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Abstract

In this paper, we study the Fourier transformation of L2 -functions
and L2-functions in order to investigate the natural statistical phenomena
by using the theory of natural statistical physics. Thereby we prove the
structure theorems of the image spaces FLZ . and FL2. We study the
convolution f % g of a L2-function f and a L% .-function g. Further,
we characterize the local Sobolev spaces and the space of solutions of
Schrédinger equations. Here assume d > 1. These results are the English
version of Ito [17], chapter 5.
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Introduction
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i .-functions and

In this paper, we study the Fourier transformation of L
L2-functions and some applications.
In section 1, we define the Fourier transformation and the inverse Fourier

transformation of L? -functions. We show some examples of Fourier trans-

loc
formation of L -functions. We prove the inversion formulas of the Fourier
transformation and the inverse Fourier transformation of L% -functions.

loc
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In section 2, using Paley-Wiener theorem for L2-functions, we prove the
structure theorems of the function spaces L . and L? and the structure theo-
rems of the Fourier images FL? . and FL2.

In section 3, we study the convolution f * g of a function f in L? = L2(R?)
and a function g in L2 . = L2 _(R?).

In section 4, we define the local Sobolev space Hi (R?), (—oco < s < 0),
and study its fundamental properties.

In section 5, we determine the space of solutions of Schrodinger equations
which describe the law of natural statistical phenomena in the space R?. This
space is determined by virtue of the framework of my theory of natural statis-
tical physics.

Here I show my heartfelt gratitude to my wife Mutuko for her help of
typesetting this manuscript.

2

io.-functions

1 Fourier transformation of L

2

i -functions

In this section, at first we define the Fourier transformation of L
and its fundamental properties.

Let R? be the d-dimensional Euclidean space. Here assume d > 1. Further
we denote L2 = L2 _(R?) as usual.

For the points in R?

X :t(xh T2y md)a p:t(pla P2, pd),

we define
pr = (p, ©) = p1x1 + paa + - + Paka,

ol = /22 + 23 + - + o,

Ipl = \/p? +p5+ g
Let D = D(RY) be the space of all C*-functions with compact support in
R4,
Here we define the Fourier transformation F by the relation

1
(vV2m)?
for ¢ € D. FD denotes the space of the Fourier image of D by the Fourier

transformation F.
Further, let D’ = D’(R?) be the space of Schwartz distributions on R

(Fo)(p) = /wwk4mm,@eR%
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Here, for the dual pair D’ and D of two TVS’s, we denote the dual inner
product of T € D" and ¢ € D as < T, ¢ > and, for the dual pair (FD)" and
FD, we denote its dual inner product of S € (FD) and ¢ € FD as < S, ¢ >.

Now assume T' € D’. Then, since we have F 'y € D for ¢ € FD, we can
define a continuous linear functional

S: o—=<T, Flo>, (p€ FD)
and we have S € (FD)'. Namely, we have the equality
<8, o>=<T, Flp>.

Then we define that S is a Fourier transform of T' and denote it as S = FT.

This is the new definition of the Fourier transformation of D’. Since a
Schwartz distribution is a generalized concept of functions, we had better to
define the Fourier transformation of Schwartz distributions as in the same di-
rection as the Fourier transformation of classical functions. Thus we define the
new type of Fourier transformation of Schwartz distributions.

Therefore, for the Fourier transform FT' € FD' of T € D’, we have the
relation

<FT, Fo>=<T, ¢ >, (p€D).

This is a generalization of Parseval’s foumula for L?-functions. Then the Fourier

transformation F is a topological isomorphism from D’ to FD'.
Thus we have the isomorphisms

D' > FD' = (FD)'.

Here we denote the dual mapping of the Fourier transformation F : D — FD
as F*: (FD) — D'. Then we have the equality

F*F = the identity mapping of D’.

