ and

$$\hat{z} = -\text{div}p = Nz_0 = z \quad \text{in } O_1$$

References

- [1] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, Oxford University Press, New York, 2000.
- [2] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC press, 1992.
- [3] F. Demengel and R. Temam, Convex functions of a measure and applications, Indiana Univ. Math. J. Vol.33, No.5(1984), 673-709
- [4] F. Demengel, On the stability under perturbation of solutions of non-linear problems on $W^{1,1}(\Omega)$, Asymptotic Anal. 21 (1999), 209-220
- [5] M. Degiovanni and M. Marzocchi, A critical point theory for nonsmooth functionals, Ann. Math. Pure Appl. 167 (1994), 73-100
- [6] I. Ekeland and R. Témam, Convex Analysis and Variational Problems, SIAM Classics in Applied Mathematics 28
- [7] E. Giusti, Minimal Surfaces and Functions of Bounded Variations, Birkhäuser, Basel, 1984

- [8] G. Katriel, Mountain pass theorems and global homeomorphism theorems, Ann. Inst. H. Poincaré Anal. Non Linéare 11 (1994), 189-209
- [9] B. Kawohl and F. Schuricht, Dirichlet problems for the 1-Laplace operator, including the eigenvalue problem, Commun. Contemp. Math. 9(4) (2007), 515-544
- [10] R. Kohn and R. Temam, Dual spaces of stresses and strains, with applications to Hencky plasticity, Appl. Math. Optim. 10 (1983), 1-35
- [11] V.K. Le, Some existence results on nontrivial solutions of the prescribed mean curvature equation, Adv. Nonlinear Studi. 5 (2005), 133-161
- [12] V.K. Le, A Ljusternik-Schnirelmann type theorem for eigenvalues of a prescribed mean curvature problem, Nonlinear Anal. 64 (2006), 1503-1527