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Introduction
Let a = (a1,...,a,) and b = (by,...,b,) be two positive n-tuples with
0<mi <a; <M <ooand0<my<b; <M, < 00; (0.1)

for each i € {1,...,n}, and some constants my, mq, My, My.
The following reverses of the Cauchy-Bunyakovsky-Schwarz inequality for
positive sequences of real numbers are well known:

a) Pdlya-Szego’s inequality [50]:

Za i (B, )

b) Shisha-Mond’s inequality [54]:
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c) Ozeki’s inequality [47):

n n n 2
n
Sap> vy - (Z akbk> < 5 (MM, — mima)?.
1 k=1

k=1 k=

d) Diaz-Metcalf’s inequality [17]:

If W = (wi,...,wy) is a positive sequence, then the following weighted
inequalities also hold:

e) Cassels’ inequality [57]. If the positive real sequences a = (ary...,an)
and b = (b, ..., b,) satisfy the condition

O<m§Z—k§M<ooforeachk€{1,...,n}, (0.2)
k
then . ) . )

(Zk:l wkak) (Zkzl wkbi) < (M +m) )

(S wearbe)” AmM

f) Greub-Reinboldt’s inequality [37]. We have

n n 2 n 2
Z 2 Z 2 (M M3 +mimy) Z
(/s—1wkak> (k—lwkbk> : Amima My M, (klwkakbk> 7

provideda = (ai,...,a,) and b = (by,...,b,) satisfy the condition (0.1).

g) Generalized Diaz-Metcalf’s inequality [17], see also [45, p. 123]. If u,
v € [0,1] and v < u, u+v = 1 and (0.2) holds, then one has the inequality

n n n
u Z wkbi +vMm Z wkai < (vm 4+ uM) Z wrarbg.
k=1 k=1 k=1

h) Klamkin-McLenaghan’s inequality [39]. If &, b satisfy (0.2), then
n n n 2
(Z wm?) (Z ’U)lbﬁ?) — (z wiaibz) (03)
i=1 i=1 i=1
1 1 2 n e
S (,1\45 —m7> ZwiaibiZwiaf.
i=1 i=1
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For other recent results providing discrete reverse inequalities, see the mono-
graph online [19].
The following reverse of Schwarz’s inequality in inner product spaces holds

[20].

Theorem 1 (Dragomir, 2003, [20]). Let A, ¢ € C and z, y € H, a complex
inner product space with the inner product (-, -). If

Re (Ay —z,z —ay) > 0, (0.4)
or equivalently,
a+ A 1
o= S5 8| < Sl -alll, 05)

holds, then we have the inequality

0 < Jlzl® lyll® — [z, w)* < = 1A —af* yl*. (0.6)

]

The constant 1 is sharp in (0.6).

In 1935, G. Griiss [38] proved the following integral inequality which gives
an approximation of the integral mean of the product in terms of the product
of the integrals means as follows:

10 1t 10
i [ @@ - [ 1@ [e@as 07
1
<1@-6) (T -7),
where f, g: [a,b] — R are integrable on [a, b] and satisfy the condition
p<f2)<® y<g(x)<T (0-8)

for each z € [a,b], where ¢, ®, y, ' are given real constants.

Moreover, the constant % is sharp in the sense that it cannot be replaced
by a smaller one.

In [22], in order to generalize the Griiss integral inequality in abstract struc-
tures the author has proved the following inequality in inner product spaces.

Theorem 2 (Dragomir, 1999, [22]). Let (H, (-,-)) be an inner product space
over K(K=R,C)ande € H, |le|| = 1. If p, 7y, D, T are real or complex numbers
and z, y are vectors in H such that the conditions

Re(®e —z,z — we) > 0 and Re{Te —y,y —ye) >0 (0.9)

hold, then we have the inequality

(2,0} — () fe,u)] < 112 6l [T = 1. (010)
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The constant % is best possible in the sense that it can not be replaced by a
smaller constant.

For other results of this type, see the recent monograph [25] and the refer-
ences therein.

For other Griiss type results for integral and sums see the papers [1]-[3],
[8]-[10], [11]-[13], [21]-[28], [34], [48], [61] and the references therein.

In order to state some reverses of Schwarz and Griiss type inequalities for
trace operators on complex Hilbert spaces we need some preparations as follows.

