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Abstract

Let L(u) = L(u, Vu) be a functional on W!(Q) whose formal Euler-
Lagrange equation at the critical point u of L is the prescribed mean
curvature equation:

of Ve ) (z, )
V1+|Vul? g

Suppose L(u) = L(u,Du) is a relaxed functional of L(u), the weakly
lower semicontinuous extension of L on the space of functions of bounded
variation. How dose the relaxation affect the prescribed mean curvature
equation? Instead of an Euler-Lagrange equation, we obtain here the
so-called Euler-Lagrange system of equations which the critical points u
of £ and their derivatives Du necessarily satisfy.

2010 Mathematics Subject Classification. 49J40, 49J45, 53A10, 26A45.

Introduction

We are concerned here with a Dirichlet boundary value problem (DBVP) of
the prescribed mean curvature equation:

—div <~—~1%) = A\g(x, u) in 0,

u=0 onl’

(0.1)

Here 2 is a bounded domain in RY (N > 2) with sufficiently smooth boundary
I' = 09, g is a Carathéodory function and A a positive real number. The
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problem is derived (at least formally) as an Euler-Lagrange equation from a
variational problem for the functional

LA(u)z/ﬂa(Vu)da:——/\/QG(w,u)dm (0.2)

on W, (Q), where a(v) = /1 + [v]2~1onv € RY and G(z,u) = [, g(z, s)ds.
However, the principal part Ag(u) = fQ (Vu)dz , called an area functional,
is not lower semicontinuous with respect to the weak topology (or even in
Li-topology) of the space, and neither is Ly. A standard approach to the
variational problem of such a functional is to relax the functional in such a
way the resulting functional becomes lower semicontinuous and to seek critical
points of the relaxed functional. In the case of Ly, the relaxed functional £y
is defined on BV(Q), the space of functions of bounded variation on €. The
existence of a local minimum point and a non-minimal critical point of £, has
been proven by V. K. Le [11, 12].

We here direct our attention to the existence problem of the Euler-Lagrange
equation itself like (0.1) for £, . How is it expressed if it exists? We cannot
use the minimality, of course, to characterize the non-minimal critical points
of L. For the non-differentiable functional L, its critical points cannot be
defined as zeros of its derivative, and should be done in some indirect way. V.
K. Le defines the critical point of £, as a solution of a variational inequal-
ity. Therefore it is of interest to obtain some Euler-Lagrange equations like
(0.1) which critical points necessarily satisfy. Since the critical point u belongs
to BV (), its distributional derivative Du is a bounded measure. Thus the
expected Euler-Lagrange equation will involve the measure Du together with
u as unknowns. The measure Du can be divided into some parts which are
singular each other. For instance, Du = D% + D%u, where D% (or D%u) is
the absolutely continuous (or singular respectively) part with respect to the
N-dimensional Lebesgue measure dz = d.Z2". And the Euler-Lagrange equa-
tion may be described as a system of some equations, each of those governs one
part of Du. In that case, we call it the Euler-Lagrange system and refer to it
as the prescribed mean curvature equations of (DBVP) since the system itself
governs a function u € BV (Q) regarded as a solution of (DBVP). For the criti-
cal point u of Ly defined as a solution of the variational inequality proposed by
Le, we obtain the prescribed mean curvature equations of (DBVP). To state
our result more precisely, we give some preliminaries and a short summary of
results gotten by V. K. Le.

1 Preliminaries and the main result

In this section, we give some preliminaries together with a short summary of
the existence results of the critical points of £, proved by Le. And then we
state the main theorem of the present paper.
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The space of functions of bounded variation on 2 is defined by

BV(Q) = {u € L}(Q) : |Du|q < +oo} (1.3)
where
IDule = sup [ udivy do 20 = (.- 1) € CHORY).nl <1}
(1.4)

is called the total variation of u on €. Du is the distributional derivative of u,
namely,

< Du,n >= —/ udivy dx for all n € C°(Q;RY),
Q

and it is a RY-valued Radon measure on ) if u € BV (Q). |Du] is a positive
Radon measure satisfying

|Du|(0) = /O |Dul = |Dulo

for all open set O C Q. BV(Q) is a Banach space with the norm |[u|| =
llullz1(0y + |Dulo. It is well known that BV () is embedded in L'"(Q) (1* =

%) continuously. The function v € BV(2) has a trace ur which is the

boundary value of u on I' if u € C*(Q). The mapping v : BV(Q2) — LY(T")
with y(u) = ur is continuous.

