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Abstract

In this paper, we study the phenomena of the system of free particles
on the view point of natural statistical physics.

Thereby we derive the Schrödinger equation of this physical system
and solve the initial value problem of this Schrödinger equation.

Thereby we obtain the structure of this physical system at the sta-
tionary state. Thus we obtain the information of the natural statistical
distribution of the position variable and the momentum variable of this
physical system.

2000 Mathematics Subject Classification. Primary 81Q99; Secondary
82B99, 82D99.

Introduction

In this paper, we study the phenomena of the system of free particles on
the view point of natural statistical physics.

The mathematical model of this physical phenomena is the system of micro-
particles moving freely with constant velocity in the space R = (−∞, ∞).

We derive the Schrödinger equation of this physical system and solve the
initial value problem of this Schrödinger equation.
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Thereby we obtain the structure of the physical system at the stationary
state. Thus we obtain the information of the natural statistical distribution of
the position variable and the momentum variable of this physical system. Thus
we obtain the energy expectation

E =

∫ ∞

−∞

p2

2m
|c(p)|2dp

of the total system. Here c(p) ∈ L2 is the Fourier transform of the L2-density
ψ(x) which determines an initial distribution.

At last, we obtain the fact that this physical system is decomposed as
follows:

Ω =
∪

−∞<p<∞
Ωp, (direct sum),

Ωp = {ρ ∈ Ω; p(ρ) = p}, (−∞ < p < ∞),

P (Ωp) = |c(p)|2, (−∞ < p < ∞).

As for these symbols, we refer to section 4 in this paper. As for the related
works, we refer to Ito [8], [16], chapter 7, Ito [20], [26], [27], [28], [40], [44], [55]
and Ito-Uddin [63].

Here I show my heartfelt gratitude to my wife Mutuko for her help of
typesetting this manuscript.

1 Setting of the problem

In this section, we give the setting of the problem. We say that a particle
moving freely in one dimensional space R is a free particle.

Therefore, any force does not acts on a free particle. Therefore each free
particle with mass m moves by virtue of Newtonian equation of motion

m
d2x

dt2
= 0.

Here x is the variable representing the coordinate of the position of the free
particle. It is the purpose to study the natural statistical phenomena of this
system.

Although each free particle moves with constant velocity, the various natural
statistical phenomena appear according to the initial conditions on the natural
probability distributions of the position and momentum.

Really all natural existences move by virtue of the mutual interaction of
forces.

Therefore the system of free particles is an idealized physical system.

2

Nevertheless the system of free particles is really used as an approximating
model for the physical model for the ideal gas. Thus it is clarified that there are
many concrete physical phenomena behind the system of free particles which
is considered as a mathematical model only for the calculation until now.

2 Setting of mathematical model

In this section, we give the mathematical model of the natural statistical
phenomenon of the system of free particles.

We assume that the physical system Ω = Ω(B, P ) of free particles in
one dimensional space R is a probability space. An elementary event in Ω is
composed of only one free particle.

Then x = x(ρ) denotes the position variable of a free particle ρ and p = p(ρ)
denotes its momentum variable.

Here the variable x moves in the space R1 =R and the variable p moves in
the dual space R1.

Because the space R1 =R is self-dual, we identify the dual space R1 with
the space R1. Thus we denote the self-dual space R1 =R1 as the same symbol
R.

Assume that each free particle ρ has the mass m > 0. Then the total energy
of the free particle ρ is equal to

1

2m
p(ρ)2

by virtue of the classical mechanics.
This energy variable is considered as a generalized natural random vari-

able.
In this case, because the Schrödinger operator of the system of free particles

will have the continuous spectrum, we must consider the generalized natural
statistical state.

