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Abstract

In this paper, we define the derivative or the partial derivative of a LP-
function in the sense of LP-convergence. We also define the derivative and
the partial derivative of a L -function in the sense of Lf -convergence.
Then we study their fundamental properties. Here assume that 1 <p <
oo holds.

We say that the branch of analysis on the bases of the concepts of
LP-convergence and Lf -convergence is the LP-calculus.

As the results, we have the following conclusions for the differential
calculus of classical functions.

Assume that 1 < p < oo. Then we have the inclusion relations LP C
LY C Li,.. In the LP-calculus, the derivative or the partial derivatives of
a LP-function are the derivative or the partial derivatives of the function
calculated in the sense of Li,.-topology which are the LP-functions for
each p, (1 < p < o0) respectively.

For L} -functions, we have the similar results.

Especially, the L'-derivative or the partial L'-derivatives of a L'-
function are the L} .-derivative or the partial L}, .-derivatives in the above
sense, respectively. But the inverse facts are not necessarily true.
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Introduction

In this paper, we define the derivative and the partial derivatives of a L?-
function in the sense of LP-convergence. We also define the derivative and the
partial derivatives of a L -function in the sense of L] -convergence. Then
we study their fundamental properties. Here we assume 1 < p < co. For
the calculation of such derivatives and partial derivatives, we need not use the
concept of derivatives in the sense of distribution.

We say that the branch of analysis on the bases of the concepts of LP-
convergence and L -convergence is the LP-calculus.

In general, for L*-functions, the differentiable functions in the sense of distri-
butions exist more than the L!-differentiable functions. Nevertheless, we study
the LP-differentiable functions principally in the LP-calculus for 1 <p < oo.

It affects only the case of L'-functions. Nevertheless, it is possible to study
only the L'-differentiable functions in the case of L!-functions.

Further, because we have the inclusion relation L' C L], the L!-derivative
or the partial L'-derivatives of a L!-function in the sense of distribution are
the L. -derivative or the partial L] -derivatives respectively which are the
L'-functions.

Also, in the cases of L?-functions and L -functions, these results carry out
the fundamental roles for the study of solutions of Schrédinger equations.

Especially, we need really the concept of distributions when we study the
distribution solutions of differential equations.

It is enough to use the LP-calculus for studing the LP-function solutions or
the L{ -function solutions of differential equations.

Until now, we study the weak derivative and the weak partial derivatives
of a LP-function or a L} -function by using their derivatives or their partial
derivatives in the distributional sense. In this paper, we define their weak
derivatives or their weak partial derivatives in the sense of the weak topology
of LP or in the sense of the weak topology of LY .

In this paper, we distinguish these weak derivatives or these weak partial
derivatives and those in the sense of distribution. Further, under the certain
condition, we prove the coincidence of three types of the derivatives or the
partial derivatives of LP-functions for the three types of calculations with re-
spect to the strong topology of LP, the weak topology of LP or the topology
in the sense of distribution. For L -functions, we have the similar results.
Therefore, for the derivation of LP-functions or L! -functions, we only use the
LP-topology or the L{ -topology respectively. Thus, in the study of analysis
of classical functions, we need not use the theory of distributions.

As the results of this paper, we have the following conclusion in the deriva-
tion of classical functions.

We have the relations LP C L C Li, for 1 < p < co. Thus, if we have

LP # L' in the LP-calculus, the derivative or the partial derivatives of a LP-
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function are the derivative or the partial derivatives of this function calculated
in the L] -topology which become the LP-functions for each p, (1 < p < o)
respectively. For L¥ -functions, we have the similar results.

Especially, in the case of L!-functions, the L!-derivatives and the partial
L'-derivatives in the above sense are the L{, -derivatives or the partial L} -
derivatives respectively. Nevertheless we remark that the inverse does not nec-
cessarily hold.

By virtue of the necessity for the study of Schrodinger equations, we assume
that the functions considered in the sequel are the complex-valued functions of
real variables.

In the study of mathematics, the problem is seen clear if we consider the
problem by setting the theoretical framework of the considered problem.

When we meet the mathematical phenomena which do not fit the situation
of the theoretical framework, we might consider the new theoretical establish-
ment of the theoretical foundation of those mathematical phenomena. Those

cases are found in many times in the history of mathematics.