The definition of the area functional A(u : Q) = [, a(Du) has been intro-
duced by E. Giusti [7].

Definition 1.1. Let U be a bounded domain in RY. Define an area functional
Aon LY (U) by

Afw: U) = sup{ [ (o +udivy ~ )da i = (0,1) € CHUR x RY),[i] < 1}
U
(1.5)
where n = (n1,--- ,nn) and divy = Zf\]:l %f.

Observe that A = A(- : U) is a convex functional on L' (U) with the
effective domain domA = BV (U), i.e., A(u : U) is finite if and only if v €
BV (U), and is lower semicontinuous in L' and thus in L!"-toplogy.

The relaxation A; of A on Wy () in the introduction, Ag(u) = Jo a(Vu)dz
for u € W, (Q) , is known as the functional on BV (£2) defined by

Ai(u) = A(u: Q) + /P |up|ds# N 1 for u € BV (Q) (1.6)

The integral in the right-hand side, which is the relaxation term for the bound-
ary condition u = 0 on I', can be eliminated by extending function u by taking
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the value zero outside . Let 2 be a open ball (with center 0) such that @ C %
and put
_ U in Q
u= ,
0 in Z\Q

Ai(u) = A(a : B).

then @ € BV (%) and

Setting
X={ueBV(#):u=00n Z\0Q},
we can replace (1.6) by
Alu: B) = / o(Du) (1.7)
]

for u € X. Remark that the above integral is here a formal and convenient
expression of the functional A(u : &) defined in Definition 1.1. We give later
another definition of the integral and prove that the above equality holds for v €
BV (%) with compact support (see (2.35)). Since we only deal with functions
in X or BV (%) in what follows, we write simply A(-) = A(- : ).

We assume the following conditions:

(A. 1) g: % xR — Risa Carathéodory function satisfying

g(z,§) =0 forz € Z\ Q.
(A. 2) There exists g € (1,1%) such that
lg(z,€)] < di)¢|9 +dy forae z€ B, all €R

with some constant dy, do > 0.

Put
G(u) = / G(z,u)dz (1.8)
B
for u € L' (#). By (A. 2), G is Fréchet differentiable and
< G'(u),v >=/ g(z, u)vdz (1.9)
B

for v € L'" (). The relaxation £y of Ly in the introduction is a functional on
X denoted by
Lx(u) = A(u) — AG(u) (1.10)

foru € X.

Under (A. 1), (A. 2) and some additional conditions, the existence of a
local minimum point and a non-minimal critical point of functional £, has
been proven by V. K. Le [11]. Since A is not differentiable, introducing the
“weak slope”(in [5]) instead of the derivative and using the mountain pass
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argument (in [8]), he proved the existence of the non-minimal critical point
of £y for small A, which is, as a result, a solution u € X of the variational
inequality:

Aw) — Au) — )\/ gz, u}(v—u)dz >0  forall velX. (1.11)
®

The minimum point u of £ also satisfies (1.11). When a pair (), u) satisfies
(1.11) X is called an eigenvalue and u its eigenfunction. By using a Ljusternik-
Schnirelmann theory for (1.11), Le [12] also obtained infinite sequence of eigen-
values and eigenfunctions.

Since the functional A is convex on X, the inequality (1.11) implies

0 € dA() — \G'(w) (1.12)

where 0A(u) is the subdifferential of A at u. Thus (1.12) or the inequality
(1.11) itself can be regard as a weak form of the Euler-Lagrange equation for
the critical point of £. Our aim is to obtain a more explicit expression.

