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Abstract

In this paper, we study the Fourier transformation of L2
loc-functions

and L2
c-functions in order to investigate the natural statistical phenomena

by using the theory of natural statistical physics. Thereby we prove the
structure theorems of the image spaces FL2

loc and FL2
c . We study the

convolution f ∗ g of a L2
c-function f and a L2

loc-function g. Further,
we characterize the local Sobolev spaces and the space of solutions of
Schrödinger equations. Here assume d ≥ 1. These results are the English
version of Ito [17], chapter 5.
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Introduction

In this paper, we study the Fourier transformation of L2
loc-functions and

L2
c-functions and some applications.

In section 1, we define the Fourier transformation and the inverse Fourier
transformation of L2

loc-functions. We show some examples of Fourier trans-
formation of L2

loc-functions. We prove the inversion formulas of the Fourier
transformation and the inverse Fourier transformation of L2

loc-functions.
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In section 2, using Paley-Wiener theorem for L2-functions, we prove the
structure theorems of the function spaces L2

loc and L2
c and the structure theo-

rems of the Fourier images FL2
loc and FL2

c .
In section 3, we study the convolution f ∗ g of a function f in L2

c = L2
c(R

d)
and a function g in L2

loc = L2
loc(R

d).
In section 4, we define the local Sobolev space Hs

loc(R
d), (−∞ < s < ∞),

and study its fundamental properties.
In section 5, we determine the space of solutions of Schrödinger equations

which describe the law of natural statistical phenomena in the space Rd. This
space is determined by virtue of the framework of my theory of natural statis-
tical physics.

Here I show my heartfelt gratitude to my wife Mutuko for her help of
typesetting this manuscript.

1 Fourier transformation of L2
loc-functions

In this section, at first we define the Fourier transformation of L2
loc-functions

and its fundamental properties.
Let Rd be the d-dimensional Euclidean space. Here assume d ≥ 1. Further

we denote L2
loc = L2

loc(R
d) as usual.

For the points in Rd

x = t(x1, x2, · · · , xd), p = t(p1, p2, · · · , pd),

we define
px = (p, x) = p1x1 + p2x2 + · · · + pdxd,

|x| =
√
x2
1 + x2

2 + · · · + x2
d,

|p| =
√
p21 + p22 + · · · + p2d.

Let D = D(Rd) be the space of all C∞-functions with compact support in
Rd.

Here we define the Fourier transformation F by the relation

(Fφ)(p) =
1

(
√

2π)d

∫
φ(x)e−ipxdx, (p ∈ Rd)

for φ ∈ D. FD denotes the space of the Fourier image of D by the Fourier
transformation F .

Further, let D′ = D′(Rd) be the space of Schwartz distributions on Rd.

2

Here, for the dual pair D′ and D of two TVS’s, we denote the dual inner
product of T ∈ D′ and φ ∈ D as < T, φ > and, for the dual pair (FD)′ and
FD, we denote its dual inner product of S ∈ (FD)′ and φ ∈ FD as < S, φ >.

Now assume T ∈ D′. Then, since we have F−1φ ∈ D for φ ∈ FD, we can
define a continuous linear functional

S : φ →< T, F−1φ >, (φ ∈ FD)

and we have S ∈ (FD)′. Namely, we have the equality

< S, φ >=< T, F−1φ > .

Then we define that S is a Fourier transform of T and denote it as S = FT .
This is the new definition of the Fourier transformation of D′. Since a

Schwartz distribution is a generalized concept of functions, we had better to
define the Fourier transformation of Schwartz distributions as in the same di-
rection as the Fourier transformation of classical functions. Thus we define the
new type of Fourier transformation of Schwartz distributions.

Therefore, for the Fourier transform FT ∈ FD′ of T ∈ D′, we have the
relation

< FT, Fφ >=< T, φ >, (φ ∈ D).

This is a generalization of Parseval’s foumula for L2-functions. Then the Fourier
transformation F is a topological isomorphism from D′ to FD′.

Thus we have the isomorphisms

D′ ∼= FD′ ∼= (FD)′.

Here we denote the dual mapping of the Fourier transformation F : D → FD
as F∗ : (FD)′ → D′. Then we have the equality

F∗F = the identity mapping of D′.

We define the Fourier transformation of f ∈ L2
loc considering it as an element

of D′.
We say that the limit in the sense of the topologies of D′ or FD′ is the

limit in the sense of generalized functions.
Then we give the following definition.

Definition 1.1　We define the Fourier transform (Ff)(p) of f ∈ L2
loc by

the relation

(Ff)(p) = lim
R→∞

1

(
√

2π)d

∫

|x|≤R

f(x)e−ipxdx

in the sense of generalized functions.
Then we denote Ff(p) as

(Ff)(p) =
1

(
√

2π)d

∫
f(x)e−ipxdx.