This is ruled by the law II in Ito [44].
Namely, the law of the natural probability distribution of x(ρ) is determined

by a L2
loc-density ψ(x) and the law of the natural probability distribution of

p(ρ) is determined by its Fourier transform ψ̂(p).
Then the local expectation ES of the energy variable can be calculated by

virtue of the fundamental statistical formulas in the law II in Ito [44]. Here S
is an arbitrary compact set in R such that the condition

∫

S

|ψ(x)|2dx > 0
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is satisfied. Further using the indicator function χS(x) of S, we put ψS(x) =
χS(x)ψ(x). Then the fundamental statistical formulas are given in the follow-
ing:

P ({ρ ∈ Ω; x(ρ) ∈ A ∩ S}) =

∫

A∩S

|ψS(x)|2dx
∫

S

|ψS(x)|2dx
,

P ({ρ ∈ Ω; x(ρ) ∈ S, p(ρ) ∈ B}) =

∫

B

|ψ̂S(p)|2dp
∫ ∞

−∞
|ψ̂S(p)|2dp

.

Here S is an arbitrary compact set in R as in the above. A and B are two
Lebesgue measurable sets in R.

Then the local energy expectation ES is equal to

ES = ES [
1

2m
p(ρ)2] =

∫ ∞

−∞

p2

2m
|ψ̂S(p)|2dp

∫ ∞

−∞
|ψ̂S(p)|2dp

=

∫

S

ℏ2

2m
|dψS(x)

dx
|2dx

∫

S

|ψS(x)|2dx
.

Here we used the Plancherel formula for Fourier transformation.
Then we denote the local energy expectation as

JS [ψS ] =

∫

S

ℏ2

2m
|dψS(x)

dx
|2dx

∫

S

|ψS(x)|2dx

and we say that JS [ψS ] is the local energy functional.
Then we postulate the following principle.

Principle I (Local variational principle)　When the Schrödinger op-
erator for the physical system has the continuous spectrum, a stationary state
is realized as the state where the energy functional considered locally for the
physical system takes its stationary value.

By using this principle, we choose the L2
loc-density realized physically in the

practice among all admissible L2
loc-densities for this physical system.

Therefore we consider the following problem.

4

Problem I (Local variational problem)　 Let {Kj} be an increasing
sequence of nonempty compact sets exhausting R. Namely it satisfies the
following conditions (i) and (ii):

(i)　K1 ⊂ K2 ⊂ · · · ⊂ Kj ⊂ · · · ⊂ R.

(ii)　
∞∪
j=1

Kj =R.

Then, for an arbitrary nonnegative real number E ≥ 0, determine the lo-
cally square integrable function ψ(E)(x)( ̸= 0) such that it satisfies the following
conditions (1)∼(4):

(1)　 ψ(E)|Kj = ψj , (j = 1, 2, · · · ).

(2)　 ψj+1|Kj = ψj , (j = 1, 2, · · · ).

(3)　
∫

Kj

|ψ(E)(x)|dx > 0 for some j > 0.

(4)　 For j ≥ 1 such that the condition (3) is satisfied, the functional

Jj [ψj ] =

∫

Kj

(
ℏ2

2m
|ψj(x)

dx
|2)dx

∫

Kj

|ψj(x)|2dx

has its stationary value.

3 Mathematical analysis

By solving the local variational problem in section 2, we obtain the Schrödin-
ger equation

− ℏ2

2m

d2ψj(x)

dx2
= Eψj(x), (x ∈ Kj ; j = 1, 2, · · · )

as the Euler equation. Here E denotes Lagrange’s unknown constant.
By virtue of the conditions (1)∼(4) of the problem I in section 2, we can

choose the L2
loc-densities ψ(E)(x) so that, for E ≥ 0, the conditions

ψ(E)(x) = ψj(x), (x ∈ Kj ; j = 1, 2, · · · )

are satisfied.

5
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ger equation

− ℏ2

2m

d2ψj(x)

dx2
= Eψj(x), (x ∈ Kj ; j = 1, 2, · · · )

as the Euler equation. Here E denotes Lagrange’s unknown constant.
By virtue of the conditions (1)∼(4) of the problem I in section 2, we can

choose the L2
loc-densities ψ(E)(x) so that, for E ≥ 0, the conditions

ψ(E)(x) = ψj(x), (x ∈ Kj ; j = 1, 2, · · · )

are satisfied.