1 Function spaces L?

In this section, we assume that 1 < p < oo and d > 1. Further we assume
that R? is the d-dimensional Euclidean space.

Let E be a Lebesgue measurable set in R%. Let (E, Mg, p) be the
Lebesgue measure space.

Then we define the function space L? = LP(E) in the following.

We define L? = LP(E) to be the set of all complex-valued measurable
functions f(z) on E which satisfy the condition

/ [f(z)|Pdz < oo.
E

We denote LP(R?) as LP for simplification.

For 1 < p < oo, we define the norm of f € LP(E) by the relation

11 ={ [ Is@yras} "

We call this the LP-norm of f.
We denote the LP-norm as || f|| for the simplification of || f||,.
We define the norm of L™ = L (E) by the relation

Iflloo = ess.sup [f(2)] = inf{e; |f(z)] < @, (ace.x € E)}.
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For f, g € L?(E), we define

(9= [ s@itee
and we say that (f, g) is the inner product of f and g.
Especially, we have
Ifll2= V(. )

for the L2-norm. Then we have the following theorem.

Theorem 1.1 For 1 < p < oo, LP(E) is a Banach space. Especially,
L?(E) is a Hilbert space.

Theorem 1.2 For1 <p < co, if, for f, € LP(E), (n=0, 1, 2, ---),
we have
lim || f, — foll =0,
n—co

there exists a certain subsequence { fok); 1, 2, -} of {fn} such that we have

klinr;o fn(k)(x) = fO(x)v (a'e'x € E)

Theorem 1.3  We assume that the conditions

1 1
1<p,q<<>o,-+§=1

hold. Assume that E is a Lebesque measurable set in R®. We put L? = LP(E).
Then we have the following isomorphisms

LP = (L9) = (LP)".
Especially, we have the isomorphism

L™= (LY.

Theorem 1.4  We assume that d > 1 and 1 < p < oo hold. We put
LP = LP(R%). We define that D = D(R?) is the TVS of all C™-functions with
compact support in R®. Then, D is dense in LP.

Theorem 1.5 We assume that d > 1 and 1 < p < oo hold. We put
LP = LP(R%). We consider a sequence of functions {f,} in L? and a function
f € LP. Then the following three conditions (1),(2) and (3) are equivalent:

(1)  We have f,, = f in the norm of LP.
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(2) We have f, — f in the weak topology of LP.

(3) We have f,, = f in the topology of LP which is the induced topology of
D

Theorem 1.6 We assume thatd > 1 and 1 < p < oo hold. Then, for a
sequence {fn} of LP-functions, the following (1) and (2) are equivalent:

(1)  The sequence of functions {f,} converges with respect to the strong
topology of LP.

(2)  There exists f € LP such that we have f, — f with respect to the
topology of Li...

2 Function spaces L] and L?

In this section, we study the function spaces L = and L2. Here, we assume
1<p<oo.

Assume that we have d > 1 and R? is the d-dimensional Euclidean space.

For 1 < p < o0, we define that a complex-valued measurable function f is
a locally p-th integrable if it satisfies the condition

/ F(@)Pdz < 0o
K

for an arbitrary compact set K in R%.
Let LP = L? (R?) be the complex TVS of all locally p-th integrable

loc loc
functions.

For 1 <p< oo, f € LY if and only if the condition

loc

[ @i <o
lz|<R
is satisfied for any R > 0.

Especially, we say that an element of L] _ is a locally integrable function.

For 1 < p < oo, we define that a sequence of functions { f,,} of LY _ converges

to f € LY . if we have the condition

/K |Fal@) — f@)Pdz = 0, (n > oo)

for an arbitary compact set K in R%. Namely, the topology of Lf is the
loc

topology of LP-convergence on each compact set of RY. Thereby L?  becomes

a TVS.
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Especially, L% = L°(R%) is a TVS of all complex-valued measurable

functions which satisfy the condition

[fllso. k = ess. sup |f()]
reK

=inf { ; |f(2)] < o, (ae.z € K) }< 00

for an arbitrary compact set K in R%. We define the semi-norm || - ||eo. 5 by
the relation

| flloc. Kk = ess.sup | f(z)|.
reK

We define the topology of LSS by using the system of semi-norms

loc
{1l . s Kis a compact set in R } .