For u € X , we denote by ug the restriction of u onto 2, then ug € BV(Q)

and
Du = Dug — urvd#N 1, (1.13)
where ur is the trace of ug on I', ur = (uq)r (see e.g. [1, 2]).
Let U C RY be open and v € BV(U), D% and D%v be respectively the

absolutely continuous and singular parts of the Radon measure Dv. Denote
the density (f?,% by Vv € LY(U) , then

Dv = D% + D®v = Vvdx + D%v.
For u € X, by (1.13), we have
D%y =D%uq = Vugdz,
Dy =D%uq + upvds## N1,
Du =Vuqdz + D*uq — urvd#N 1.
The main result of the present paper ia as follows.

Theorem 1.2. Let v € X be a solution of the variational inequality (1.11),
then there exists p € L°°(%;RY) such that

—divp = Ag(z, ug) in Q, (1.14)
p= U2 in Q, (1.15)

Vv1+ |VUQ|2
P DSUQ = IDSUQ| m Q, (1.16)

(v-p)ur = —|up| on I (1.17)
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where v - p is the weakly-defined trace of the nomal component of p, which lies
in L°(T).

Remark 1.3. In the above theorem, we can eliminate p. By (1.15), p € L*® is
obvious. Substituting (1.15) into (1.14), we have the prescribed mean curvature
equation on ugq:

—div (—gJ—I}_%IE—STP) = Ag(z,uq). inQ (1.18)

Substitute (1.15) into (1.16) and (1.17). Then we have

Nua Do _peyot ing, (1.19)
V14 |[Vugl?
(v-Vuo)ur _ | 1 onT. (1.20)

1+ |VUQ|2

These are the equations on the singular parts in 2 and on I,

Therefore, in the case of Dug = 0, the critical point u € X has the interior
regularity that u = uq belongs to W!(Q) and it satisfies (1.18). And the
boundary condition (1.20) implies

—oo if ug >0,

-0 Vo) =
ur or (v-Vug) {—}—oo if ug < 0,

v
because —L Y42 — _sonyp means |v - Vug| = [Vug| = +oo.
V14| Vual?

F. Demengel and R. Temam [3] have obtained the similar expression as in
Theorem 1.2 for the subdifferntial related to the minimal surface operator. For
the similar expression on the subdifferential related to 1-Laplace operator, see
B. Kawohl and F. Schuricht [9] and F. Demengel [4].

2 The area functional and its convex conjugate
Let a* be the convex conjugate of a in RY, namely,
a*(p) = sup{p-v —a(v) :v e RV} for p e R.

Observe that

+oo  otherwise.

a*(P):{l_ Vi=lpl il <1, (2.21)

Let BV,.(%) be all of functions in BV (%) with compact support in 2.
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Lemma 2.1. For u € BV, (%),

Au) = sup{/ udivp dz — / a*(p)dx :p eV}, (2.22)
2 2
where
V={peLY%:R"):divp € LV(B)}. (2.23)
Proof.
1.

Alu) = sup{/% udivy dx — /gga*(n)dm :n e CHB;RY),|n| <1}, (2.24)

Indeed, the condition [A] < 1in (1.5) implies

[nol < V1=12, In| <1

Thus [, nodz < [5+/1 — [n]?dx and the right-hand side of (1.5)(with U = %)
is dominated by that of (2.24). On the other hand, the continuous function
0 <+/1—|n]2 £1 on % can be approximated by C}-function & with 0 < £ <

/1 —n|? in L* sense. Thus (2.24) holds.
2. Since C}(#;RN) C V,

Alu) < sup{/@ udivp dx — /@ a*(p)dz :peV}. (2.25)

3. By (2:21), [za*(p)dx = +oo if a* op ¢ L*(%). Therefor, V in the
right-hand side of (2.25) can be replaced by Vi:

Vi ={p e L}(#;RY):a* op € L}(B),divp € LN (B)}
={p e L®(%;R") : |p|e < 1,divp € LV(B)} (2.26)