5



Yoshifumi Ito84

Then ψ(E)(x) satisfies the Schrödinger equation

− ℏ2

2m

d2ψ(E)(x)

dx2
= Eψ(E)(x), (−∞ < x < ∞).

Here E is the Lagrange’s unknown constant.
Thus we have the following generalized eigenfunctions

ψ
(E)
± (x) = c(E)exp

(
± i

ℏ
x
√

2mE
)

for E ≥ 0 as the solutions of the generalized eigenvalue problem in the above.
For every E > 0, there are two linearly independent generalized eigenfunc-

tions. Therefore each spectrum E > 0 is degenerate.
Here we exchange the parameter E for the normalization.
Namely, for E ≥ 0, we put

k2 =
2mE
ℏ2

, (−∞ < k < ∞).

Then we have

ψ(k)(x) =
1√
2π

eikx, (−∞ < k < ∞).

Thus we have the equation

− ℏ2

2m

d2ψ(k)(x)

dx2
= Eψ(k)(x), (E =

ℏ2k2

2m
), (−∞ < x < ∞).

For this system of generalized eigenfunctions, the following normalization
condition and the completeness condition are satisfied.

Theorem 3.1　We use the above notation. Then we have the following
(1) and (2):

(1)　 (Normalization condition) We have the equality

∫ ∞

−∞
ψ(k′)(x)∗ψ(k)(x)dx = δ(k′ − k), (−∞ < k, k′ < ∞).

(2)　 (Completeness condition) We have the equality

∫ ∞

−∞
ψ(k)(x′)∗ψ(k)(x)dk = δ(x′ − x), (−∞ < x, x′ < ∞).

6

Here we denote the complex conjugate of a complex number c as c∗.

Here, by using the parameter

p = ℏk,

we have

ψ(p)(x) =
1√
ℏ
ψ(k)(x), (p = ℏk).

Then we have

ψ(p)(x) =
1√
2πℏ

eipx/ℏ, (E =
p2

2m
).

Thus we have the equation

− ℏ2

2m

d2ψ(p)(x)

dx2
= Eψ(p)(x), (E =

p2

2m
).

Namely ψ(p)(x) is the generalized eigenfunction.
Then we have the following theorem.

Theorem 3.2　We use the above notation. Then we have the following
(1) and (2):

(1)　 (Normalization condition) We have the equality

∫ ∞

−∞
ψ(p′)(x)∗ψ(p)(x)dx = δ(p′ − p), (−∞ < p, p′ < ∞).

(2)　 (Completeness condition) We have the equality

∫ ∞

−∞
ψ(p)(x′)∗ψ(p)(x)dp = δ(x′ − x), (−∞ < x, x′ < ∞).

Now we put
ψ(p)|Kj = ψj , (j = 1, 2, · · · ).

Then we have

Jj [ψj ] =

E
2πℏ

∫

Kj

1dx

1

2πℏ

∫

Kj

1dx

= E , (E =
p2

2m
), (j = 1, 2).

Hence ψ(p)(x) is the solution of the problem I in section 2.

7
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In the above, L2
loc-densities ψ

(E)
± (x), ψ(k)(x) and ψ(p)(x) are the different

expressions of the solutions of the problem I in section 2 and only their normal-
ization conditions are different. But, by virtue of the formulation of the laws
of natural statistical physics, it is better to use ψ(p)(x) as the solutions.

Then, by virtue of the theory of Fourier transformation, there exists c(p) ∈
L2 such that we have the relations

ψ(x) =
1√
2πℏ

∫ ∞

−∞
c(p)eipx/ℏdp,

c(p) =
1√
2πℏ

∫ ∞

−∞
ψ(x)e−ipx/ℏdx

for an arbitrary ψ(x) ∈ L2.
The physical state of the total physical system Ω is determined by the

initial natural probability distribution determined by a L2-density ψ(x). Then
we have the generalized eigenfunction expansion

ψ(x) =

∫ ∞

−∞
c(p)ψ(p)(x)dp,

c(p) =

∫ ∞

−∞
ψ(p)(x)∗ψ(x)dx.