We define that a sequence of functions {f,} of L>

o, converges to f € Ly, if
we have the condition

loc

Il fn = flloo. k = 0, (n— o0)

for an arbitrary compact set K in R?. Namely, this topology of LY is the
topology of L*°-convergence on each compact set. Thereby, LiS becomes a
TVS.

Then, for 1 < p < 0o, we have the inclusion relation

( D cm ) ULP C L} C Li,..
m=0

Here, for 0 < m < oo, C™ is the TVS of all C™-functions on R%.

For 1 < p < oo, LP denotes the TVS of all LP-functions on R with compact
support.

Then we have the following theorem.

Theorem 2.1  Assume 1 < p < 0o. Assume that a sequence of compact
sets {K;} of R? satisfies the following conditions (i) and (i) :

o0
i) KcKyc---cR' R'=|JK;.
j=1

(i) Kj=cl(int(K;)), K; Cint(Kj41), (= 1).
Then we have the following ismorphisms (1) and (2):
(1) Lh = m IP(K,).

(2) L2 =lim I7(K)).
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is a FS*-space and L? is a DFS*-space. Thus L and L? are

loc

Then L
reflexive.
Therefore we have the following theorem.

Theorem 2.2  Assume that two real numbers p and g sotisfy the condi-
tions

1 1
1§p’QSOQ,*+“=1~
p g

Then we have the following isomorphisms (1) and (2):
(1) Lf = (LY = (L].)"

loc

(2) Lo= (D) =(L8)"

loc

Theorem 2.3  For 1 <p < o0, the function space D is dense in LP.

Theorem 2.4  Assume 1 < p < co. For a sequence of functions {f,} of
and a function f of LY | the following (1) ~ (3) are equivalent:

loc?

LP

loc

(1)  We have f, — f with respect to the strong topology of L% .

(2)  We have f, — f with respect to the weak topology of LY, .

(3)  We have fr, — f with respect to the topology of LY, induced from the

topology of D'.

Theorem 2.5  Assume that 1 < p < oo and we have {f,} C L .. Then
the following (1) and (2) are equivalent:

(1)  The sequence of functions {f,} converges with respect to the topology of
LP

loc*

(2)  There exists f € LT such that we have f, — f with respect to the
topology of L.

3 Differential calculus of LP-functions

3.1 [P-differentiability

In this section, we study the concept of LP-differentiability.




98 Yoshifumi Ito

We define that the function space L? = LP(—c0,c0) is the space of all p-th
integrable functions on the open interval (—oo, 00). Here we assume 1 < p < co.

Then we define the concept of LP-differentiability. Namely we define the
concept of differential calculus of LP-functions in the sense of convergence of
LP-norm.

Then we give the following definition 3.1.

Definition 3.1 (L?-differentiability) Assume 1 < p < co. Assume
that a function y = f(x) is a LP-function defined on the open interval (—o0, c0).
Then we denote the increment Ay of the function y = f(z) corresponding to
the increment Az of the independent variable z as follows:

Ay = flz+ Az) — f(z) = Alx)Az + e(z, Az)Ax.

Here A(x) is a function of z which does not depend on Az. € = e(x, Ax)
is a function of z and Ax.

Then we define that the function y = f(z) is differentiable in the sense
of LP-convergence on the open interval {(—oo, oo) if we have the condition
e(z, Az) — 0 in the sense of LP-convergence on the open interval (—oo, co)
when Az — 0.

Namely this is equivalent to the condition

dim ez, Az)ll, = 0.

Then we extend the definition as e(x, 0) =0, (z € (—o0, 00)).

Here, if a function is differentiable in the sense of LP-convergence, we say
that it is LP-differentiable for simplification.

Now, we denote the function space of all p-th integrable functions on a
general open interval (a, b) as LP = LP(a, b).

Then, if put
f(@), (z€(a, b),
0, (x & (a, b)

for an arbitrary f € L”(a, b), we have f(z) € LP(—o0, o0).

Then the correspondence of f(z) € LP(a, b) to f(x) € LP(~o0, o0) is one
to one. Thus we may consider that L”(a, b) is a subspace of LP(—o0, o).

Therefore we say that f € L?(a, b) is LP-differentiable if it is LP-differentiable
as the function in LP(—o0, o).