1 Some Facts on Trace of Operators

Let (H,{-,-)) be a complex Hilbert space and {e;};.; an orthonormal basis of
H. We say that A € B(H) is a Hilbert-Schmidt operator if

>l 4ei® < co. (1.11)

i€l

It is well know that, if {e:},c; and {f;},c, are orthonormal bases for H and
A€ B(H) then

Do lAel* = MALIE =D AT (1.12)

el jel JEI

showing that the definition (1.11) is independent of the orthonormal basis and
A is a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.
Let By (H) the set of Hilbert-Schmidt operators in B(H). For A € By (H)

we define 12
4], = (ZnAeiu?) (1.13)

el
for {e;};c; an orthonormal basis of H. This definition does not depend on the
choice of the orthonormal basis.

Using the triangle inequality in % (I), one checks that By (H) is a vector
space and that ||-||, is a norm on By (H) , which is usually called in the literature
as the Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A| := (A*A)l/Q.

Because |||A|z| = ||Az| for all z € H, A is Hilbert-Schmidt iff |A] is
Hilbert-Schmidt and ||A||, = |||A4]|l, . From (1.12) we have that if A € By (H),
then A* € By (H) and ||All, = [|4*]l, .

The following theorem collects some of the most important properties of
Hilbert-Schmidt operators:

Theorem 3. We have
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(i) (B2 (H),|I-l,) is a Hilbert space with inner product

(A, B), = Z (Ae;, Be;) = Z (B*Ae;, e;) (1.14)
i€l i€l
and the definition does not depend on the choice of the orthonormal basis
{ei}z‘61§
(ii) We have the inequalities

1Al < (1Al (1.15)

for any A € By (H) and
IAT ||, ITAlly < ITII[All (1.16)

forany A€ By (H) and T € B(H);
(iii) B (H) is an operator ideal in B (H), i.e.

B(H)By (H)B(H) C B2 (H);

(iv) Bfin (H), the space of operators of finite rank, is a dense subspace of
B, (H);

(v) B2 (H) CK (H), where K (H) denotes the algebra of compact operators
on H.

If {e;},c; an orthonormal basis of H, we say that A € B(H) is trace class
if
Al = (4] e, e:) < o0. (1.17)
i€l
The definition of ||Al|; does not depend on the choice of the orthonormal basis
{ei};c; - We denote by By (H) the set of trace class operators in B (H).
The following proposition holds:

Proposition 4. If A € B(H), then the following are equivalent:
(1)) Ae B (H);
(i) |A"? € By (H);
(i) A (or |A]) is the product of two elements of By (H) .

The following properties are also well known:

Theorem 5. With the above notations:
(i) We have
lAll, = |[A*[l; and [|A]l, < Al (1.18)

for any A € By (H);
(i) B1 (H) is an operator ideal in B (H), i.e.

B(H)B\ (H)B(H) < Bi(H);
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(iii) We have
BQ (H)BQ (H) = Bl (H),

(iv) We have
All, =sup{{A,B), | B € B:(H), |B| <1};

(v) (B1(H),|||l;) is a Banach space.
(iv) We have the following isometric isomorphisms

By (H)= K (H)* and By (H)* = B(H),

where K (H)" is the dual space of K (H) and By (H)" is the dual space of
Bi(H).

We define the trace of a trace class operator A € B; (H) to be

tr(A) = (Ae;,ei), (1.19)

€]

where {e;},.; an orthonormal basis of H. Note that this coincides with the

usual definition of the trace if H is finite-dimensional. We observe that the

series (1.19) converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:

Theorem 6. We have
(i) f A€ By (H) then A* € B, (H) and

tr (A%) = tr (A); (1.20)
() IfAe By (H)and T € B(H), then AT, TA € B; (H) and
tr (AT) = tr (T'A) and |tr (AT)| < ||All; IT}5 (1.21)
(iii) tr (-) is a bounded linear functional on B (H) with ||tr]| = 1;
(iv) If A, B€ By (H) then AB, BA € By (H) and tr (AB) = tr (BA);
(v) Bfin (H) is a dense subspace of By (H).
Utilising the trace notation we obviously have that

(A, B), = tr (B*A) = tr (AB*) and ||A||? = tr (A*A) = tr (|A|2)

for any A, Be€ By (H).
The following Hélder’s type inequality has been obtained by Ruskai in [51]

l—a

ltr (AB)| < tr (JAB|) < [tr (|A11/a)]a [tr (|B|1/“*“>)] (1.22)
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where a € (0,1) and A4, B € B(H) with |A]"/*, |B|Y*~%) ¢ B, (H).