We define the Fourier transformation of f € L _ considering it as an element
of D'

We say that the limit in the sense of the topologies of D’ or FD’ is the
limit in the sense of generalized functions.

Then we give the following definition.

Definition 1.1  We define the Fourier transform (Ff)(p) of f € L2 _ by
the relation

(FhHp) = Rli_lf}l00 (\/Q%d /ESR f(z)e P dy

in the sense of generalized functions.
Then we denote F f(p) as
1

FN® =

/ F(@)e= " da.
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Here, when the integration domain is equal to the entire space R%, we omit the
symbol of the integration domain.

Let C = C(R?) be the function space of all continuous functions on R<.
Then we have the inclusion relation

CclL?

loc*

Therefore, we can define the Fourier transformation of continuous functions
which are not necessarily L2-functions considering that they are LZ -functions.

Example 1.1  We have the following equality:

i) -t —ix)%e Ty = m)o
Fi)0) = [ rdn = (Vom0 ).

Here o = (a1, g, -+, ag) denotes a multi-index of natural numbers.
Especially, for « =0 = (0, 0, ---,0), we have the equality

1 —ipx o
FO®) = gz [ ¢ e = (V)50

Therefore, the Fourier transform of the constant function is equal

1
(v2m)d
to the Dirac measure §. Thereby, in general, the Fourier transform Ff of a
L2 -function f is not necessarily a L -function. As for this fact, my classmate

Dr Ko6z6 Yabuta gives me this advice.

Remark 1.1  The L} -function which determines the natural statisti-
cal distribution of a certain physical system must be a solution of a certain
Schrédinger equation.

In general, there is no non-constant polynomial solution of a certain Schrédin-
ger equation . Therefore, in order to determine a natural statistical distribution,
we have not to consider the Fourier transformation of non-constant polynomial

functions.
Now we give some examples of Fourier transforms of continuous functions.

Example 1.2 Assume —oo < p, ¢ < oo. Then we have the following (1)
and (2):

W o [ smare s = 316600~ o0+ a)

(2) Nor: /_C: cos gre” P dy = \/Z(é(p —q)+(p+q))
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In the following Example 1.3 ~ Example 1.5, the convergence of series is
considered to be the convergence in the sense of generalized functions.

Example 1.3 The Fourier transform f (p) of Riemann’s function

_ = sin(n?z) B
f(z) 27712 , (—oo <z < 0)

n=1

is equal to

) =55 22 00 ) =8y, (o0 <p <o)

Example 1.4  We assume that two constants a, b satisfy the following
conditions (i)~(iii):

(i) O0<a<l1l. (i) bisaoddnumber. (ili) We have ab> 1+ gw.

Then the Fourier transform f(p) of Weierstrass function
oo
flz) = Z a” cos(bmx), (—oo < x < 00)
n=1
is equal to

F0) = |5 00— bm) + 0+ 5'm), (—00 < p < o0).

Example 1.5  Assume that a is an even number. Then the Fourier
transform f(p) of Cellérier function

f(x)zzs’ini#m), (—oo <z < 0)

n=1

is equal to
) =37 2 a0t =) =3+, (o0 <p < ).

Example 1.6  Assume d > 1. The constant function 1 belongs to L7 =

L (RY). For R > 0, we put (%) = X|z/<r(z). Then we have xz € L and
we have
xr — 1, (R — 00)
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2

i .-convergence. Thus we have

in the topology of L
xr — 1, (R — o0)
in the topology of D’. Then we have, for R — oo,

1 /e—ipfdx =1(p) = (V21)%(p)

Xr(p) = W /XR(x)e_ipmdx —

in the topology of FD'.

1
(v2m)d

Example 1.7 For n > 1, we put

Xn(Z) = X[=n, n)(2), (z € R).

2

e and we have

Then we have y,, € L

Xn — 1, (n — o)

2
loc

in the topology of L
Thus we have

-convergernce.