Now we assume that a function y = f(x) is LP-differentiable on the open
interval (a, b).

Then, by virtue of the condition of definition 3.1, we have the limit

im AV _ gy f@tAn) - f(2)
Az—0 Az Az—0 Az

= f'(=)



Developement of LP-calculus 99

in the sense of LP-convergence. We define that this limit f/(z) is a LP-derivative
of y = f(z).

By virtue of the completeness of LP, f/(x) is an element of LP(a, b). By the
property of LP-convergence, f’(x) has the determined complex values almost
everywhere on (a, b).

3.2 Fundamental properties of LP-derivatives

We put LP = LP(R). Then we define the concept of weak derivatives of
LP-functions.

Definition 3.2  Assume f(z) € LP for 1 < p < oc. We use the same
notation as in definition 3.1. Then we define that a function y = f(z) is
differentiable in the sense of the weak convergence of LP if we have the condition
e(z, Az) — 0 in the sense of the weak topology of L? on R when Az — 0.

Namely this is equivalent to the condition

Algicrgo (e(z, Az ), ) =0

for v € L9. Here we have the relations
1 1
1<g<o0, —4+-=1.
p q

Then we extend the definition as e(z, 0) = 0, (z € R).
Here, if a function is differentiable in the sense of the weak topology of L?,
we say that it is weakly LP-differentiable for simplification.
Then, by virtue of the condition of definition 3.2, we have the weak limit
f(@+ Az) — f(z)

. Ay . o
w- Ar " A Ax = w-f(@)

in the sense of the weak topology of L. We define that this weak limit w-f'(z)
is a weak LP-derivative of f(z).
By virtue of the weak completeness of L?, w-f'(z) is an element of L?.
Then we have the following theorem.

Theorem 3.1  Assume that 1 < p < oo and f(z) € L? hold. If f(z)
is LP-differentiable, f(x) is weakly differentiable and its derivative f'(z) in the
sense of LP-convergence coincides with the weak derivative w-f'(z). Namely we

have the equality
f'(@) = w-f'(z)

or the equality
(f/’ 90) = (w'flv 90)) (‘P € Lq)
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Here we assume the relations

1<p<oo, 1<g<o0o, —+—-—=1.

ST
Q|

Then the weak derivative w-f'(x) of f(x) € LP is a LP-function.

Theorem 3.2  Assume that 1 < p < co and f(z) € LP hold. If we have
the weak derivative w-f'(z) of f(z) and w-f'(z) € L?, f(x) is LP-differentiable
and we have w-f'(x) = f'(x) for the derivative f'(x) of f(x) in the sense of
LP-convergence.

Theorem 3.3 Assume 1 < p < oo. If, for a sequence of functions
falz) € LP, (n=1, 2, 3, ---), there exist f, g € LP such that we have

fo = fo (n = 00), £}, = g, (n— ),

we have f' € LP such that we have the equality
=g
) ) d .
Namely, the differential operator . is a closed linear operator.
x

By virtue of theorem 1.5, for 1 < p < oo, the LP-differentiability, the
weak LP-differentiability and the differentiability in the sense of distributions
coincide.

Further, for LP-functions, the LP-derivative, the weak LP-derivative and the
derivative in the sense of distribution coincide.

3.3 [Lr-differentiability

Let LP = LP(R%) be the function space of all p-th integrable functions on
R®. Here we assume that d > 2 and 1 < p < oo hold.

Then we define the concept of LP-differentiability. Namely we study the
concept of differential calculus of LP-functions in the sense of LP-convergence.

Then we give the following definition 3.3.

Definition 3.3(LP-differentiability) Assume 1 < p < co. We assume
that a functions f(z) is a LP-function defined on R?. Then we denote the
increment Ay of a function y = f(z) corresponding to the increment Az of the
independent variables x as

Ay = f(z+ Az) — f(z) = ZAi(a:)Aa:i + e(z, Ax)p.

i=1
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Here p = |Az|| and A;(z), (i =1, 2, ---, d) are the functions of # which do
not depend on Az. e(x, Az) is the function of z and Ax.

Then we define that the function y = f(x) is differentiable in the sense of
LP-convergence on R if we have the condition

ez, Az) = 0, (Az —0)

in the sense of LP-convergence on RY.
Namely this is equivalent to the condition

A ez, Az)ll, = 0.

