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Abstract

We discuss geometric properties of Riemannian submersions whose
total space is an almost paracontact metric manifold. The study focuses
on the geometry of the fibres. After determining the structure of the
fibres, their implications on the total and the base space of fibration are
studied.
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1 Introduction

Almost paracontact metric submersions are Riemannian submersions whose
total space is endowed with almost paracontact metric structure. They have
been introduced by Giindiizalp and Sahin [5] who considered the case of semi-
Riemannian manifolds. Their study focused on the transfer of the structure
from the total to the base space, the later being also a paracontact metric
manifold, extending the study of Watson [13] who refereed to O’Neill [7].

Regarding the similarity between contact and paracontact structure, as in-
dicated by Sato [8, 9], it seems interesting to examine the same similarities
via submersions. OQur paper focuses on the geometry of the fibres where, after
determining their structures, their implications on the total and the base space
are studied.

This paper is organized as follows
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Section §2 is devoted to the preliminaries on manifolds where we consider
almost para-Hermitian structures. Following Gray and Hervella [4], we have
adaptated the defining relations of almost para-Hermitian structures. Almost
paracontact structures are reviewed.

In Section §3, we treate the case of almost paracontact metric submersions
where, after recalling fundamental properties, we have examined the structure
of the fibres and their superminimality.

I am gratful to the referee for his judicius observations which contributed to
improve this paper.

2 Preliminaries on manifolds

2.1 Almost para-Hermitian manifolds

Let M?™ be a smooth manifold of even dimension 2m. Consider an almost para
complex structure J such that J? = I, where I is the identity transformation. If
there exists on M a metric tensor g such that g(JD, JE) = —g(D, E), then the
couple (g, J) is called an almost para complex metric structure (or an almost
para-Hermitian metric). So, (M?™, g, J) is an almost para-Hermitian manifold.

As in the case of almost Hermitian manifolds, the fundamental 2—form 2,
of the structure (g, J) is given by Q(D, E) = ¢g(D, JE). If further, J is parallel
along the Levi-Civita connection V, (meaning that VJ = 0), then the manifold
is said to be para-Kéahlerian.

Let us note some remarkable classes of almost para-Hermitian structures
susceptible to be used in this study.

Following Gray and Hervella [4], an almost para-Hermitian manifold is called:

(1) para-Kahlerian if VJ = 0;

(2) almost para- Kahlerian if dQ(D, E,G) = 0;

(3) quasi para- Kahlerian if (VpQ)(E,G) + (VpQ)(JE,G) =0;

(4) nearly para- Kahlerian if (VpQ)(D, E) =0.

2.2 Almost paracontact metric manifolds

Let M be a differentiable manifold of dimension 2m+1. An almost paracontact
structure on M is a triple (¢, £, n), where:

(1) ¢ is a characteristic vector field,
(2) 7 is a 1—form such that n(§) = 1, and
(3)  is a tensor field of type (1,1) satisfying
¢’ =1-18¢, (21)

where I is the identity transformation. If M is equipped with a Riemannian
metric g such that

g(wD, pE) = ~g(D, E) + n(D)n(E), (2.2)
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then (g, ¢, &, n) is called an almost paracontact metric structure. So, the quintu-
ple (M?™*! g,¢,€,m) is an almost paracontact metric manifold. As in the case
of almost contact metric manifolds, any almost paracontact metric manifold
admits a fundamental 2—form, ¢, defined by

#(D, E) = g(D,pE).

For some remarkable classes, we have the following defining relations.

An almost paracontact manifold is said to be:

(1) normal if N, — 2dn ® € = 0, where N,
is the Nijenhuis tensor of ¢.