Xn — 1, (n — o)

in the topology of D’. Then we have, for n — oo,

1 - 1 . N
n((p) = —— [ xn(@)e P de = —— [ e"Pdy = 1(p) = V275
Xn((p) m/x (x)e™ " du m/e x=1(p) mo(p)
in the topology of FD'.

Example 1.8 We have

1 sinpn

™ p

— d(p), (n — o0)

in the topology of FD'.

Proof =~ We have the equality

1 "o 1 4 - \/58111])’[1
— e "PPdr = ——— (e —e7"P") =4/ — .
V2T /_n ipV 277( ) T p

Thus we have the conclusion by virtue of Example 1.7.//

Example 1.9  Assumed > 1. Let n = (n1, no, -+, ng) be a multi-index
of positive natural numbers. We denote |n| = ny +ng + - -+ ng. By using the
notation of Example 1.7, we denote

Xn(x) = Xny (ml)X”LQ (I2> T Xnd(zd)’ (I € Rd)7
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Xn(P) = Xy (P1)Xna (P2) *+* Xna (Pa), (p € RY).

Then we have

X(p) = (V2m)%6(p), (|n| — o)
in the topology of FD'.

Proof By virtue of Example 1,7, because we have
Xn, (pj) = V273(p;)
for 1 < j < d, we have the conclusion. //
Theorem 1.1  We use the same notation as Example 1.9. Then, for

Xn (@) = X (€1) Xna (€2) -+ Xy (2a), (2 € RY),

we denote
Xn(P) = Xy (P1)Xns (P2) -~ X (Pa), (0 € RY).
For f(z) € L2 ., we put fn(x) = xn(z)f(z). Then we have f,(x) € L} .. Now,

loc*
when we consider that f, and f are elements of D', we denote their Fourier

transformations as F fp, = fn and Ff = f Then we have
o= (In] = o)
in the topology of FD'.
Proof = When |n| — oo, we have
fal@) = f(2), (x € RY)

Therefore, when |n| — oo, we have

fon =1

2
loc*

in the topology of L

in the topology of D’.
Since we have f,, = x, f, we have the equality

1
W)@*Jc

in FD'. Here the symbol * denotes the convolution. By virtue of Example 1.9,
we have

fn = (an)/\ =

Xn — (V2m)96, (In] — 00).
Thus, when |n| — oo, we have

fn:WXAn*f_)(S*f:f
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in the topology of FD'. //

When we use the notation in Theorem 1.1, we have fn € L? and

r 1 —ipx -
fu(p) = (\/Tﬂi/fn(x)e dx.

Therefore we have the equality

1 . R
lim 7/]"" x)e "Pdx = f(p
o [ ) ()
in FD’'. In this sense, we use the notation

; 1

for f(p) € FD'. Here we consider this integral in the sense of convergence in
the topology of FD'.

In this case, we say that this integral converges in the sense of generalized
functions.

Similarly, we define the Fourier inverse transformation as follows.

/f(x)e*ipzdx

Definition 1.2(Fourier inverse transformation) We define the Fourier
inverse transformation of g(p) € L7 . by the relation

F o) = Jim o /|p|<Rg<p)emdp

in the sense of generalized functions.
We denote (F~1g)(z) as

1 .
Flg)(z) = / P dp.
(F9)(x) Var) g(p)e*dp
Theorem 1.2 Let « = (a1, g, -+, «aq) be a multi-index of natural

numbers. Assume that f(x) € L . and D f(x) € L} . hold. Then we have the
following (1) and (2):

(1) F((=ix)*f)(p) = DUFf)(p)-
(2)  F(Df)p) = (ip)*(F£)(p)-

In Theorem 1.2, the symbols % and D etc. are the same as usually used.

Namely D® f means a LZ _-derivatives, and D®(F f) means, in general, a partial

derivative of Ff in FD’ and so on .
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Next we prove the Fourier inversion formula.
Now we assume f € L2 . Then, since we have

loc*
fr(z) € L?, (0 < R < o), (Ffr)(p) € L?, (0 < R < o),
we have

|Ffrll = Ifrll, (0<R<o0), F'Ffr(z)= fr(z), (0 <R < o0).