Then we extend the definition as e(z, 0) = 0, (z € RY).

Here we say that a function is LP-differentiable for simplification if it is
differentiable in the sense of LP-convergence.

Now we denote the function space of all p-th integrable functions in a generel
domain D in R? as L? = L?(D). In a similar way as in the case of functions
of one variable, we may consider that L?(D) is a subspace of LP(R%).

Therefore we define that a function in LP(D) is LP-differentiable if it is
LP-differentiable considering that the function f belongs to LP(R%).

3.4 Fundamental properties of partial L’-derivatives

Assume that d > 2 and 1 < p < oo hold.
Now, if f(z) € LP = LP(R") is LP-differentiable, we have

for 1 < j < d in the sense of LP-topology. Here, let {e1, ea, ---eq} be the
standard basis of [2(d) and 7,, (y € R?) be the translation operator.

Then the partial derivatives éxi’ (1 < j <d) are LP-functions.
J
o 0 .
We say that they are the partial LP-derivatives. Then —6—9_’ (1<j<d
Tj
have the determined complex values almost everywhere.

If there exist the partial LP-derivatives of a LP-function y = f(x), we say
that y = f(z) is partially LP-differentiable.

Therefore, if f(x) € LP is LP-differentiable, we may consider that its partial
derivatives in the sense of LP-convergence are the weak partial LP-derivatives.
Nevertheless, it is hard to prove the inverse statement.

Here we give the definition of weak partial derivatives in the following.
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Definition 3.4  Assume f(z) € L? for 1 < p < co. We use the same
notation as in definition 3.3. Then we define that a function y = f(z) is
differentiable in the sense of the weak convergence of LP if we have the condition

e(xz, Az) — 0, (Az — 0)

in the sense of the weak topology of L? on R%. Namely this is equivalent to
the condition

_A}iﬂo (e(z, Az), ¢ )=0

for v € LY. Here we assume the relations

Jum—y

1
1<g< o0, —+-=1.
p

Ewl

Then we extend the definition as e(z, Az) =0, (z € RY).
Here, if a function is differentiable in the sense of the weak topology of L?,
we say that it is weakly LP-differentiable for simplification
Then, by virtue of the condition of definition 3.4, we have the weak limit
Ay i (T—he, (@) = f(=)

W-—— = w- 1m
c’)xj h—0 h

dy .
in the sense of the weak topology of LP. We define that this weak limit w-% is
J
a weak partial LP-derivative for 1 < j < d. By virtue of the weak completeness
17
of LP, w«a—y, (1 < j < d) are the elements of LP.
x

J

Theorem 3.4  We assume that 1 < p < o0, 1 < j <d and f(x) € LP
hold. If f(x) is partially LP-differentiable, then f(x) is weakly partial differen-

tiable and its partial derivative e in the sense of LP-convergence coincides
J
with the weak partial LP-derivative w—aan. Namely, we have the equalities
J
of of
— =w-——, (1<j<d).
Oz; Oz; (l<js<d
Namely we have the equalities
of of
2z =( w-=——, L (pe L, 1< 5<4d).
(gay @)=(w g 0) (v j<d)

Here we assume the relations

1 1
1<g< o0, —+-=1.
P q
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Theorem 3.5 Assume that 1 <p < oo, 1 <j <d and f(x) € L? hold.

Then, if we have the weak partial LP-derivative L of f(z) and we have
J

w—g—f € L?, then f(x) is partially LP-differentiable, and we have the equality
J

or _ 91 (1<j<d)

w- - 3 - -~
6xj aflﬁj

0
for the partial LP-derivative 9f of f(x) in the sense of LP-convergence.

8:1? 7
Next we prove the commutativity of the order of partial differentiation.

Theorem 3.6 Assume 1 < p < oo and f(x) € L? hold.

. . o f 0%f
1 1< ] < j
f, for 1 <4, j <d, (i # j), we have 9207 an Bz,0m,

in the sense of

LP-convergence, we have the equality
8% f _ 0% f
81’iaxj - ijaaci'

Theorem 3.7 Assume 1 < p < oco. If, for a sequence of functions
fulz), (n=1, 2, 3, ---), we have f, g € LP such that we have

far £ (no00), 2L g (s o0),

81‘j
of
we have —— € LP such that we have
6.’1?]‘ .
of _
61‘] a

0
Here we assume 1 < j < d. Namely the partial differential operator e 5 a
J

closed linear operator.