Since u has a compact support K = supp[u],

/ udivp dx = / udivp dz.
B K :

Let O1, Oy be open sets with K € O CC Oy CC £ and 9 be C*°-function
with 0 <1 < 1,9 =1 on Oy and % = 0 outside Oz. Then div(y¥p) = divp on
K and |¥p| < |p|. By the monotonicity of a*(p) with respect to |p|,

Au) =sup{/gg udivp dz — /gga*(p)dax :peV}

=sup{/ udivp dx — / a*(p)dzx : p € V1, suppp C HB}.
& 2
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4. To complete proof, it is sufficient to approximate the above integrals by
ones whose p is replaced by functions n € C}(%;RY) with |n| < 1. Let p, be
a standard mollifier and set p. = p. * p . Then p. € C}(%;RY) with |p.| < 1
for small € > 0 and

Pe;, P ae,

divp, = pe, *divp — divp in LV (2) ,
as €; — 0. Thus

/udivpejd:c—»/ udivp dz,
B ’ B

and, by the Lebesgue’s dominated convergence theorem,
/ a*(pe,)dr — / a*(p)dx.
R ' B

Remark. Set
W = {pe L®(#BRY) : divp € LV (B)}.

Since Vi € W C V, as we state in the proof, for u € BV,.(#) we have
Alu) :sup{/ udivp dx — / a*(p)dr:peV}
% B
:sup{/ udivp dx — / a*(p)dx :pe W}
& &
:sup{/ udivp dz — / a*(p)dx :p € V1}
2 i
and we can impose p on its compact support in &. Moreover, since a* is even,
the above integral [, udivp dx can be replaced by + [ udivp dz.
Let U be a bounded domain in RY. For any u € BV(U) and any p €

W(U) = {p € L®(U;RY) : divp € LN (U)}, define the distribution p - Du by

/U o(p- Du) = — AT(divp)unpdx - /L (p- Vo)ludz (2.27)

for all p € C°(U). R. Kohn and R. Temam ([10] Proposition 1.1) have shown
that p - Du is a bounded measure with |p - Du| < ||p||eo|Du| and obtained the
Green'’s formula:

/ (p-v)ugy pdsN 1 :/(p~Du)¢>+/(divp)u¢dx+/U(p~V¢)udx (2.28)

U U U

for all ¢ € C1(T).
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For u € BV, (%) and p € W, define p- Du by (2.27) with U = 4. Choosing
w € CX (%) with ¢ =1 on suppu, we have

/@ p-Du=— /g8 (divp)udz. (2.29)

For u € X, the restriction uq of u on 2 belongs to BV (). Defining p - Dug
by (2.27)with U = Q and u = ug, we have

| - vyuesdst™ = [ Duyo+ [ (dvppuasds + [ (o Vopunds.
ar Q Q Q

" (2.30)
Any ¢ € C2°(#) can be regard as p € C1(Q2) and

/(divu)wdw+/ (p-Vnp)ud;r:/(diVUQ)cpdva/(p‘Vgo)qux.
& 2 0 0

By (2.27)(with U = %) , (2.30) and the above equation, we have

~ [ oo Du = [ vyureare™= ~ [ - Duapda

for all p € C°(A). Thus,
p-Du=1p  Dug — (p v)urds# N} (2.31)

forue X.
Remark. Choose p = e; (1 < i < N) in the canonical basis {e1,--- ,en} of
RY . Then (2.31) yields (1.13).

Remark 2.2. By (2.29) and the remark given after the proof of Lemma, 2.1,
Au) =sup{ﬁ:/ udivp dz —/ a*(p)dz:peY}
B B

:sup{¥/ p- Du —/ a*(p)dz:peY} (2.32)
B B
for w € BV.(%), where Y =V, , W , Vi, = {p € V; : supp[p] C &} or
W, = {p € W : supp[p] C #}.

Define a functional A* on W by

A*(p) = /gg a*(p)dz (2.33)

for p € W. Then

. <|%B| ifpeV,
A<p>{ 1] '

= o0 otherwise.