Then, since we have
fr(@) = f(x), (R — o0)

is the sense of generalized functions, we have the equality
FFf=1.
Therefore we have the following inversion formula.

Theorem 1.3(Inversion formula)  For f(x) € L
lowing inversion formula

: 1 ipx _ 1 eipm e—ipy
@)= Jim s [Frwer = g [ @iy [ ey

Here the integral converges in the sense of generalized functions. Namely we
have

we have the fol-

2
loc

FIFf=F

Similarly, for g(p) € L2 ., we denote the restriction of g to the closed ball
|p| < T as gr. Then we have

IF = gzl = llgrll, (0<T < o0), FF gr(p) = gr(p), (0<T < o0).
Then, in the sense of generalized functions, we have

gr(p) — g(p), (T — o).

Thus we have the equality

in the sense of generalized functions.
Therefore we have the following inversion formula.

Theorem 1.4 (Inversion formula) Forg € Ll2OC7 we have the following
inversion formula

g(p) = (\/217)d /(f—lg)(x)e—ipmdx: ﬁ/e_imdx/g(q)eiqqu.
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Here the integral converges in the sense of generalized functions. Namely we
have the equality
FFlg=g.

Theorem 1.5  For f € L%, we have the equalities:

F2f(z) = f(=x), Fif(2) = f(2).

2 Structure theorems

In this section, using Paley-Wiener theorem for L2-functions, we study
the structure theorems of the function spaces L . and L? and the structure
theorems of the Fourier images FLZ . and FL?2.

Now we choose an exhausting sequence {K;} of compact sets in R? which
satisfies the following conditions (i) and (ii):

(i) KycKyc---cR' R'=[]JK;
j=1
(i)  Kj =cl(int(Kj;)), K; Cint(K;11), (=1, 2,3, --).

Then we denote the projective limit of projective system {L?(K )} of Hilbert
spaces as
lim L*(K).
Then we have the isomorphism

loc

L} = lim L(K))

as TVS’s. Here, since, for each j, the restriction mapping L?(K;11) = L?(Kj)
is a weakly compact mapping, L is a FS*-space.

Further, because the system {L?(K;)} of Hilbert spaces can be considered
as an inductive system, we denote the inductive limit as

ling L*(K).
Then we have the isomorphism
L2 = Iy LA(K,)

as TVS’s. Here L? denotes the TVS of all L?-functions with compact support.
Then, since, for each j, the inclusion mapping L?(K;) — L?(Kj41) is a weakly
compact mapping, L? is a DFS*-space.
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Since L*(K;) is a self-dual space, we have the isomorphism
Lie = (LY

as TVS’s. Here(L?)" denotes the dual space of L? and we define the dual inner
product of f € L120c and g € L? by the equality

<f g>= / f(@)g(z)dz.

Here the dual inner product is a bilinear functional which defines the duality
relation of the pair of two TVS’s LZ and L2.

Then, because we have the inclusion relation L? C L?, we define the Fourier
transformation of a L2-function g(x) by using the Fourier transformation of L?-

functions 1
F = 7/ x)e Prdx.
9(p) Van) 9(x)
Further we define the Fourier transformation of a L?

i -function f by the
relation

1
F = lim
flp) = lim Van)d
in the sense of generalized functions in D’ and FD'.
By virtue of the definition of the Fourier transformation of f € L
have the equality

f(z)e P*dg
KJ

2

locy W€

< Ff, Fg>=<f, g>

for any g € D.