(2) para-contact if ¢ = dn,

(3) para-K-contact if it is para-contact and ¢ is Killing,

(4) para-cosymplectic if V=0 and V¢ =0,

(5) almost para-cosymplectic if dp =0 and dn = 0,

(6) para-Sasakian if ¢ = dn and M is normal,

(7) quasi para-Sasakian if d¢ = 0 and M is normal,

(8) quasi para-K-cosymplectic if

(Vo@)E + (Vopp)pE — n(E)(VepE) = 0;

(9) almost para-Kenmotsu if d¢(D,E,G) = 2G{n(D)¢(E,G)}, where G
denotes the cyclic sum over D, E, G,

(10) para-Kenmotsu if dé¢(D,E,G) = 2G{n(D)¢(E,G)}, dn = 0 and is
normal;

(11) quasi para-Kenmotsu if

(Voo)(E,G) + (Vepd)(0E, G) = n(E)$(G, D) + 2n(G)¢(D, E)
and dn = 0;
12) nearly para-Kenmotsu if (Vpe)D = —n(D)pD and dn = 0;
13) nearly para-cosymplectic if (Vpyp)D = 0;

(14) closely para-cosymplectic if (Vpp)D =0 and dn = 0;

Following [5, 10], it is known that

N(l)(D7 E)= Nw(Dv E) —2dn(D, E)§,

N®(D,E) = (Lypn)E — (L,En)D, where £ denotes the Lie derivative.

Moreover, if N(1) = 0 then N(2) = 0. The vanishing of the tensor N(!) means
that the manifold is normal.

~ o~

Proposition 2.1. Let (M*>™*! g, ,£&,n) be an almost paracontact metric man-
ifold. Then, we have,

29((Vp9)E,G) = —dé(D, pE,G) — dp(D, E, G) — g(N(E,G), D)
+N@(E,G)n(D) + 2dn(pE, D)n(G) — 2dn(¢G, D)n(E).

Proof. See Zamkovoy [15]. O

The above proposition leads to express the defining relations of some struc-
tures in the function of the covariant or the exterior derivative of the tensors.
For instance
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Proposition 2.2. Let (M?™*! g,0,€&,1) be an almost paracontact metric man-
ifold. If it is

(1) quast para-Sasakian, then
9(Vp)E, G) = dn(pE, D)n(G) — dn(¢G, D)n(E);
(2) para-Sasakian, then (Vpp)E = g(D, E)¢ — n(E)D;
(3) almost para-cosymplectic, then 29((Vpyp)E,G) = g(N,(E,G), ¢D);
(4) para-cosymplectic, then Vpp = 0;
(5) para-Kenmotsu, then (Vpp)E = g(pD, EYf — n(E)pD.

Proof. (1) Recall that a quasi para-Sasakian manifold is defined by d¢ = 0 and
N1 = 0. Using Proposition 2.1, we have,

29((Vpp)E,G) = N®(E,G)n(D) + 2dn(¢E, D)n(G) — 2dn(pE, D)n(E).

On the other hand, it is known that N = 0 implies that N®) = 0, as estab-
lished in [10}, from which, the preceding relation reduces to

9((Vp@)E, G) = dn(pE, D)n(G) — dn(¢G, D)n(E)

which is the proof of (1).

Concerning the statement (2), we claim that

29((VD99)E7 G) = d¢(D7 vk, SOG) - dé(D E, G)
+ 2dn(pE, D)n(G) — 2dn(¢G, D)n(E),

because a para-Sasakian manifold is normal. Since ¢ = dn, we have d¢ =0
so that the above relation reduces to

29((Vpp)E, G) = 2dn(pE, D)n(G) — 2dn(pG, D)n(E).
Thus, g((Vpe)E, G) = dn(¢E, D)n(G) — dn(¢G, D)n(E), which becomes

9(Vpp)E,G) = ¢(9E, D)n(G) — ¢(»G, D)n(E).

On the other hand, ¢(pE, D) = g(pE, ¢D) = g(E, D) — n(E)n(D) and
é(pG, D) = g(pG, pD) = g(G, D) — n(G)n(D). These lead to
9((Vpp)E,G) = g(D, E)n(G) — g(G, D)n(E), which is

from which (Vpyp)E = g(D, E)¢ —n(E)D, follows. This is the defining relation
currently used in the definition of a para-Sasakian structure.