In particular, for a = —é— we get the Schwarz inequality

ltr (AB)| < tr (JAB|) < [tr (|A|2)] i [tr (|312)} v (1.23)

with A, B € By (H).

For the theory of trace functionals and their applications the reader is re-
ferred to [55].

For some classical trace inequalities see [14], [16], [46] and [60], which are
continuations of the work of Bellman [5]. For related works the reader can refer
to [4], [6], [14], [35], [40], [41], [43], [52] and [56].

We denote by

Bf (H):={P: Pe€ B (H), P and is selfadjoint and P > 0}.
We obtained recently the following result [33]:

Theorem 7. For any A, C € B(H) and P € B (H) \ {0} we have the
inequality

tr (PAC) tr(PA)tr (PC) (1.24)
tr (P) tr (P) tr(P) '
. 1 tr (PC)
< -\ _— [ Sl
<1431 g | (0 S ) )
1/2
tr (P|C)? 2
<t [0 _puiroy)
XEC tr (P) tr (P)
where ||-]| is the operator norm.
We also have [33]:
Corollary 8. Let o, 8 € C and A € B(H) such that
a+ g 1
- . < Z|8-al.
232 30
For any C € B(H) and P € B (H) \ {0} we have the inequality
tr (PAC)  tr (PA)tr (PC) (1.25)
tr (P) tr(P) tr(P) ’

s%lﬂ—ala%“(l@‘%%_)l”) PD

1/2
2}

tr (PC)
| tr (P)
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In particular, if C € B(H) is such that

HC~Q;5'1HH S%VJ"—O‘I,
then
2
0<- Eig ). tiffp? ’ (1.26)
<30l (|(o-Se) )
< l[ﬁ_ai tr(P|C'|2) |t (PC) 2} - < 1!5 of?
-2 tr (P) tr (P) 4
Also
r (PC? r 2
t tE‘ (P)) - (ttl'(fPC;)> (127
r(PC)
bt 2590))
1 o (PICP) 1w (poy? o )
Pl e T ee ) | S

For other related results see [33].

2 Additive Reverses of Schwarz Trace Inequal-
ity
In order to simplify writing, we use the following notation
B, (H):={P € B(H), P is selfadjoint and P > 0}.
The following result holds:

Theorem 9. Let, either P € B, (H), A, B € By (H) or P € Bf (H), A,
BeB(H)andv, I'eC.
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(i) We have
0<tr (P}A|2) tr (P}B]2> ~ Jtr (PB*A))? (2.28)
— Re [(Ftr (P |B|2> —tr (PB*A)) (tr (PA*B) —7tr (P |B]2>)]
—tr (p |B|2) Re (tr [P (A* —7B*) (I'B — A)])
< 10— [ (P1BP)]

—tr (P |B]2> Re (tr [P (A* —7B*) (UB — A)]).

(ii) If

Re (tr[P (A* —5B*) (B — 4)]) > 0 (2.29)

or, equivalently

v+ T |2 1 2 2
L= < = —
tr <P‘A ~—B >m4|r 4 tr(P|B| ) (2.30)
then

0< tr (P|A]2) tr (P |B|2) — |tz (PB*A))? (2.31)

< Re [(rtr (P |B|2) —tr (PB*A)) (tr (PA*B) —Ftr (P ¢B|2))]
< e[
and
0<tr (P|A|2> tr (P |B]2) — Jtr (PB* A)|? (2.32)
< 1o (s
—tr (P |B|2) Re (tr [P (A* — 7B*) (UB — A)])

< % T = ex (P |B]2)]2 .
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Proof. Observe that, by the trace properties, we have
I == Re [(m (P |B|2) —tr (PB*A)) (tr (PA*B) — 3 tr (P |B|‘2))] (2.33)
= Re [(r tr (P |312) _— (PB*A)) (m —ytr (p |B[2))]
= Re [r tr (P |B|2) tr (PB*A) + 7 tr (PB*A) tr (P |B|2)

—ltr (PB*A))> - T [tr (p |B|‘2)]2

= tr (P |312) Re [rtr (PBA) +7tr (PB*A)]

—jtr (PB*A)|> — [tr (P }B|2)]2Re (%)
and
= tr (P |B|2) Re (tr [P (A* — 7B*) (UB — A)])
=tr <P|B]2) Re[tr (TPA*B + 7PB*A — JTPB*B — PA* A)]
= tr (P|B| )Re [Ctr (PA*B) + 7 tr (PB* A)]
t

rer (PIBF) - (P1A7)]