Since a L2-function ¢ has the compact support, there exists some K; such
that supp(g) C K holds by the definition of {K;}. Therefore, for an arbitrary
k > j, we have the equalities

< frg>= | fro(@)g@)de = / f(@)g(x)de =< f, g > |
Ky, K;

Here fr,(x) denotes the image of f(z) € L2 _ by the restriction mapping
L2 L2(K).

loc
Since we have the equality

/ F e, (0) Fo(~p)dp = / fie, (2)g(x)da

by virtue of Parseval’s formula, we have the equality

Jm - Ffr (p) Fg(=p)dp = lim / [r, (x)g(x)dx
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— [t @g()iz = [ 71, 0)Fa(-p)dp
Especially, supposing that we have
Dk, C L*(K;), g € Dk,

we have the equality

/ff(p)fg(—p)dpz /f(:v)g(w)d;v.

We can choose a compact set K; arbitrarily. Thus, if we consider that
g € D, holds for an arbitrary Dk, we have the equality in the above for an
arbitrary g € D.

Then, because the dual inner product

<f, g>= /f(x)g(w)dx

is defined for an arbitrary f € L2 _ and g € L2, we have the equality

loc

< Ff Fg>= / F () Fo(-p)dp = / f(@)g(x)de =< f, g >

for an arbitrary f € L2 _ and an arbitrary g € L.

Now we choose one exhausting sequence {K;} of compact sets in R? as in
the above.
Then, for the sequence

L*(K,) c L*(Ky) C ---,
we have the isomorphisms
L7 = lim L*(K;), L, = lim L*(Kj).

Further we have the isomorphisms

1

122 | 12(K,), L2, = () LA(K,).
j=1

Then we have the isomorphisms
FLY(K;) = LK), (j=1, 2,3, -+).
Further, for the sequence

FL*(K)) C FL3(Ky) C ---,
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we have the isomorphisms
Fﬁﬂgﬂ(d”mﬁ()L?
FLige = im FL*(K;) = lim L*(K;) & Li,..

Then we have the relations
leoc C ‘FD/ leoc 7é LIQOC'
Therefore we have the following theorem.

Theorem 2.1 We use the notation in the above. Then we have the
following isomorphisms (1) ~ (4):

(1) L2 = lim L*( -g@

(4) FL2=L? FL?CL? L?C L

Further we have the following theorem.

Theorem 2.2 We use the notation in the above. Then we have the
following isomorphisms (1) ~ (3) and the relation (4):

(1) L3, = lmIX(K,) = () LA(K,) = (L2).

(2)  FL, =lim FL2(K)).

(3) ‘Fleoc = L120C
(4) ‘FL120c c ‘FD/ ‘FL120(: 7£ Lloc’ loc - D'
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3 Convolution

In this section, we study the convolution fxg of a function f in L2 = L2(R?)
and a function g in L2, = L2 _(R"). Here assume d > 1.
We define the convolution f * g of f € L? and g € Lo by the relation

(fxg)(= /fz—

Then we have the equality

/f(x —y)g(y)dy = /9(%‘ —y)f(y)dy.

Therefore we have the following theorem.

Theorem 3.1  For f € L? and g € L} ., we have f xg € L} . Further
we have the relation
frg=gx*f.
Theorem 3.2  Let a = (g, a2, -+, ag) be a multi-index of natural

numbers. Then, for f € L? and g € L2, we have the equality

loc?
D(fxg)=(D*f)xg=f*(D%).

Here the partial derivatives are considered in the sense of topologies of L? and
L2

loc*

Corollary 3.1  Assume f € L2. Then the linear transformation of L}
defined by the convolution

Tr: g— fxg, (g€ L)

2

is continuous in Lj, .

Now assume that {g,} is a sequence of LlOC functions and it converges to

g€ L10C in the topology of Lloc Namely, assume that g, — g, (n — 00) in the
topology of L .. Then we have

T(gn) = Ty(g)s (n = o0).
Corollary 3.2  Assume g € L% .. Then the linear mapping Ty, = [ x

g, (f € L?) defined by the convolution is a continuous linear mapping from L?
into leoc'
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Therefore, if a sequence {f,,} of functions in L? convergences to f € L? in
the topology of L2, we have

Ty(fn) = To(f), (n— o0).