Let us consider the case of statement (3) concerning the almost para-cosymplectic
manifolds. From the relation d¢ = 0 and dn = 0, we get
29((Vp@)E,G) = g(NY(E,G),¢D) by Proposition 2.1. But

NI(E,G) = N,(E,G) — 2dn(E, G)¢.
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Since diy = 0, the above relation becomes NV(E, G) = N,(E, G) and then
29((Vpp)E, G) = g(No(E, G), pD),

as claimed in statement (3).

Considering (4), it is known that a para-cosymplectic manifold is normal
and then N(E,G) = 0 which leads to 29((Vpy)E,G) = 0 from which
g((Vpp)E,G) = 0. Using the non-degeneracy of g, the last relation implies
that (Vpe)E = 0 which is the proof of (4). In the literature, this is the defining
relation currently used to define a para-cosymplectic manifold.

Let us consider the case of para-Kenmotsu manifold. Since a para-Kenmotsu
manifold is normal and dn = 0, we then have

29((Vpp)E,G) = 3d¢(D, pE, pG) — 3d¢(D, E, G).
Considering do(D, E, G) in a para-Kenmotsu manifold we have
3d¢(D, E,G) = 2{n(D)g(E, ¢G) + n(E)g(G, D) + n(G)g(D,pE)}  (2.3)

Similarly,
3d¢(D, ok, pG) = 2{n(D)g(E, ¢G)}, (2.4)
because n(pE) = 0 = n(pG). Making (2.4)- (2.3), leads to

3d¢(D, pE, ¢G) — 3d¢(D, E, G) = =2 {n(E)g(G,»D) + n(G)g(D,pE)}
and with this, we get

29((Vpy)E, G) = —2{n(E)9(G, D) + n(G)g(D,pE)},
which is equivalent to
9((Vpp)E,G) = —g(D,pE)g(G,§) — g(G,pD)g(E,§)

from which we deduce (Vpp)E = g(¢D, E)¢ ~ n(E)pD. This is the defining
relation usually used for a para-Kenmotsu manifold see for instance Blaga [1].
O

Note that almost paracontact metric manifolds have been studied by Dacko
[2], Dacko and Olszak [3], Kaneyuki and Williams [6], Sato [8, 9], Zamkovoy [15]
among others.

Some Examples

Following A.M. Blaga [1], let M = {(z,y,2) € R®: z # 0} and
setting n = —L1dz, £ = -2 Z;

Note by Moy, +1(R) the set of (2m + 1) real matrices.

Taking ¢ € Maymy1(R) such that

010
p=1] 1 0 0 ,
0 0 0
it is easy to verify that (¢, £,n) is an almost paracontact structure.
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0
Now, considering p = | —1
0

, we have that (¢, £, n) is an almost

O O =
o OO

contact structure.

In [3], Dacko and Olszak have constructed an example of para-cosymplectic
structure in the following way. Let (N, J,G) be a para-Kahlerian manifold.
Consider the structure (p,£&,7,g) defined on the product manifold M = N x R
by ¢ = (J,0),n=dt, & = % and g = G x dt? where t is the Cartesian coordinate
on R. Then (p,&,n, g) is para-cosymplectic.

Following the previous example, it can be constructed some other by tak-
ing (N, J,G) in the various classes of almost para-Hermitian manifolds such
as: almost para-Kéhlerian, quasi para- Kdhlerian and so on. Thus, we obtain
the defining relations of almost para-cosymplectic and quasi para-cosymplectic
respectively.

3 Almost paracontact metric submersions

Let (M2™F g 0 ¢,n) and (M"2™'+1 ¢/ ' £ 7') be two almost paracontact
metric manifolds. By an almost paracontact metric submersion in the sense of
[5], one understands a Riemannian submersion

o ML Mde’+1
satisfying
(i) 7"*(;0 = w,ﬂ"lﬂ
(if) m&=¢"

Recall that the tangent bundle T(M) of the total space M has an orthogonal
decomposition
T(M)=V(M)® H(M),

where V(M) is the vertical distribution while H (M) designates the horizontal
one. In [7], O'Neill has defined two configuration tensors T and A, of the total
space of a Riemannian submersion by setting

TpE =HVypVE + VVypHE,

ApE =VVypHE +HVypVE.