(P Bl ) Re [rm Ftr (PB*A)]

[tr (P B )]2 Re (A1) — tr (P |B12> tr (P |A|2) ,

for P a selfadjoint operator with P >0, A, B € By (H) and v, I € C.
Then we have

L—Ih=tr (P[B[Z) tr (P |A|2> _Jtr (PB*A)[?,

which proves the equality in (2.28).
Utilising the elementary inequality for complex numbers

1
Re (up) < Z|u+v|2, u,v € C,

we have

Re [(rtr (P |B|2) - tr(PB*A)) (tr (PA*B) — 7 tr (p |B[2>)] (2.34)
— Re [(I‘tr (P|B|2> —tr(PB*A)) <tr (PB*A) — ~tr (P|B|2))]

< % [Por (PIBE) - tr(PB*A) + tx (PB" ) — 1 (PlBlQ)]z

=22 i (P18R)],
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which proves the last inequality in (2.28).
We have the equalities

1
0= PIBI* - P

r
‘A _ % (2.35)

1
=P |0 BE -

oL ipP AT (4 atT
_P_4|r v|*|B| (A 5 )(A 5

1
=P 3F~ﬂﬂBF

_a+r
2

+T
—1aP+ 12— 1” ‘

:P[—|A|2+7+FBA+ DALy

( e )wﬁ

F F

v+T
2

T2 B*A+ 12" A*B —Re(Iy) |B] ]

for any bounded operators A, B, P and the complex numbers v, I' € C.
Let P be a selfadjoint operator with P > 0, A, B € By (H) and v,I' € C.
Taking the trace in (2.35) we get

}llI‘—wyf tr (PIBIQ) —tr (P‘A— :Y;—P ’2> (2.36)

= —tr (P|4P?) - Re(T7) tx (P|BF)

T
+112Lt (PB*A )+%t (PA*B)

- —tr (p |A|2) — Re(T'¥) tr (P |B|2>

y+T

I
+ 1w r(PB*A) + 15

tr (PB*A)
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—tr —Re (I'Y)tr (P|B)?) + tr (PB* A)+ tr(PB*A)

/-%-I‘

tr (PB*A)}
—tr

=—tr(P|A]?

( pir (P1BE) + 5

—tr <P|A|2 — Re (D7) tr <P!Bl )+2Re[
( — Re(T9)tr (P|B|2) +Re[7tr (PB*A)] + Re [Ttr (PB* A)]
( (P15°)

—Re(I¥)tr (P|B|") + Re[tr (PB*A)] + Re [ftr(PB*A)}

oY

-

[}
V\/\/\_/\_/

— _tr (p 1A% = Re (T7) tr (P B ) + Re[ytr (PB*A)] + Re [Ftr (PB*A)] .
Utilising the equality for I above, we conclude that (2.29) holds if and only if
(2.30) holds, and the inequalities (2.31) and (2.32) thus follow from (2.28).
The case P € Bf (H), A, B € B(H) goes likewise and the details are
omitted. U

For two given operators T, U € B(H) and two given scalars o, 8 € C
consider the transform

Cos(TU)=(T"-aU")(BU -T).
This transform generalizes the transform
Coap(T):=(T"—aly)(Bly —T) =Cas (T, 1),

where 1y is the identity operator, which has been introduced in [31] in order
to provide some generalizations of the well known Kantorovich inequality for
operators in Hilbert spaces.

We recall that a bounded linear operator T on the complex Hilbert space
(H, (")) is called accretive if Re(Ty,y) > 0 for any y € H.

Utilizing the following identity

Re(Cop (T,U)z,x) = Re(Ca.o (T,U) z,x) (2.37)
B NP 2
= 18- af* Ul - 72

atfB
2
:%},B—a|2<|U|2x,x>—<} a;,B. a:,x>

that holds for any scalars «, 8 and any vector x € H, we can give a simple
characterization result that is useful in the following:

Lemma 10. For o, 8 € C and T, U € B(H) the following statements are
equivalent:

(i) The transform C, g (T, U) (or, equivalently, Cs, (T, U)) is accretive;
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(ii) We have the norm inequality

a+pf
2

HTx— ~Usz§wﬁ—aHMhm (2.38)

for any z € H,;

(iii) We have the following inequality in the operator order

2

218yl <q18-af P

7 U

-

>

As a consequence of the above lemma we can state:

Corollary 11. Let o, € Cand T, U € B(H). If Co 5 (T, U) is accretive, then

<318 —allU]]. (239)

a+
[r-23 4]

Remark 1. In order to give examples of linear operators T, U € B(H) and
numbers o, 8 € C such that the transform C, g (T,U) is accretive, it suffices
to select two bounded linear operator S and V and the complex numbers z, w
(w # 0) with the property that ||Sz — zVz| < |w|||Vz| for any z € H, and,
by choosing T =S, U =V, a = % (2 +w) and 8 = 5 (z — w) we observe that
T and U satisfy (2.38), i.e., Co g (T, U) is accretive.

Corollary 12. Let, either P € B (H), A, B € By (H) or P € Bf (H), A,
B € B(H) and v, I' € C. If the transform C, r (4, B) is accretive, then we
have the inequalities (2.31) and (2.32).

The case of selfadjoint operators is as follows.

Corollary 13. Let P, A, B be selfadjoint operators with either P € By (H),
A BeBy(H)or PeBf (H), A, Be B(H) and m, M € R with M >m. If
(A—mB)(MB — A) > 0, then

0 < tr (PA?) tr (PB?) — [tr (PBA))? (2.40)
< [(Mtr (PB?) — tr (PBA)) (tr (PAB) —mtr (PB?))]

< 3 (M —m)? [ix (PB?))’
and
r (PA?) tr (PB?) — [tr (PBA))? (2.41)
(M —m)* [ox (PB?)]" —tr (PB?) tr[P (A= mB) (MB - A)

IN

IN
A s =

(M —m)? [tr (PB?)].
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We also have the following result:

Theorem 14. Let, either P € By (H), A, B € By (H) or P € Bf (H), A4,
BeB(H)and A€ C.
(i) We have

0<tr <P |B|2> tr (P|A12) — Jtr (PB*A) (2.42)

e[l a0

[tr (P IBV)] V(PB4 i

(ii) If there is r > 0 such that

tr (p [ir (P18P7)] " 4~ ABD <r? [t (PIBP)],

then we have the reverse of Schwarz inequality

0< tr (P [B|2) tr (P |A|2> — jtr (PB*A))? (2.43)
<[ (P1BP)] - Htr GERIES tr(PB*A)r
<r? [tr <P|B|2)] .

Proof. Using the properties of trace, we have for P > 0, A, B € By (H) and
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ey
—er(p ([ (p1)] " 4 28) (o (P150)] 4 25)

— tr (P [tr (p |B|2) |A]% + A2 B
Y [tr (P |B|2)]1/2B*A )\ [tr (P |B|2)} v A*BD

= tr (P]Bi2> tr (P |A|2> + A tr (P IBE)

DY [tr (P(BIQ)T/QH(PB*A) 2 [tr (P|B]2)r/2tr(PA*B)
— tr (P|B|2) tr (P |A|2) 4P (P |Bl2)
Xt (P [ir (P18P)] " - Xer (PB4 [ir (P 1BP)] "
= tr (P|B|2) tr (P |A]2) + AP tr (P |BI2)

1/2 —
_g[tr(PlBlz)] Re (A tr (PB*A))

and

Jy i = [tr(mBF)}WA—tr(PB*A)r

([tr (P |B|2)] R (PB*A)) <[tr (P |B|2)] RS (PB*A))

b (P!B|2> AP -2 [tr (P 1312)] "’ Re (Atr (PB"4)) + |t (PB*A) .
= tr (P

2)
and the equality (2.42) is proved.
The inequality (2.43) follows from (2.42).
The other case is similar. ad

Corollary 15. Let, either P € B, (H), C, D € Bo(H) or P € Bf (H), C,
DeB(H)andd, AeC.

I

I

Therefore

J1-—J2
2

[tr (P |B|2)] RSy [tr (P |B|2)] Y (PB4
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1t

Re (tr [P (C* —6D*) (AD - C)]) >0 (2.44)
or, equivalently

( 10 - 5—%—4-0 > < % IA— 6% tr (PfDl2), (2.45)

then
0<tr (p |0|2) tr (P]D|2> — |tr (PD*C)? (2.46)

gzli|z_\.—(5|2 [ix (P1DP?) ‘“A (PIDI?) - tx(PD*C)
1

s fu(ri00)]

Proof. The equivalence of the inequalities (2.44) and (2.45) follows from The-
orem 9 (ii).
If we write the inequality (2.45) for C = A and D = B, we have

( tA— %—éB ) < % a—sPt (PIBP).
If we multiply this inequality by tr (P |B|2) >0 we get
ir (p ‘ fer (P157)] " - 22 e (P11?)] Br) (2.47)
< % IA = 6] tr (P ]B|2> tr (P 1312) .