Here the convolution of a function f in L2 and a function g in L} _ is a separately

continuous bilinear mapping L2 x L — L2 .

Theorem 3.3  Assume f € L? and g € L2 .. Then we have

F(f*g) = (V2m) F(f)F(g).

4 Characterization of the local Sobolev spaces

s (RY) and study its
fundamental properties. As for the precise concerning these results, we refer to
Tto [1], [15], [16], [17]. This problem is the characterization of the local Sobolev
space by using the Fourier transformation.

For a real number s, we define L% ¢ = L% S(Rd) to be the Hilbert space of
all complex valued measurable functions f which satisfies the condition

In this section, we define the local Sobolev space H;

/ (14 [a) | ()P < oo.

Assume that s is a real number and F is the Fourier transformation of
L? = [?(R%). Then we define the Solobev space H® = H*(R") to be the
Hilbert space

H*(R") ={f € L*(R"); Ff € L> *(R")}.

Especially when m is a natural number, the Solobev space H™ = H m(Rd)
is equal to the Sobolev space

W™ 2(RY) = {f € L*(R"); D*f € L?, |a| <m}.

Here, for a multi-index a@ = (a1, g, -+, «g) of natural numbers, the

simbol 9 \e 9 \ou
0 (g ) (am) 7

denotes the L?-derivative. Further we put |a| = a3 + ag + -+ + ag.
Then, for a real number s, the local Sobolev space H{ = Hﬁ)C(Rd) is

assumed to be the TVS of all complex valued measurable functions f(z) on
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R? such that, for an arbitrary compact set K in R? the function fx(z) =
f(@)xk(x) belongs to H®. Here y i (z) denotes the characteristic function of
the set K.

Now, for a real number s, we define the vector space L120’CS by the condition

Ll2008 leocs Rd { f € Lloc’ V 1 + |.’L“ f loc } .
LQ, s

loe is equal to the vector space of all complex valued measurable functions
f on R? which satisfy the condition

/K (14 2P) | f (@) Pz < oo

for an arbitrary compact set K in R<.
We define the seminorm || f||2, s, k by the relation

1z, e ={ [ 1+ 1o\ )P 2.

Here K denotes a compact set K in RY.
Then the topology of L** is defined by the system of seminorms

loc

{1l ll2, s, x5 K is a compact set in R? b
Thereby L ° is a Fréchet space.
For f € LIQOCS, we have the inequalities

2 21\s 2 2
B /K (@) Pde < /K (1+ |22))°| f(2) Pde < Cie /K () 2da.

Here B and Ck are two positive constants depending on K.

Therefore, for an arbitrary real number s, we have the equality LIQOCS leoc

as the sets of functions. Then L;”® is equal to the LCV L2, endowed with the
; K is a compact set in

RY).
Now, for f € L and a compact set K in R?, we define the seminorm
|| fllx of LE . by the relation

e =( [ 1#@)Pdz) 2.

Thereby L10C is a Fréchet space. Here, because the topologies of L% * and L2

loc loc

are equivalent, L120 2 and L2 . are topologically isomorphic.

Then we have the followmg theorem.

Theorem 4.1  For a real number s, we have the equality

Hloc - Hloc Rd { f S Llocv ‘Ff € Lloc }
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Here Ff € L% * is the Fourier transform of f € L?

loc loc*

Since, in general, we happen to have Ff & L2 _ for f eL} Ffe€ L%
one restriction condition. In fact, though we have 1 € L? , we have 1 & H,

loc

loc» loc
Especially, for a natural number m, we have the equalities
d 2/ pd
HIZLC = H{SC(R ) WIZLC R { f € Lloc7 Daf € Lloc’ |Oé| < m }
Here , for a multi-index o« = (a1, g, -+, «g) of natural numbers, D“f

means the L} -derivatives as same as in the case of L?. Further we put |a =
ap+ o+ -+ g
Then, for f € H™ and an arbitrary compact set K in R we define the

seminorm || f||,,, k of H?. by the relation

1l e =( S DI )

|a|<m
Thereby, the topology of H|”, is defined by the system of seminorms
{1l lm, x; K is a compact set in RrR? }.