Since the right-hand side of (2.32) is determined ony by Du, we denote it
by B(Du).
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Definition 2.3. For u € BV,.(4), Define a functional B of the Radon measure
Du by

B(Du) = sup{/@p -Du— A*(p):pe 1}, (2.34)

Remark 2.4. By (2.32), of course,
B(Du) =A(u)

::sup{—/ udivp de — A*(p) :pe Y}
B
—sup{ [ p-Du=A'(p):pe)

where Y = V1, Vi ., W or We.

For a Radon measure u = u® + u*, where pu* = f(z)dz, p° be respectively
the absolute continuous and singular parts with respect to the Lebesgue mea-
sure, define a measure a(u) by a(p) = a(f(z))dz + ax(p®), where as(z) =
lim;_, o a(tz)/t = |z}, i.e.,

a(p) = a(f(z))dz + |p°].

F. Demengel and R. Temam (3] have shown

[@wa(u)=sup{é¢p-du~[@wa*(p)dx:p€Vl}

for all p € C°(%) with ¢ > 0. Let u € BV, (%#). Put p = Du = Vudzr + D*u.
Choosing ¢ with ¢ = 1 on supp|u], we have

/@a(Du) = sup{[@p~ Du — /@a*(p)dz :pe W}l
Thus

/ o(Du) = / o(Vu)dz + |D°ul(B)
B B

=B(Du)

=A(u) (2.35)
for u € BV,(%). This shows that the equation (1.7) holds for the measure
a(Du) defined above.

Denote by [Dulg the restriction of Du on Q. By the monotonicity of a(v)
with respect to |v] and the above equation,

B([Dulg) < B(Du).
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For h € WH1(2) with compact support, we write simply B(Vh) = B(Vhdz),
ie., ‘

B(Vh) = /@ a(Vh)dz.

Lemma 2.5. Let p € W, then

/_a* (p)dz = sup{—/ udivp dz — B(Du) :u € X} (2.36)
a 2

Remark. (2.36) hold even if the left-hand side equals to +co.

Proof of Lemma 2.5.

1. Fix any u € X. Let ¢ € C°(%) satisfying 0 < ¢ < 1 and ¢ = 1 on {, then
wp € W, for all p € W. Since supp[Du] C Q, by the definition 2.3 and Remark
2.4, we have

BDu 2 [ p-Du- | o (enda,
Q @
for all p € W . Letting ¢ \, X yields
B(Du) > /_p - Dy — /_a*(p)dm,
Q a
Thus,
/ a*(p)dz Zsup{/ p-Du—B(Du):ue X}
Q R
=sup{~—/ udivp dz — B(Du) :u € X} (2.37)
& .

forall p e W.
2. Define a functional A on L'(%;R"Y) by

Alg) = / a(g)dz for g € L'(%;RY).
B
I. Eckeland and R. Temam have shown that the convex conjugate A* of A on

the dual space L°(%;R") is given by A*(-) = [, a*(-)dz ( see Lemmal.l.
Chap. V [6]), namely,

[a@a=-2@
B

ésup{/ggq-gdx~/gga(g)dw:géLl(%’;RN)}
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for all ¢ € L>®(B;RY). Set ¢ = xgp, then
/_a*(p)dx = sup{/"p‘gd:c */ a(g)dz : g € L' (B RY)}
a a ]

Note that, for g € L'(%;RY), xiz9 € L' (%;RY) and [z alg)dz > f@ a(xgg)dz =
Jsalg)dz. Thus

/ﬁa*(p)daﬁ =Sup{/6p-gdfc - /g_za(g)d:v 19 € L'(#RY))
gsup{/ﬁp - Dudx — /Qa(Du) :u € BV(28)}
:sup{/@pDuda:— /@a(Du) cu€e X}
=sup{— /ggudivp dzr — /@ a(Du) :u € X} (2.38)

(2.37) and (2.38) show the lemma.