By virtue of theorem 1.5, the partial LP-differentiability, the weak partial
LP-differentiability and the partial differentiability in the sense of distribution
coincide for each p, (1 < p < 0o). This facts hold for the LP-differentiability,
the weak LP-differentiability and the differentiability in the sense of distribu-
tion.

Further, for 1 < p < oo, the partial LP-derivatives, the weak partial LP-
derivatives and the partial derivatives in the sense of distribution for a LP-
function coincide. For LP-functions on R, we have the similar results.
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4 Differential calculus of Lfoc-functions

4.1 L} -differentiability

In this section, we study the concept of L} -differentiability. We define that
LP = LY (a, b) is the function space of all locally p-th integrable functions
defined on an open interval {a, b). Here we assume 1 < p < co. Then, for a
locally p-th integrable function defined on the open interval (a, b), we study
the concept of differentiability in the sense of Li, -convergence.

Then we have the following definition 4.1.

Definition 4.1(L? -differetiability) Assume that a function y = f(z)
is a locally p-th integrable function defined on an open interval (a, b). Here we
assume 1 < p < co.

Then we define that the increment Ay of a function y = f(z) corresponding
to the increment Az of the independent variable x is

Ay = f(z + Az) ~ f(z) = A(z)Az + e(z, Az)Az.

Here A(z) is a function of z which does not depend on Az. e(z, Az) is a
function of x and Az.

Then we define that the function f(z) is differentiable in the sense of L, -
convergence on the open interval (a, b) if we have the condition

ez, Az) =0, (Az — 0)

in the sense of L} -convergence on the open interval (a, b).
Namely, this is equivalent to the condition that, for an arbitrary pair ¢, d
of real numbers such as a < ¢ < d < b, we have

I A i "t daplas )
Jim g a (e(e. 80))= Jim ([ leta, Aaylaz) =0,

Then we extend the definition as e(z, 0) =0, (z € (a, b)).

Here we say that a function f(z) is Lf -differentiable for simplification if

it is differentiable in the sense of L -convergence.
Now we assume that a function y = f(z) is LY -differentiable in the open
interval (a, b). Then, by virtue of the condition of definition 4.1, we have the
e A flo+ Aa) - f(2)
. Y ) r+ Azx)— Jlz ,
1 —Z = 1 =
As50 Az ATS0 Az f=)

in the sense of L”

P -convergence on the open interval (a, b).
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Then we say that this limit f'(z) is a L -derivative of y = f(z). By virutue

of the completeness of LY . f'(z) belongs to LI, (a, b).

By virtue of the property of Lf -convergence, f’(z) has the determined

complex values almost everywhere on (a, b).

4.2 Properties of L} -derivatives

Assume that D = D(R) is the function space of all C*°-functions with
compact support on R. Here we define the concept of weak derivatives.

Definition 4.2  Assume that 1 < p < oo and f(z) € L}, _ hold.

We use the same notation as in definition 4.1. Then we define that a function
y = f(x) is differentiable in the sense of the weak convergence of LY, _ if we have
the condition e(z, Az) — 0 in the sense of the weak topology of L}, . on R
when Az — 0.

Namely this is equivalent to the condition

Aligo (e(z, Az), 9 )=0

for p € LY. Here we assume that the relations

I1€g<oo, —+-=1

B

hold.

Then we extend the definition as e(z, 0) =0, (z € R).

Here, if a function is differentiable in the sense of the weak topology of L _,
we say that it is weakly L{ -differentiable for simplification.

Then, by virtue of the condition of definition 4.2, we have the weak limit

w- lim % = w- lim fa+A8z) — f(z)
A0 Az Az—0 Ax

= u-f'(z)

in the sense of the weak topology of L? . We define that this weak limit w-f’(x)

loc*
is a weak L, -derivative. By virtue of the weak completenes of LY ., w-f'(z)

loc?
is an element of LY .