Here, H and V designate the horizontal and vertical projections respectively.
On the base space, tensors and other objects will be denoted by a prime ’
while those tangent to the fibres will be specified by a carret . For instance, Ny
denotes the Nijenhuis tensor of J on the fibres. Herein, vector fields tangent to
the fibres will be denoted by U, V and W.
Next, we overview some of the fundamental properties of this type of sub-
mersions, which also appear in [13].
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3.1 Fundamental properties

Proposition 3.1. Let 7 : M2+ — M"™ 41 be an almost paracontact metric
submersion. We have the following,

(1) If U € V(M) 1is vertical then U € V(M) is also vertical;
(2) £ € HM);

(8) n(U) =0 for all vertical U € V(M);

(4) N;(U,V)=ND(U,V);

Proof. Let us consider assertion (4). Consider two vertical vector fields U and
V tangent to the fibres. Remember that in this case,

What we need is to show that dn(U, V) = 0. In fact

dn(U,V) = 3(Un(V) — Vn(U) — n([U,V])) = 0 because U,V and [U,V] are

vertical. From this we have N(O)(U, V) = N,(U,V). But on the fibres, if denoted

by F?", one has J = ¢ = ¢|(F?"). Thus, Ny(U, V) = N(U,V) = N;(U, V).
Other statements are established as by Watson {13]. O

Statement (1) means that the vertical distribution is invariant by ¢.
_ With J = ¢, it is clear that, on the fibres, the fundamental 2—form is
(U, V) =g(U,¢V)=4(U,JV) =QU,V).

3.2 Structure of the fibres

Proposition 3.2. The fibres of an almost paracontact metric submersion are
almost para-Hermitian manifolds.

Proof. See [5, Prop 3.5]. O

Proposition 3.3. Let m : M2+ — M"2™'+1 be an almost paracontact metric
submersion. Then the total space cannot be para-contact, para-K-contact or
para-Sasakian.

Proof. If the total space is a para-contact manifold, it is defined by ¢ = dn. Let

U and V two vertical vector fields tangent to the fibres; we have

¢(U, V) =dn(U,V). But dn(U, V) = 3(Un(V)—Vn(U) —n([U, V])) = 0 because

U,V and [U,V] are vertical. Therefore, ¢(U,V) = 0 which means that on the

fibres, the fundamental 2—form ¢(U, V) = Q(U, V) is null and this is absurd.
The same procedure applies to para-K-contact and para-Sasakian cases which

have also ¢ = dn in their defining relations. O
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The same result is valid in the case of nearly para-Sasakian, nearly para-K-
Sasakian and quasi para-K-Sasakian.
Note that a nearly para-Sasakian manifold is defined by

(Vpp)E + (Vep)D = 29(D, E)§ — n(D)E — n(E)D;
A nearly para-K-Sasakian manifold is defined by
(Vpe)E + (Vee)D = 29(D, E)¢ — n(E)D —n(D)E,

and Vpé = —pD;
A quasi para-K-Sasakian manifold is defined by

(Vpp)E + (Vepp)pE = 29(D, E)§ + n(E)(V,pE) — 2n(E)D.

In each of the under consideration manifolds, if we replace D by U and E
by V the right hand side becomes 2¢g(U, V')¢; but this is absurd because £ has
not a counterpart in almost para-Hermitian geometry.

Proposition 3.4. Let m: M2™+1 — M2™'+1 pe an almost paracontact metric
submersion. If the total space is para-cosymplectic, quast para-Sasakian or para-
Kenmotsu, then the fibres are para-Kdhlerian.

Proof. In this proposition, the proof consist in showing that dQ)=0=N,. Let
U, V and W be three vertical vector fields tangent to the fibres. For a para-
cosymplectic manifold, we can refer to its defining relation V¢ = 0 which gives
(Vi)J = 0 and this is the defining relation of a para-Kéhler structure on the
fibres.