A= 5%% [ (P|Bl2)]1/2 and r = % TN (P]BlQ)]l/z.

Then by (2.47) we have
tr (P
and by (2.43) we get

0<tr(PIBP)tr (P |A|2) ~ |t (PB4)
~5+ A,

Let

[tr (P|B|2)]1/2A ~ B

) < (isr).

2
P|B| ) —tr (PB*A)

and the inequality (2.46) is proved. |
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Corollary 16. Let, either P € B, (H), C, D € Bo(H) or P € Bf (H), C,
D € B(H) and §, A € C. If the transform Cs 5 (C, D) is accretive, then we
have the inequalities (2.46).

The case of selfadjoint operators is as follows.

Corollary 17. Let P, C, D be selfadjoint operators with either P € B, (H),
C,DeBy(Hyor Pe B (H),C,DeB(H)andn, N€Rwith N>n.If
(C—nD)(ND—C) >0, then

0 < tr (PC?) tr (PD?) — [tr (PDC)]® (2.48)

(N —n)? [tr (PD?)]* - <” N

IN

2
tr (PD?) — tr (PDC))

(N —n)? [tr (PD?)]".

IA
= |

3 Trace Inequalities of Griiss Type

Let P be a selfadjoint operator with P > 0. The functional (:,-), p defined by
(A,B), p :==tr (PB*A) = tr (APB") = tr (B"AP)

is a nonnegative Hermitian form on By (H) ,i.e. (-,-), p satisfies the properties:
(h) (A, A), p >0 forany A€ Ba (H);
(hh) (-,"), p is linear in the first variable;
(hhh) (B, A), p = (A, B), p for any A, B € By (H).
Using the properties of the trace we also have the following representations

IAI2 p = tr (P |A|2) — tr (APA") = tr (|A]2 P)
and
(A, B), p = tr (APB") = tr (B* AP)

for any A, B € By (H).

For a pair of complex numbers (a, 3) and P € By (H), in order to simplify
the notations, we say that the pair of operators (U, V) € By (H) x Bz (H) has
the trace P-(a, 8)-property if

Re (tr [P (U* —a&V*) (BV = U)]) >0

or, equivalently

tr(P’U—a+BV

2

2) < 318 -al e (PIV?).

The above definitions can be also considered in the case when P € Bf (H) and
A, Be B(H).
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Theorem 18. Let, either P € B, (H), A, B, C € By (H) or P € Bf (H), A,
B, CeB(H)and \, T, §, A € C. If (A,C) has the trace P-(\,T")-property
and (B, C) has the trace P-(§, A)-property, then

‘u« (PB*A) tr (P |C|2) —tr (PC*A) tr (PB*C)‘ (3.49)
< (PlOP) E T —~l1a -l (PICF)

— [Re (tr [P (4" = 5C*) (TC — A))]'/*

% [Re (tr [P (B" - 6C7) (aC - B)])] ]
< I0 =118 o[ (PloF)]

Proof. We prove in the case that P € B. (H) and A, B, C € B2 (H).

Making use of the Schwarz inequality for the nonnegative hermitian form
(*;-)5 p we have

(4,8), 5| < (4,4),.5(B. B

for any A, B € By (H).
Let C € By (H), C # 0. Define the mapping -, -], po : B2 (H)xBy (H) = C
by
[A,Bly pc=(4,B), p ||C||§.P —(A,C)y p(C,B)yp-

Observe that [,-], p is a nonnegative Hermitian form on By (H) and by
Schwarz inequality we also have

