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Abstract

In this paper, we study the new proof of Plancherel’s Theorem for
the Fourier transformation of L?(R?). Here we asuume d > 1. We use
the method of orthcgonal measure and orthogonal integral which is the
generalization of Kato [3].
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Introduction

In this paper, we give the new proof of the following Plancherel’s Theorem.
This paper is the English version of Ito [2], section 4.2.

Main Theorem (Plancherel’s Theorem) Assumed > 1. The Fourier
transformation F of L = L2(R%) is a unitary transformation of L?. Namely
we have the equality

IF £ =111

for an arbitrary f € L?. Here || - || denotes the L?-norm.

We prove this theorem in the case d > 1 by using the method of orthogonal
measure and orthogonal integral mentioned in section 2.
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This is the generalization of the proof of Kato [3], p.130 in the case d = 1.
Thereby, we clarify the true meaning of Kato’s method. Kato proved this
theorem by using only the calculation of integrals. In fact, the theorem is proved
by using only the definition of integrals and the properties of defining functions
of bounded measurable sets. Thus we need not use the special functions.

Here I show my heartfelt gratitude to my wife Mutuko for her help of
typesetting this manuscript.

1 Fourier transformation of L2-functions

In this section, we define the Fourier transformation of L2-functions.

Assume that d > 1 and R? is the d-dimensional Euclidean space.

R? is a self-dual space. Thus we identify the dual space of R? with itself
and we denote it as the same symbol R?. For a point z = !(x1, %2, -+, Ta)
in R% and a point p = t(p1, ps, -+ ,pq) in its dual space RY, we define the
dual inner product by the relation

pr = (p, £) = p121 + P2%2 + - -+ + PaTq.

Then we define the norms |z| and |p| by the relations

2| = V@1 P + 222 + - + [zal?, ol = Vg2 + P22+ + [pal®.

Definition 1.1(Fourier transformation) For f € L? = L*(R?), we
define the Fourier transform (F f)(p) by the relation

1 L —ipx T
(FNHp) = IRI—H;loW ./|z|gR f(x)e dz.

In Definition 1.1, the symbol Li.m. denotes the limit in the mean. Thus we
have (Ff)(p) € L.
Then we denote (Ff)(p) as

1

FNW = 5 [ )7
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2 Orthogonal measure and orthogonal integral

In this section, we define the concept of orthogonal measure and orthogonal
integral and study its properties. As for this concept, we refer to Ito [2], chapter
8.

Proposition 2.1  Assume that (Rd, M, u) is the Lebesque measure
space and My is the family of all bounded measurable sets in R%. If we restrict
1 on My, we have the measure space (Rd, My, ). Then, assuming that the
function xg(x) is the defining function of a set E, the L?-valued set function
x : E = xg on My is an orthogonal measure on (Rd, My, p). Namely we
have the following (1) and (2):

(1) If each pair of a countable sequence Ev, E3, --- of sets of My are
mutually disjoint and the direct sum E is equal to
E=>E;
=1

and we have E € My, the equality

o
XE = Z XE;
j=1

holds. Here the series in the right hand side converges in the sense of
L?-convergence.

(2)  If we have Ey, Ey € My, the equality
(XE17 XEz) = N(El n E2)

holds. Here the symbol (-,-) denotes the inner product of L?.

Corollary 2.1  We use the notation of Proposition 2.1. Then we have
the following (1) and (2):

(1) IfEiNEy;=0 for E1, E; € My, x5, and xg, are orthogonal in 2.

(2) For E € My, we have the equality

WE) = lIxel.
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Here the symbol || - || in the right hand side denotes the norm of L.
Theorem 2.1  Assume that (R, M, p) is the Lebesgue measure space
and M, is the family of all bounded measurable sets in R%. The L?-valued set

function x : E — xg on My is an orthogonal measure on (R?, My, p). Now,
for f € L?, we define the orthogonal integral of f

[ t@ax
by using the orthogonal measure x. Then we have the equality
(o) = [ f@axa), @€ RY).
Further, we have the equality
| [ r@axta)? = [ 1£@)Pdutz)
for the L?>-norm.
Proof We define the orthogonal integral in the following two steps.

(I)  The case where f(z) is s simple L?-function.
Now we assume that f(z) is represented as

f(x) = Za’jXEj(x)7 (a] € Cv ] > 1)7

J=1

R'=E + B+, (B € My, j21).
We define the orthogonal integral by the following relation

[ r@ana) = Yy, @)
Jj=1
Then we have the equality

f(a) = / £ (@)dx ().

Further we have the equality

0

|| / F@dx@I? = lo Pllxe, @2

j=1
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=Y lasPue) = [ 1f()Pduto)

for the L%-norm.

(II)  The case where f(z) is a general L2-function.

In this case, there exists a sequence of simple L2-functions {f,,} so that f,,
converges to f in the sense of L?-convergence. Then we define the orthogonal
integral of f by virtue of the orthogonal measure y as follows:

[ f@ix@) = tim_ [ fat@ixie)

Here the limit in the right hand side is considered in the sense of L*-
convergence. Then we have the equality

f(z) = / f(@)dx(@).
Further we have the equality
|| / f@)dx@)| = / 1 (@) Pdu(z)

for the L?-norm. //

Assume that E is a bounded measurable set in R%. Then, by defining the
Fourier transform x g(p) of xg(z) by the relation

(Fxe)(p) = X&),
we have xg € L?.