Concerning the quasi para-Sasakian structure, the defining relation d¢ = 0
gives quﬁ = 0 so that d = 0. Since N(Y) = 0 then N; = 0. We then reach the
defining relation of a para-Kahler structure on the fibres.

Consider the case of a para-Kenmotsu manifold, which is defined by
d¢(D,E,G) = 2G{n(D)¢(E,G)}, dn=0and N =0,

These relations become dg(U, V, W) = 2g {n(U)qB(V, W)} ,and Ny =0 on

the fibres. Since 7 vanishes on vertical vector fields, we have dq@(U, V,W) =0,
which gives d$} = 0. On the other hand, NJ(U, V)= NO(U,V) = 0. Therefore,
the fibres are defined by dQ = 0 = N, which are the defining relations of the
para-Kahler structure. O

Proposition 3.5. Let 7 : M2™+1 — M™™'+1 be an almost paracontact metric
submersion. If the total space is almost para-cosymplectic or an almost para-
Kenmotsu manifold, then the fibres are almost para-Kdhlerian.

Proof. As in the preceding proposition, the problem is to show that =0
which is the defining relation of an almost para-Kéhler structure.

Let the total space M be endowed with an almost para-cosymplectic struc-
ture. As in the preceding proposition, on the fibres, its defining relation gives
d€) = 0 which defines an almost para-Kéhler structure.

Concerning the case of almost para-Kenmotsu structure, we have also
d€) = 0 because dqg = 0 which gives dQ =0 as already established. O
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Proposition 3.6. Assume that m : M2™+1 — M"?™'+1 is an almost paracon-
tact metric submersion. If the total space is nearly para-cosymplectic, nearly
para-Kenmotsu or closely para-cosymplectic, then the fibres are mnearly para-
Kahlerian.

Proof. To establish that the fibres are nearly para-Kéhlerian, we have to show
that (VyJ)U = 0.

Note that a nearly para-Kihler structure is defined by (VpQ)(D,E) = 0
which can be expressed as g(E, (VpJ)D) = 0. With this, we see that (VpJ)D
is orthogonal to E. But on the fibres, since V is vertical, g(V, (Vy)U) =0
implies that (VyJ)U = 0.

Let us consider the case of nearly para-cosymplectic, defined by
(Vpy)D = 0. It is clear that on the fibres one has (VyJ)U = 0 defining a
nearly para-Kéhler structure.

In the same way, a closely para-cosymplectic structure is defined by
(Vpe)D = 0 = dn so that on the fibres we have (Vy YU = 0.

Consider the case of nearly para-Kenmotsu structure which verifies
(Vpp)D = —n(D)eD and dn = 0. On the fibres, this condition becomes
(VuJ)U = 0 because n(U) = 0, we then get the nearly para-Kéhler struc-
ture. O

Proposition 3.7. Let m : M?™+1 — M"2™'+1 pe an almost paracontact metric
submersion. If the total space is quasi para-K -cosymplectic or a quast para-
Kenmotsu manifold, then the fibres are quasi para-Kdéhlerian.

Proof. A quasi para-Kahler structure means that (Vy )V + (VyuJ)JV = 0.

If the total space is quasi para- K-cosymplectic, as in the preceding cases, the
fibres verify (VyJ)V + (V. juJ)JV = 0 because of the vanishing of n on vertical
vector fields. Thus one obtains the defining relation of a quasi para-Kéhler
structure.

Considering the case of a quasi para-Kenmotsu manifold, we have
(Vu)(V, W) + (VjuQ)(JV,W) = 0 which is the defining relation of a quasi
para-Kahler structure.

O

3.3 Superminimality of the fibres

Now we want to examine the superminimality of the fibres. We would like
to begin by investigating the classes of almost paracontact metric submersions
whose fibres are, or are not, superminimal in a natural way.

Let (M?>™*1 g,¢,&,m) be an almost paracontact metric manifold and M a
@-invariant submanifold of M. If, Vy ¢ = 0 for all V' tangent to M, then M is
said to be superminimal.