Therefore H|" is a Fréchet space.

Especially we remark that H{ I/Vlgc2 L% . holds.
In the sequel, we denote HIOOC as HIOC Then Hj,. is the closed subspace of
LIQOC
Since, for all real number s, we have

L Lloc

loc

as sets of functions, we have, for all real number s
S
Hloc = Hioc

similarly.
Therefore, for the Fourier transform Ff(p) € L? _ of f(x) € Hioe, we have

the equality
1

B 5 e

in the topology of L% .. Further, since we have Ff(p) € L2 for f(x) € HS .,
we have the Fourier inversion formula

Fflp) =

e dp e~ PYdy

in the topology of leoc'
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Remark 4.1  Since the conditions of definitions H® and H;, are given

by the integral estimates of the classical functions, we remark that 7° and H}]
are some classes of classical functions and are characterized without using the
theory of distributions.

Further, the fact that leo’: and Hj  are different TVS’s for some different
real number s means that the definitions of the topologies of those TVS’s are

different

5 Characterization of solutions of Schrodinger
equations

In this section, we determine the space of solutions of Schrédinger equations
which describe the law of natural statistical phenomena in the space R%. Here
assume d > 1.

Now assume that, for p € R?, ,(x) € L} . satisfies the condition ’L[Jp(q) =
5,(¢). Then we have 6, () = ¢_,(x).

When we denote the subspace of D’ spanned by {1p,0,; p € R} as
V{tp, 0p; p € Rd}, we define the subspace N of D’ by the relation

N = Hyoe ® V{thy, 6,; p € R}.
Then we have the inclusion relation
L*C HE., L* CN.

The function space Cy = CO(Rd) is the TVS of all continuous functions with
compact support in RY.

We say that a continuous linear functional p on Cy as a Radon measure
on RY.

The TVS of all Radon measures on R is equal to the dual space (Cp)’.

Then we have the inclusion relation

N C (Co)/ c?D.
When f € N and f # 6,, (p € R?), we define u € (Cp)’ by the relation

uwr:/fwM@Ma<we@»

Then, if we denote p = puy, the correspondence f — puy is one to one corre-
spondence.

Thereby, when f € N and f # 6,, (p € R%), we can identify f and
1= € (Co)-
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When f € N and f € Hoc, we have f € L% or f € L3, .. Therefore, we have
FfeL?or Ff € L2 _ respectively.

loc
Further, because we have

Fipp =0y, Fop =1, (0 € RY),
the Fourier transformation F is the isomorphism
F: N — FN.
Hence we have

FN =N, FN C L} .+ V{,, 5, p € R}

loc

Thus we have the following theorem.

Theorem 5.1  We use the notations in the above. We define the subspace
N of D' by the relation

N = Hye ® V{'l/)pv 5}0; pe Rd}

Denoting the Fourier transformation of D' as F, we have the following (1) and

(2):

(1)  We have the isomorphism

FN =N.

(2)  We have the inclusion relation

FN C L}, +V{i,, 6,; p€ R}

Then, we consider that, in the space R?, (d > 1), the function in N which
is a solution of a Schrédinger equation determines the natural statistical dis-
tribution state for the natural statistical phenomenon of some physical system.
This fact is a restriction condition for a solution of a Schrédinger equation in
RY. This is a restriction condition in order that a solution of a Schrodinger
equation satisfies the condition postulated for the law of natural statistical
physics. As for the laws of natural statistical physics, we refer to Ito [18].
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