Then the energy expectation is given by the relation

E = J [ψ] =

∫ ∞

−∞

p2

2m
|ψ̂(p)|dp =

∫ ∞

−∞

p2

2m
|c(p)|2dp.

Further, because we have

∫ ∞

−∞
|ψ(x)|2dx = 1

by virtue of the condition of the L2-density ψ(x), we have the relation

∫ ∞

−∞
|c(p)|2dp = 1.

Then, because the relation
p2

2m
= E

holds, we have the equality

E = J(ψ) =

∫ 0

−∞

p2

2m
|c(p)|2dp +

∫ ∞

0

p2

2m
|c(p)|2dp

8

=
1

2

∫ ∞

0

E
√

2m

E
|c(−

√
2mE)|2dE +

1

2

∫ ∞

0

E
√

2m

E
|c(

√
2mE)|2dE

=
1

2

∫ ∞

0

E
√

2m

E
(
|c(−

√
2mE)|2 + |c(

√
2mE)|2

)
dE .

Now, by putting

I(E) =
1

2

√
2m

E
(
|c(−

√
2mE)|2 + |c(

√
2mE)|2

)
, (E > 0),

we have the relations
∫ ∞

0

I(E)dE =

∫ ∞

−∞
|c(p)|2dp = 1.

Therefore we have the equality

E = J [ψ] =

∫ ∞

0

EI(E)dE .

Here we consider the inverse process of the method of separation of variables.
At first, we consider the function

ψ(p)(x, t) = ψ(p)(x)exp[−i
E
ℏ
t].

By differentiating partially this function with respect to the time variable t, we
have the equality

iℏ
∂ψ(p)(x, t)

∂t
= Eψ(p)(x)exp[−i

E
ℏ
t].

Here we denote the Schrödinger operator for the stationary state as

H = − ℏ2

2m

∂2

∂x2
.

Then we have the equality

Hψ(p)(x) = Eψ(p)(x), (E =
p2

2m
).

Hence we have the equality

iℏ
∂ψ(p)(x, t)

∂t
= {Hψ(p)(x)}exp[−i

E
ℏ
t] = Hψ(p)(x, t).

Therefore, by putting

ψ(x, t) =

∫ ∞

−∞
c(p)ψ(p)(x, t)dp,

9
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E = J [ψ] =

∫ ∞

−∞

p2

2m
|ψ̂(p)|dp =

∫ ∞

−∞

p2

2m
|c(p)|2dp.

Further, because we have

∫ ∞

−∞
|ψ(x)|2dx = 1

by virtue of the condition of the L2-density ψ(x), we have the relation

∫ ∞

−∞
|c(p)|2dp = 1.

Then, because the relation
p2

2m
= E

holds, we have the equality

E = J(ψ) =

∫ 0

−∞

p2

2m
|c(p)|2dp +

∫ ∞

0

p2

2m
|c(p)|2dp

8

=
1

2

∫ ∞

0

E
√

2m

E
|c(−

√
2mE)|2dE +

1

2

∫ ∞

0

E
√

2m

E
|c(

√
2mE)|2dE

=
1

2

∫ ∞

0

E
√

2m

E
(
|c(−

√
2mE)|2 + |c(

√
2mE)|2

)
dE .

Now, by putting

I(E) =
1

2

√
2m

E
(
|c(−

√
2mE)|2 + |c(

√
2mE)|2

)
, (E > 0),

we have the relations
∫ ∞

0

I(E)dE =

∫ ∞

−∞
|c(p)|2dp = 1.

Therefore we have the equality

E = J [ψ] =

∫ ∞

0

EI(E)dE .