In order to verify the superminimality of the fibres of an almost paracontact
metric submersion, there are four components of g{((Vy ¢)D, E) to be considered
on the total space M. From [11, 12] we recall that
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SM-1) g((Vve)U, W) = g(Vv(JU) = JVyU, W),
SM-2) g((Vvp)U, X) = g(Tv(oU) — (TyU), X),
SM-3) g((Vv)X,U) = —g((Vve)U, X),

SM-4) g((Vve)X,Y) = —g(AexY + Ax(¢Y), V).

Proposition 3.8. Let m: M?™+L — M”2™'+1 pe an almost paracontact metric
submersion. If the total space is para-cosymplectic, then the fibres are supermin-
imal.

Proof. Obvious. O

Proposition 3.9. Let 7 : M2™+1 — M”2™'+1 be an almost paracontact metric
submersion. If the total space is a para-Kenmotsu manifold, then the fibres
cannot be superminimal.

Proof. Suppose that the fibres are superminimal. This means that Vyp = 0

for all vector fields U tangent to the fibres. But on para-Kenmotsu manifold we
2 2

have 0 = g((Vup)pU, &) = g(pU,0U)g(§,&) = |U|I". If U] = 0 then U = 0

which is not true. Thus, the fibres cannot be superminimal. a

Now, let us consider the integrability of the horizontal distribution.
Recall that the horizontal distribution of a Riemannian submersion is said
to be integrable if the O'Neill tensor A vanishes identically (i.e. A= 0).

Proposition 3.10. Let 7 : M2?™+1 — M"2™'+1 pe gn almost paracontact
metric submersion such that the total space is almost para-cosymplectic or quasi
para-Sasakian. If the fibres are superminimal, then the horizontal distribution
is completely integrable.

Proof. Tt is not difficult to show that AxpY = pAxY for the three mentioned
almost paracontact metric submersions. If the fibres are superminimal, we have
9(Vup)X,Y) = —g(A,xY + Ax oY, U), which implies that A= 0. a

As in [14], we are able to use the superminimality of the fibres to induce a
specific almost paracontact metric structure onto the total space of an almost
paracontact metric submersion, provided that certain necessary structures exist
on the base space and the fibres.

We begin by proving a technical result.

Lemma 3.1. Let w : M?>™T1 — M?™+! be an almost paracontact metric sub-
mersion. Suppose that dy’ = 0 on the base space. If the fibres are superminimal,
then dn =0 on the total space.
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Proof. In order to see that dn = 0, we begin by assuming that X and Y are
basic vector fields on the total space. Then dn(X,Y) = dn/(X.,Y.) = 0. The
vanishing of expression SM — 2) implies, along with A,x = 0 that A = 0. Now
2dn(X,U) = (Vxn)U—(VunX
= 9(X,Vué) - g(U, Vx§)
= g(X,Vyé) - g(U, Ax§)
= g(X,Vyé).
The superminimality of the fibres implies that
0 9((Vup)§, X)
9(Vuws, X) — g(eVué, X)
9(Vug, ¢X)

i

Thus, Vi€ is g—orthogonal to all vector fields except, perhaps, £. Recall that
€17 = g(&,€) is constant 1, so that g(Vy€,€) = 0. Hence dn(X,U) = 0 and
dn(U,X) = 0. Recall, too, that the Lie bracket [U,V] is vertical from the
complete integrability of the vertical distribution. Then

dn(U,V) = 3 {Un(V) = Va(U) = ([, V])} = 0,

because 7 vanishes on the vertical distribution.
O

Theorem 3.1. Let # : M*™tl — M?™+1 be an almost paracontact met-
ric submersion. Assume that the base space is nearly para-cosymplectic, nearly
para-K -cosymplectic or nearly para-Kenmotsu. If the fibres are superminimal,
then the total space is respectively mearly para-cosymplectic, nearly para-K-
cosymplectic or nearly para-Kenmotsu.

Proof. There are four expressions that must vanish in order to conclude that
the total space is nearly para-cosymplectic:

NPC-1) g((Vup)U,V);

NPC-2) g((Vup)U, X);

NPC=3) g((Vx¢)X,U);

NPC-4) g((Vxp)X,Y).