Proposition 2.2  For every pair E1, E> of bounded measurable sets in
R?, we have the equality

()A(En XEz) = (XEw XEz) = M(El QEQ)'

Proof = We prove this proposition in the following three steps (I), (II),
(I11).

(I) In the case d = 1. Assume that a < b, ¢ < d. Then we prove the
equality

(X(a, s X(e. 1)) = (X(a, b)> X(e. ay) = p{(a, b) N (c, d)).

As for this proof, we refer to Kato [3].
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At first, we have the equality

1 b 1 i, . A
~ _ e PPy = —— e~—2bp — e—tapy.
X(a, b) (p) m /a mp( )

Then we have the equality

x>

(X(a. b)r X(e. @) =/ X(a. )(P)X(c. ay(P)dp

o0
— 2i (eibp = eiap)(e—idp _ 6—i6p>*d—12)
T J_oo p

= % / (cos(b — d)p + cos(a — ¢)p — cos(b — ¢)p — cos(a — d)p)%.
0

Here, by using Dirichlet integral

. X sinax
lim
A—o0 fg x

0
dx = — si
= 5 signa
for an arbitrary real number «, we have the equality
e dp A sinkp s
[y 0 meoinig =t ¢ [ = 5l

Thus we have the equality

. . 1
(Ria.v)s Xee, ) = 5(lb—cl+la—dl —[b—d] ~]a—cl)

= p((a, b) N (e, d)) = (X(a, b)> X(c, d))-
Therefore we proved the equality

(X(a. b)s X(e. ) = (X(a, )s X(e, a)) = ul(a, b) N (e, d)).

We remark that this relation holds not only for bounded open intervals but
also for any bounded intervals. Therefore this relation holds for any bounded

blocks of intervals.
(I) In the case d > 2, we generalize the relation in (I).

For a = t(a1, as, --- ,aq), b =t(b1, by, --- ,bg) € R%, we denote a < b if
the conditions a; < b;, (1 <j < d) are satisfied. Then, for a, b € R? such as

a < b, we denote the d-dimensional open interval as

d
(a, b) = [ J (a5 b))

j=1
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and its defining function as

d

Xta @) = [] Xay. 09 (@5), (@ ="(21, 22, -+, Ta) € RY).
7=1

Then the Fourier transform of x(,, 4)(z) is equal to

d
X(a. 0)(P H X(a;. 8,)(Ps); (p = "(p1, P2, "',pd)ERd)-

Now assume that a < b, ¢ < d hold.
Then we have the equality

d
(X(a, b)> X(e, d)) H ((X(ay, ;0> X(esr dy))
i=1

d d
- H(X(a]‘, bj)? X(C]‘, ] H a’]? ] C]’ d )) /,L(((L b) m (C, d))'
j=1 j=1

We remark that this relation holds not only for bounded open intervals but
also for any bounded intervals. Therefore this relation holds for any bounded
blocks of intervals.

(ITII) At last, we prove the equality

()A(Ela XAEQ) = (XE17 XEz) = p’(El n EQ)

for any E,, Es € M.

By virtue of the definition of Lebesgue measure, for F;, Ey € My, there
exist two sequences of bounded blocks of intervals {A,} and {B,} such that
we have

W(E1AAL) = 0, p(ExAB,) — 0.

Therefore we have the relations
p((E1 N E2)A(A,AB,)) — 0

Here, as for the definition of Lebesgue measure, we refer to Ito [1],

Therefore x4, (z) converges to xg, (x) in measure and xp, (z) converges
XE,(z) in measure. Therefore, we have x4, (z) = x5, () and xg,(z) —
XE, () in the sense of L2-convergence. Hence we have the equality

(XEys XB,) = lim (Xa,, XB,) = lim (xa,, XB,) = (XB:» XE,)-
n—o0 n—ro0
Further we have the equality
lim (x4,, xB,) = lim u(A,NB,) = u(ENE,).
n—roo

n—oo
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Thus we have the equality

(XE1» XEo) = (XEy» XE,) = p(E1 N Ey)
for E1, Ey € M. //

3 Proof of Plancherel’s Theorem

In this section, we prove the Main Theorem. Here the new method of the
proof of this theorem is the method of orthogonal measure. In fact we prove
the Main Theorem by using the results of section 2. This method is very new.
This proof is the completion of the idea of Kato [3].

Now, we prove the Main Theorem in the following two steps.

(I)  In the case where f() is a simple L*-function.

Now we assume that f(x) is represented as follows:

flx) = Z%‘XEJ- (z), (a; €C, j2=1),

R'=>"E;, (B; € My, j > 1).

j=1

Then we have the equality
[ 1f@Pdz =3 au(E) < 0.
j=1

The Fourier transform F f of f is equal to the relation

X

(FNP) =Y a;Xe,([®).

=1

Then, by virtue of Proposition 2.2, we have the equality

[1ED@Paw =Y laf? [155,6)Pdo = Y- lasPu(Ey) = [ 1f@)Pduta).

j=1

(II)  In the case where f(z) is a general L?-function.

In this case, there exists a sequence of simple L?-functions {f,,} so that f,
converges to f in the sense of L?-convergence. Then, by virtue of (I), we have
the equality

[F frnll = I frmll, (m 2 1).



New Proof of Plancherel’s Theorem 89

Further, because {f,,} is a Cauchy sequence in L?, {F f»,} is also a Cauchy
sequence in L? and we have the equality

Ff= lim Ffm
m—r00

in the sense of L?-convergence.
Thus we have Ff € L? and the equality

IF£I = 1fIl-//
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