Here we consider the inverse process of the method of separation of variables.
At first, we consider the function

ψ(p)(x, t) = ψ(p)(x)exp[−i
E
ℏ
t].

By differentiating partially this function with respect to the time variable t, we
have the equality

iℏ
∂ψ(p)(x, t)

∂t
= Eψ(p)(x)exp[−i

E
ℏ
t].

Here we denote the Schrödinger operator for the stationary state as

H = − ℏ2

2m

∂2

∂x2
.

Then we have the equality

Hψ(p)(x) = Eψ(p)(x), (E =
p2

2m
).

Hence we have the equality

iℏ
∂ψ(p)(x, t)

∂t
= {Hψ(p)(x)}exp[−i

E
ℏ
t] = Hψ(p)(x, t).

Therefore, by putting

ψ(x, t) =

∫ ∞

−∞
c(p)ψ(p)(x, t)dp,

9
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we have the equality

iℏ
∂ψ(x, t)

∂t
= Hψ(x, t).

Namely we have the equality

iℏ
∂ψ(x, t)

∂t
= − ℏ2

2m

∂2ψ(x, t)

∂x2
.

This is the time-evolving Schrödinger equation for the total physical system
Ω.

Here, by using the completeness condition, we have the relation
∫ ∞

−∞
|ψ(x, t)|2dx =

∫ ∞

−∞
|c(p)|2dp = 1, (−∞ < t < ∞).

By virtue of the law of conservation of probability, the time-evolving Schrödi-
nger equation has no other form than that obtained in the above in order that
the L2-density ψ(x, t) satisfies the normalization condition.

4 Natural statistical phenomena of free parti-
cles

By the study until now, we clarify that the physical system Ω = Ω(B, P )
of free particles has the following structure in the stationary state.

Namely, in the stationary state, Ω is decomposed as follows;

Ω =
∪

−∞<p<∞
Ωp, (direct sum),

Ωp = {ρ ∈ Ω; p(ρ) = p}, (−∞ < p < ∞),

P (Ωp) = |c(p)|2, (−∞ < p < ∞).

Then, for A ∈ B, we have the equality

P (A) =

∫ ∞

−∞
P (A|p)|c(p)|2dp.

Here P (A|p) denotes the conditional probability. Then, for p, (−∞ <
p < ∞), we say that the probability space Ωp = Ωp(B ∩ Ωp, P (·|p)) is the
generalized proper physical system.

Then, by virtue of the calculations until now, we determine c(p) so that it
satisfies the following conditions. Namely, when we put

I(E) =
1

2

√
2m

E
(
|c(−

√
2mE)|2 + |c(

√
2mE)|2

)
, (E > 0),

10

I(0) = 0, (p2 = 2mE)

for p, (−∞ < p < ∞), we assume that the equality

∫ ∞

0

I(E)dE = 1

holds.
Then, by virtue of the law of natural statistical physics, we have the follow-

ing:
P (Ωp|p) = 1,

P
(
{ρ ∈ Ωp; x(ρ) ∈ A}|p

)
=

∫

A∩S

|ψ(p)
S (x)|2dx

∫

S

|ψ(p)
S (x)|2dx

,

P
(
{ρ ∈ Ωp; x(ρ) ∈ S, p(ρ) ∈ B}|p

)
=

∫

B

|ψ̂(p)
S (p)|2dp

∫ ∞

−∞
|ψ̂(p)

S (p)|2dp
.

Thereby the conditional energy expectation Ep of the generalized proper
physical system Ωp is equal to

Ep = lim
j→∞

JKj
[ψ

(p)
Kj

] = E =
p2

2m
.

Thus, by virtue of the relation among the total physical system and the
generalized proper physical systems, we have the equality:

E = E
[ 1

2m
p(ρ)2

]
=

∫ ∞

−∞
Ep|c(p)|2dp

=

∫ ∞

−∞

p2

2m
|c(p)|2 =

∫ ∞

0

EI(E)dE , (p2 = 2mE).
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