The superminimality of the fibres implies that the first two expressions are
zero. We may assume that the horizontal vector fields X and Y are basic for
expression NPC — 4), in which case that expression vanishes because the base
space is nearly para-cosymplectic. Finally,

9d(Vxe)X,U) = g(VxeX,U)—-g(eVxX,U)
= g(vXQDX’U)
= 0
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yielding the vanishing of expression NPC — 3). Concerning the case of nearly
para-K-cosymplectic structure on the base space, we need only establish that
Vn = 0 on the total space; that is, we must show that Vg€ = 0 for all vector
fields, E, on M. But V x& = 0 by projection onto the base space. For V£, we
know that 0 = (V)& by the superminimality of the fibres. Thus

0 = Vuwt— Vit

= —ppVyé
= Vy&—-n(Vué)é

But, during the proof of Lemma 3.1, we established that

n(Vu€) = g(Vuvg, &) =0.
Therefore, Vnp = 0 and M is nearly para-K-cosymplectic.
Now, let us consider the case of the nearly para-Kenmotsu structure. Lemma
3.1 implies that dn = 0 on the total space. Since 7 vanishes on the vertical
distribution, we need only to show that (Vy)U = 0 and that
0= (Vxp)X +n(X)pX. Let X be basic, then

(Vx)X + (X)X = (Vi ¢ ) Xu +7'(X2)¢' X, = 0.

Clearly, (Vyp)U = 0 because the fibres are superminimal. Therefore, the total
space is nearly para-Kenmotsu. O

References

[1] Braga, A.M., np—Ricci solitons on para-Kenmotsu manifolds,
arXiv:1402.0223 v1[math.DG| 2 Feb.2014.

[2] Dacko, P., On almost para-cosymplectic manifolds, Tsukuba J. Math.
28 (2004),193-213.

[3] Dacko, P. and OLszAK, Z. On weakly para-cosymplectic manifolds
of dimension 3, J. Geom. Physics, 57 (2007),561-570.

[4] Gray, A. and HERVELLA, L.M., The sixteen classes of almost Hermi-
tian manifolds and their linear invariants, Ann. Mat. Pura Appl., 123
(1980), 35-58.

[5] GunpuzALP, Y. and SAHIN, B., Paracontact semi-Riemannian sub-
mersions, Turkish J. Math., 37(2013), 114-128.

[6] KaNEYUKI, S. and WiLLiams, F.L., Almost paracontact and para-
Hodge structures on manifolds, Nagoya Math. J., 99(1985),173-187.

[7] O’NELLL, B., The fundamental equations of a submersion, Michigan
Math.J., 13 (1966), 459-469.



On the Fibres of An Almost Paracontact Metric Submersion 13

[8] Saro, L., On a structure similar to the almost contact structure I,
Tensor, N.S. 30 (1976),219-224.

[9] Saro, I., On a structure similar to the almost contact structure II,
Tensor, N.S. 31 (1977),199-205.

[10] SHUKLA, S.S. and SHANKAR VERNA, U.Paracomplex Paracontact
Pseudo-Riemannian Submersions, Hindawi Publ. Corporation Geome-
try, Vol. 2014, Article ID 616487.

[11] TsHIKUNA-MATAMBA, T., Superminimal fibres in an almost contact
metric submersion, Iranian J. Math. Sci. Info., 3(2)(2008),77-88.

[12] TsHIKUNA-MATAMBA, T., Almost contact metric submersions in Ken-
motsu geometry, J. Math. Univ. Tokushima 48 (2014),1-16.

[13] WaTsoN, B.,The differential geometry of two types of almost contact
metric submersions, in The Math. Heritage of C.F. Gauss, (Ed. G.M.
Rassias), World Sci. Publ. Co. Singapore, 1991, pp. 827-861.

[14] WaTsoN, B., Superminimal fibres in an almost Hermitian submersion,
Boll. Un. Mat. Ital., (8)I-B (2000),159-172.

[15] Zamkovoy, S., Cannonical connections on paracontact manifolds,
Ann. Global Anal. Geometry, 36 (2009),37-60.