Theorem 4.1  Assume that 1 < p < oo and f(z) € Li . hold. If f(z)
is LP -differentiable, f(x) is weakly LY -differentiable and the derivative f'(z)

loc loc

in the sense of LY -convergence coincides with the weak deriwative w-f'(x).

Namely we have the equality
(@) = w-f(2).
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Namely we have the equality

(flv QO) = (w"f/7 (P): (QP € Lg)

Here p, q satisfy the relations
1 1
1<g<o0, —+—-=1.
P q
Then the weak LY f

P ~derivative w-f'(z) of f(z) € LY _ is a L}, -function.

Theorem 4.2  Assume that 1 < p < oo and f(z) € LY _ hold. If there
exists the weak L} -derivative w-f'(z) of f(z) and we havew-f'(x) € L}, f(x)
is LT, -differentiable and we have the equality w-f'(x) = f'(z) for the derivative

f'(z) of f(x) in the sense of Lt -convergence.

Theorem 4.3  Assume 1 < p < co. Then f is L} -differentiable if and
only if f is LL -differentiable and the Ll -derivative f' belongs to LY . Then

loc loc loc®

[’ is the L} -derivative of f.
Theorem 4.4  Assume 1 < p < oco. If, for a sequence of functions
falz)e P , (n=1, 2,3, ), we have f, g € L _ such that we have

loc? loc
fo= f, (n=00), fi =g, (n—00),
we have f' € LY such that we have the equality
=g
Namely, the differential operator % is a closed linear operator.

Assume 1 < p < oo. By virtue of theorem 2.4, the Lﬁc-differentiability,

the weak L} -differetiability and the differentiability in the sense of distribu-

tion coincide. Therefore, the L{ -derivative, the weak L{ -derivative and the

derivative in the sense of distribution of f(z) € L  are identical.

For 1 < p < oo, we have the inclusion relation L}, C Li .

By virtue of theorem 4.3, the L} -derivative of f € LI _is the L{ -
derivative f’ of f which is a L -function.

Therefore, for 1 < p < oo, the derivative of f € L¥ is calculated by using
the topology of Li -convergence.

The differentiability of a function and the calculation of derivative are the lo-
cal properties. Especially, because we have the inclusion relation L' C L] ., we

may calculate the derivative of a L!-function considering it as a L, -function.
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4.3 [L? -differentiability

loc

Let D be a general domain in R?. Here assume d > 2.
Let LY = L{ (D) be the function space of all locally p-th integrable func-
tions defined on the domain D.

Here assume 1 < p < co.

Then we study the differentiability in the sense of L¥ -convergence for a
locally p-th integrable function defined on the domain D. Here we give the

following definition 4.3.

Definition 4.3(L{ -differentiability) Assume that a function y =
f(z) is a locally p-th integrable function defined on a domain D. Here as-
sume that 1 < p < o0.

Then, the increment Ay of the function y = f(x) corresponding to the
increment Az of the independent variables z is

d
Ay = f(z+Az) - f(z) =Y _ Ai(z)Az; + ez, Az)p.

g=1

Here p = ||Az|| and A;(z), (i =1, 2, ---, d) are the functions of z which do
not depend on Az. € = e¢(z, Az) is the function of x and Ax.

Then we define that the function y = f(z) is differentiable in the sense of
L? -convergence on the domain D if we have the condition

loc

ez, Az) = 0, (Az — 0)

in the sense of L}, -convergence on the domain D.

Namely, for 1 < p < 00, this is equivalent to the condition

1/p
: L » B
lim g (e(z, Az)) = Jim (/K le(z, Az)] dm)) =0

for an arbitrary compact subset K of the domain D.
For p = oo, we have the similar condition with respect to the system of
semi-norms of LS (D).

Then we extend the definion as e(z, 0) =0, (z € D).
Here we say that a function is L” -differentiable for simplification if it is

loc
differentiable in the sense of L} -convergence.
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4.4 Properties of partial L} -derivatives

Let LY = Lf (D) for a general domain D in R®. Here assume that d > 2
and 1 < p < oo hold.

Now, if f(z) € LY

P . is L -differentiable, we have the limit

W o D) - @)

833]' h—0 h

in the sense of Lf, -convergence for 1 < j < d. Here assume that {e1, €2, -+,
eq} is the standard basis of 1?(d) and 7, (y € R?) denotes the translation
operator.
0
Then the partial derivatives 5—9—, (1 <j <d) are the Lf’oc-functions.
Zj

We say that these are the partial LT -derivatives.