d
Since B(Du) = A(u), by Lemma 2.5,
/_a*(p)dm = sup{—/ udivp dz — A(u) 1 v € X}
a 2
for p € W. The right-hand side is depending only on %divp € LV(4%). Set
Z={2€ LN(RB): 2z = ~divp, p€ W.}, (2.39)
and define a functional A* on LV (%) by
sup{— | wzdz — Au):ve X} ifzeZ
e () u e X) 210
+00 otherwise

Note that A*(z) = A*(—p) = A*(p) = A*(-=2).
Lemma 2.6. A* is lower semicontinuous with respect to L™ -topology.

Proof It is sufficient to show that the set {z € LV (%) : A*(2) < a} is closed
for any o € R. Suppose the sequence {z,} satisfies A*(2,) < @ and z, — 2 in
LN(). Thus, z, = —divp, and |p,|~ < 1 and we may assume supp[p,] C O
for an open set O with Q@ € O cC . There is a subsequence {p,/} and
p € L>(%;RY) such that

Dnr = p weakly™® |
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thus |p|s < 1 and supp|p] C O. Since

/ Zn"de = _/ (divp,,,/)godx :/ Pt Vsﬁdﬂ?
B B B
—)/ p-Vodz = —/ (divp)pdz,
B B

and

/zn/gpdac ->/ zodx
B B

for all ¢ € C°(#). Thus z = —divp. Since z,» — 2 and

/ uzprdr — Au) < a,
2

/ uzdr — Alu) = A*(2) < a.
B

This shows the lemma.

O

Note that, for any z € Z, if A*(z) is finite then z = —divp with p € W, and

A*(2) = /S a* (p)da. (2.41)

2

3 Proof of Theorem 1.2

Proposition 3.1. Let u € X and suppose that there exists z € LN (#) holding
the inequality,

A(v) — A(u) > /\/ z(v—u)dz forall veX. (3.42)
B
Then there exists p € Vi with —divp = z such that
p= __Vue in Q, (3.43)
v 1+ |VUQI2
p- D’uq = |D’ug| in Q, (3.44)
(v p)ur = ~|up| onT. (3.45)

Proof.
1. We may assume that z in (3.42) has a compact support in 4. Indeed, if
not, by applying Lemma 4.1 in Appendix, we have p € W, satisfying z = —divp
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on . Thus we can replace z in the inequality by £ = —divp which has a
compact support.
2. Thus there exists z = —divp with p in W, such that

/ zudz — A(u) > /zvda: —A(v) forallveX.
B
Since u € X, this implies
/ zudr — A(u) :sup{/ 2dr — Av) v e X}
2 2
zsup{—/ vdivp dz — A(v) :v € X}
2

=A"(p) = A*(2).
The left-hand side is finite and so is .A*(p). Hence, p € Vi . and by (2.41)

- /@udivp de — Alu) = /ﬁa*(p)d:c,

Lp-Dudx»/@a(Du):/ﬁa*(p)dx.

Note that the domain % of integration in the left-hand side can be regard as
Q) because the support of Du is in it. Since Du = Duq — urvd#™~! and
Dug = Vuqdz + D3ug, we have

/p‘VUQdCE+/p'DSUQ—/(p'V)UFd%lV_I
Q Q r

—/Qa(VuQ)dx—/Q{DSuQ|—/F|up|dij_l

= / *(p)dz,

= Qa

0= [ @)~ (tp- Vuo) ~ a(Vus))de
+ [ 4Dual - (- Dus)
+/F(|ur|+(p~1/)ur)dffN_1.

Note that each integrand of the three terms of the last equation is nonnegative.
Hence the equation implies the integrands vanish identically.

a*(p) =p - Vug — a(Vug) (3.46)
D- DSUQ ———|DSUQ|

(p-v)ur =~ |ur|
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(3.46) implies p = o/(Vugq) which is equal to (3.43). Other two equations are
(3.44) and (3.45).