(4, BY, 5 ICIE p — (4,0, p (€, By |
< (141 £ 115 - - [t 002 ['| [1E0Z N 5 = (8.0, |
for any A, B € B, (H), namely
ltr (PB*A)tr (P |c;2) —tr (PC*A) tr (133*0)12 (3.50)
< [tr (P ]A|2) tr (P ;cﬁ) ~tr (PC’*A)|2]
X [tr (P |B|2) tr (p|0|2) - |tr(PC’*B)i2] :
where for the last term we used the equality |<B, c>2_P‘2 = |, B}zfpl2
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Since (4, C) has the trace P-(A,I')-property and (B,C) has the trace P-
(6,A) -property, then by (2.32) we have
0<tr (P iA!Q) tr (P |0;2) — |tr (PC* A)[? (3.51)
<tr (P |C|2)
x E T — 2 [tr (P |0|2)} ~ Re(tr[P (A" —5C*) (IC — A)])]
and
0<tr (P |B|2) tr (P |C]2) _|tr (PC*B))? (3.52)
<tr (P |C|2>
x E 1A - 6] [tr (P |C|2)] —Re (tr [P (B* —3C*) (AC — B)])] .
If we multiply (3.51) with (3.52) and use (3.50), then we get
Itr (PB*A) tr (P10| ) — tr (PC*A) tr (PB* 0)] (3.53)
< [ir(Pic?)]
[ Ir - 7| tr P|C} )} — Re (tr [P (A* — 5C*) (DC — A)])]
x [Z A = o [tr (PICF) | = Re (bx [P (B" =3C7) (AC - B)])] .
Utilising the elementary inequality for positive numbers m, n, p, q
(m* —n®) (b = ¢°) < (mp—ng)°,
we can state that
E IT — [ [tr (P |C|2)] — Re(tr[P (A" — 5C*) (IC — A)])] (3.54)
x E 1A — 6] [tr (P 10;2)] — Re (tr [P (B* = 3C*) (AC — B)])]
< (3ir=1a-al[u (Picr)]
— [Re (tr [P (4" —7C*) (IC — A)))]'/*
x [Re (i [P (B" = 5¢") (aC — BY])] )
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with the term in the right hand side in the brackets being nonnegative.
Making use of (3.53) and (3.54) we then get

‘tr (PB*A) tr (P |C|2) — tr (PC* A) tr (PBC)| (3.55)
< [tr (P |C|2)} ’ (% It =] 1A - | {tr (P |C’|2>]
~ [Re (tr [P (4" = 5C™) (TC = A)))]'"?
x [Re (tr [P (B* —5C*) (AC = B)])] 1/"’)2 :
Taking the square root in (3.55) we obtain the desired result (3.49). O

Corollary 19. Let, either P € By (H), A, B,C € By(H)or P Bf (H), A
B,C € B(H)and \, T, 8, A € C. If the transforms Cy r (A, C) and C5 a (B, C)
are accretive, then the inequality (3.49) is valid.

‘We have:

Corollary 20. Let P, A, B, C be selfadjoint operators with either P € B, (H),
A, B,CeBy(H)or PeBf (H), A B,Ce€B(H)and m, M,n, N € R with
M>mand N >n. If (A—mC)(MC — Ay >0 and (B—nC)(NC—-B)>0
then

|tr (PBA) tr (PC?) — tr (PCA) tr (PBC)| (3.56)
< tr (PC?) % (M —m) (N —n)tr (PC?)

— [Re (tr (A —mC) (MC — A))]'/?

x [Re (tr [P (B — nC) (NC — B)])]W]

< 3 (M —m) (N =) [ix (PC?)]

Finally, we have:

Theorem 21. With the assumptions of Theorem 18 we have

‘tr (PB*A) tr (P {C|2) —tr (PC*A) tr (PB*C)\ (3.57)

<u (Plcr) | =118 -l (P1cP)
‘I‘%—v

P(C]| ) —tr PC’*A)‘

l‘”A (PicP) -—tr(PC*B)H

<o —ala-a fue(PIoP)]
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If the transforms Cy r (A, C) and Cs a (B, C) are accretive, then the inequality
(3.57) also holds.

The proof is similar to the one for Theorem 18 via the Corollary 15 and the
details are omitted.

Corollary 22. With the assumptions of Corollary 20 we have
|tr (PBA) tr (PC?) — tr (PCA) tr (PBC)| (3.58)

< tr (PC?) E (M —m) (N —n)tr (PC?)

5t (PC?) —tr (PCA)‘

n+N
X

|M+m

tr (PC?) — tr (PCB) H

< 3 (M —m) (N = ) [sr (PC?)]".