0
Here éi’ (1 € 7 < d) have the determined complex values almost every-
z

J
where in D.

Now we give the definition of the weak partial derivatives.

Definition 4.4 Assume that 1 < p < o0, 1 < j <dand f(z) € L] _
hold. We use the same notation as in definition 4.1.

Then we define that the function is weakly differentiable in L
e(zx, Ax) — 0, (Az — 0) in the sense of weak topology of L,

loc”

If the function f(z) is weakly L} -differentiable, we have the weak limit
Ay

loc
oy (e D) = @)

Ox; h—=0 h

p

loc if we have

p

loc-derivative of y =

We define that this weak limit w—aa—y is a weak partial L

T
f(z), (1<j<d).

0
By virtue of the weak completenes of LY | we have w-25 el  (1<j5<
loc 61']‘

loc>
d).
Then we have the following theorem.

Theorem 4.5 Assume that 1 < p < oo, 1 < j <d and f(z) € LL._ hold.

loc

If f(x) is partially LE. -differentiable, f(x) is weakly partial Ly, -differentiable

loc

P
loc

P
loc

and its partial Lt -derivative - in the sense of Lt -convergence coincides

Zj

a
with the weak partial LY, -derivative w—i.
Zj
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Namely, we have the equalities

af af .
—_— = Y 1<3< .
oz, “’axj’< <j<d)

Also we have the equalities

(%, ):(w-a%, ¢) (pell 1<j<d).

Here we assume the relations
1

1
1§Q§007“+_:1~
p

Q2

P -derivative of f(x) € LI is a LY -function, (1 <

Then the weak partial Ly

j < d).

Theorem 4.6  Assume that 1 < p < oo and f(z) € L}, . hold. Then, if,
b -derwative w-—— of f(z), f(z) is

BJIJ'

for 1 < j < d, we have the weak partial L;
partially LY, -differentiable and we have the equalities

of of ,
T~ . < <
w&a:j 6.73]" (l_J_d)

of of f(z) in the sense of LY, -convergence, (1 <

for the partial derivatives
5$j

j<d).
Further, we have the commutativity of the order of partial differentiation.
Theorem 4.7  Assume that 1 < p < oo and f(z) € LY hold. If, for
ot o't in the sense of L} -

1 < g i< ; y
<14, j <d, (i #Jj), we have 9,0z, Oz ;0x;

convergence, we have the equality
o0’ f B 0% f

81‘1‘81‘]‘ - 8xj8x,-'

Theorem 4.8  Assume that 1 < p < oo and f(z) € LI hold. Then
f is LY -differentiable if and only if f is L} -differentiable and the partial
L} .-derivatives »é—xi, (1 < j < d) are the LY -functions. Then the partial
J

0

L] ~derivatives %fj, (1 < j < d) are the partial LY, -derivatives of f.
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Theorem 4.9 Assume 1 < p < oo. Then, if, for a sequence of functions
fal@)ye Ll , (n=1, 2,3, ), we have f, g € LI, . such that we have

loc

fos £ (n o 00), 22 g (nos o0),
8.17]'
we have ﬁ € LY  such that
Ox;
of _
5l‘j o

0]
holds. Here assume 1 < j < d. Thus the partial differential operator e s a

Zj
closed linear operator.

Assume 1 < p < oco. Then, by virtue of theorem 2.4, the partial LY -
differentiability, the weakly partial L} -differentiability and the partial differ-
entlablhtjy in the sense of distribution coincide. These facts are also true for the

LI -differentiability, the weak L! -differentiability and the differentiability in
the sense of distribution.

Further, the partial L{ -derivatives, the weak partial LY, -derivatives and
the partial derivatives in the sense of distribution of L{, -function coincide.

For 1 < p < oo, we have the inclusion relation L10C C Li.. Thus, by
virtue of Theorem 4.8, the partial LF -derivatives of f € L? are the partial

loc loc

L} -derivatives g—‘f (1 < j < d) which are the LY -functions.

loc loc™
.7

Because we have the inclusion relation L* C Ll

loc> the weak partial derivative
of a L!-function is the partial L, -derivative which is a L'-function.
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