O

Proof of Theorem 1.2
Since u € X is a solution of variational inequality (1.11), setting z = g(z,u)
and noting supp[g(z,u)] C Q, apply Proposition 3.1.

O

Remark 3.2. Finally, we illustrate an analogy between our approach devel-
oped here and the process in the theoretical mechanics deriving the Hamilton’s
canonical form from the Euler-Lagrange equation. In what follows, we often
describe formally without the mathematical accuracy.

Let regard our functional £ as a Lagrangean of the form

Lx(u, Du) = B(Du) — AG(u). (3.47)

In the case of a smooth u, its Euler-Lagrange equation is given by the second
order differential equation in (0.1). For the functional £, involving the Radon
measure Du, we cannot derive directly such an equation. By using the Legendre
transformation

A*(p) = sup{/@p - Dudz — B(Du) : u € X}, (3.48)

the equation in which .A*(p) replaced [ga*(p)dx is given in Lemma 2.5, and
setting the Hamiltonian

H(u,p) = A*(p) — AG(u), (3.49)
we introduce a system of the first oder differential equations
pu_ OH__0A°
op  Op (3.50)
p.p= M _ 09
P= %0 = "ou

In the theoretical dynamics, the canonical form governing the motion of a mass
has the same type as (3.50) where u and p = B’(Du) represent the position
and the momentum of the mass respectively and D = gt-. As we stated in the
above, (3.48) is written formally

A*(2) =sup{< z,u > —A(u) : v € X}

where A(u) = B(Du), z = —divp. The variational inequality (1.11) implies

)\/gggudx — Au) = A*(A\g) = A*(p)




142 Masayuki Ito

with A\g = —divp. By Lemma 2.5(the key lemma),

/5 ot (p)da = /@ (—divp)udz — A(u)

:/@(—divp)udm—/gga(Du))

By using Du = Vuqdz + Duq — urvd#" 1,
[ @ ®) = p: Vua — a(Vun))ds
2
+/ (|D%u| — p- D%u)
&
+ [ el + - paoe=?
r

=0.

By this, instead of the formal relation p = B’(Du) between the momentum and
the velocity, we obtained more explicit relations (3.43)-(3.45) in Proposition
3.1

Since A*(p) = [z a"(p)dz and G(u) = [, G(z,u)dz,

DA" -
<a—p7¢>>=/g<a><p>-¢dx“

G
< 5&7¢>—/@9($7u)¢d$7

_P® g
2 \/1-|p|?

we can write the equations in (3.50) in weak form:

< u, —divg >= < ,¢0> forall ¢eCP(%RY),

\/1~1|

<p,Vo>=—-A<g,p> for all ¢ € C°(%;R).

Hence
P

VI=Tpl?

Du= V'U,Q =

which is equivalent (3.43), and

divp = —Ag(zx,u).

4 Appendix.

Lemma 4.1. For any z € LN () , there exists 2 € L"(#B) with compact
support such that z = 4 on Q and 3 = —divp for some p € L>(%;RY) with
compact support in B.
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Proof.

Let O;, O, be open sets satisfying O € O CC Oy CC 2, and ¢ be a Cr-
funftion such that 0 < <1, 9 =1 on O; and ¥ = 0 outside 0. Let [; be a
line parallel to z;-axis, say, I; = {(z1,- - ,Zi-1, &, Tix1, -+ ,2n) : € € R} For
each y; = (w1, ,Ti_1,Tig1. -, xn) € RV we write simply I; = {(£, ;) :
& € R}. The line segment {; N Z can be expressed by [; with |£| < R; for some
Ri = R;i(y:) > 0. Set 29 = ¢z and

wi(z) = —/_L 20(&, yi)d€

i

for |z;] < R; and 1 <i < N. Then

Ow;
w; € L™=(B), L= —z.
Denote w = (w1, -+ ,wy) and set p = Yw, then p has a support in O,, belongs
to L>(%; ]lgj) and is equal to w in O;. Hence, 2 = —divp has a compact

support in Oy and
Z=—divp=Nzy =2z in Oy
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