4 Some Examples in the Case of P € B, (H)

Utilising the above results in the case when P € Bf (H), A € B(H) and
B = 1y we can also state the following inequalities that complement the earlier
results obtained in [33]:

Proposition 23. Let P € Bf (H), A€ B(H) and v, I" € C.
(i) We have

tr (P[A|2> tr (PA) 2
0s—% (P) | tx(P) (4.59)
3 tr (PA)\ [tr(PA*) _
= fe [(F‘ ) (e -7)]
- 7y Re (6 [P (4 = 7L) (L = )
< 310 = = o Re ([P (4~ 71y) (T — A)).
(if) If
Re (tr [P (A* —71g) (Tl — A)]) >0 (4.60)
or, equivalently
2
ﬁtr(P’A—%—ElH )S%W“’YIQ, (4.61)
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and we say for simplicity that A has the trace P-(\,T')-property, then

tr <P|A|2>

2

tr (PA)
LR T (4.62)
tr (PA) tr (PA*)  _ 1
= e KF_ tr (P) ) ( tr (P) _”ﬂ <glr-of
and
tr (P |A|2> tr (PA)|?
0w @ (4.63)
= % IC =) - M%Re (tr[P (A" —=71y)(T1g - A))) < % T —~.

(iii) If the transform Cyr (A) := (A* —F1y) (I'ly — A) is accretive, then the
inequalities (4.62) and (4.63) also hold.

Corollary 24. Let P € Bf (H), A be a selfadjoint operator and m, M € R
with M > m.
U (A-mlyg)(Mlg — A) >0, then

tr (PA2) tr(PA) 2
0= @) ‘[u(P)]

<[ (5 )] 3o

tr (PA?) tr (PA) :
S o (P) "{tr(P)]

(M —m)* —

(4.64)

and

(4.65)

1 1

(ii) f mly < A < M1py, then (4.64) and (4.65) also hold.

A——mB)(MB—A)]gi(M—m)Z.

We have the following reverse of Schwarz inequality as well:

Proposition 25. Let P € B (H), A€ B(H) and v, T € C.
(i) If A has the trace P-(\,T')-property, then

tr (P}A|2) tr (PA) 2
0 =@ | w@) (4.66)
2
< Io-oft - [ - SO < e,

(ii) If the transform Cyr (A) := (A* —71y) (I'ly — A) is accretive, then
the inequality (4.66) also holds.
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Corollary 26. Let P € Bf (H), A be a selfadjoint operator and m, M € R
with M > m.
(i) If (A—mly)(M1ly — A) >0, then

tr (PA?) _ [tr(PA) 2

<wr @) (o0
1 2 Im+M  tr( 1

sgM-m -l Sy | SaMe m)’"-

(ii) ¥ mly < A< Mly, then {4.67) also holds.
Finally, we have the following Griiss type inequality as well:

Proposition 27. Let P € B (H), A, Be B(H) and \, T, §, A e C.
(i) If A has the trace P-(A,I')-property and B has the trace P-(d,A)-
property, then
tr (PB*A)  tr(PA) tr (PB¥)
tr (P) tr (P) tr(P)

< [hr—qu—éJ

(4.68)

[Re (tr [P (A* —71y) (T1y — A

T (P)
iy [Re (o [P (B = 31) (AL - B)])]l/?‘] HRTNSE
and
2 fg)A) - t;(gf;) ”t(jf)*) (4.69)
< }EIF“VIIA—CSI B ]F—;-'y B tzr(f;f;)‘ ’5;A 3 tr(PB)l

1
< =T —=~/lA-4|.
<z IF=l l
(ii) If the transforms Cyr (A) and Cs a (B) are accretive then (4.68) and
(4.69) also hold.
The case of selfadjoint operators is as follows:

Corollary 28. Let P, A, B be selfadjoint operators with P € B (H), A,
BeB(H)andm, M,n, N € R with M >m and N > n.
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() If(A—mly) Mly — A) >0and (B—nly)(Nlyg — B) >0 then
tr (PBA) tr(PA)tr(PB) ’

tr (P) tr(P) tr(P) (4.70)

SE(M—m)(N—n)

1
r (P)

[Re (tr (A — mly) (M1y — A))])Y/?

[=d

«—L[Re (tr[P (B — nly) (NLx - B)D]”"‘]

tr (P)
1
< g M-m)(N-n)

and

tr (PBA)  tr(PA)tr(PB)
tr (P) tr (P) tr(P) l (4.7)

n+ N tr(PB)
2 tr(P)

IN

1 m+M tr(PA)
Z(M—m)(N—n)—’ 5

© tr(P)

1
< (M —m) (N =n).

(ii) f mly < A< M1y and nly < B < Nlg then (4.70) and (4.71) also
hold.
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