3
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Here, when the integration domain is equal to the entire space Rd, we omit the
symbol of the integration domain.

Let C = C(Rd) be the function space of all continuous functions on Rd.
Then we have the inclusion relation

C ⊂ L2
loc.

Therefore, we can define the Fourier transformation of continuous functions
which are not necessarily L2-functions considering that they are L2

loc-functions.

Example 1.1　We have the following equality:

(F(−ix)α)(p) =
1

(
√

2π)d

∫
(−ix)αe−ipxdx = (

√
2π)dδ(α)(p).

Here α = (α1, α2, · · · , αd) denotes a multi-index of natural numbers.
Especially, for α = 0 = (0, 0, · · · , 0), we have the equality

(F1)(p) =
1

(
√

2π)d

∫
e−ipxdx = (

√
2π)dδ(p).

Therefore, the Fourier transform of the constant function
1

(
√

2π)d
is equal

to the Dirac measure δ. Thereby, in general, the Fourier transform Ff of a
L2
loc-function f is not necessarily a L2

loc-function. As for this fact, my classmate
Dr Kôzô Yabuta gives me this advice.

Remark 1.1 　 The L2
loc-function which determines the natural statisti-

cal distribution of a certain physical system must be a solution of a certain
Schrödinger equation.

In general, there is no non-constant polynomial solution of a certain Schrödin-
ger equation . Therefore, in order to determine a natural statistical distribution,
we have not to consider the Fourier transformation of non-constant polynomial
functions.

Now we give some examples of Fourier transforms of continuous functions.

Example 1.2　Assume −∞ < p, q < ∞. Then we have the following (1)
and (2):

(1)　
1√
2π

∫ ∞

−∞
sin qxe−ipxdx =

√
π

2

1

i
(δ(p− q) − δ(p + q)).

(2)　
1√
2π

∫ ∞

−∞
cos qxe−ipxdx =

√
π

2
(δ(p− q) + δ(p + q)).

4

In the following Example 1.3 ∼ Example 1.5, the convergence of series is
considered to be the convergence in the sense of generalized functions.

Example 1.3　 The Fourier transform f̂(p) of Riemann’s function

f(x) =
∞∑

n=1

sin(n2x)

n2
, (−∞ < x < ∞)

is equal to

f̂(p) =

√
π

2

1

i

∞∑
n=1

1

n2
(δ(p− n2) − δ(p + n2)), (−∞ < p < ∞).

Example 1.4　We assume that two constants a, b satisfy the following
conditions (i)∼(iii):

(i)　 0 < a < 1. (ii)　 b is a odd number. (iii)　We have ab > 1 +
3

2
π.

Then the Fourier transform f̂(p) of Weierstrass function

f(x) =

∞∑
n=1

an cos(bnπx), (−∞ < x < ∞)

is equal to

f̂(p) =

√
π

2

∞∑
n=1

(δ(p− bnπ) + δ(p + bnπ)), (−∞ < p < ∞).

Example 1.5 　 Assume that a is an even number. Then the Fourier
transform f̂(p) of Cellérier function

f(x) =
∞∑

n=1

sin(anx)

an
, (−∞ < x < ∞)

is equal to

f̂(p) =

√
π

2

1

i

∞∑
n=1

1

an
(δ(p− an) − δ(p + an)), (−∞ < p < ∞).

Example 1.6　Assume d ≥ 1. The constant function 1 belongs to L2
loc =

L2
loc(R

d). For R > 0, we put χR(x) = χ|x|≤R(x). Then we have χR ∈ L2
loc and

we have
χR → 1, (R → ∞)

5
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in the topology of L2
loc-convergence. Thus we have

χR → 1, (R → ∞)

in the topology of D′. Then we have, for R → ∞,

χ̂R(p) =
1

(
√

2π)d

∫
χR(x)e−ipxdx → 1

(
√

2π)d

∫
e−ipxdx = 1̂(p) = (

√
2π)dδ(p)

in the topology of FD′.

Example 1.7　 For n ≥ 1, we put

χn(x) = χ[−n, n](x), (x ∈ R).

Then we have χn ∈ L2
loc and we have

χn → 1, (n → ∞)

in the topology of L2
loc-convergence.

Thus we have
χn → 1, (n → ∞)

in the topology of D′. Then we have, for n → ∞,

χ̂n((p) =
1√
2π

∫
χn(x)e−ipxdx → 1√

2π

∫
e−ipxdx = 1̂(p) =

√
2πδ(p)

in the topology of FD′.

Example 1.8　We have

1

π

sin pn

p
→ δ(p), (n → ∞)

in the topology of FD′.

Proof　We have the equality

1√
2π

∫ n

−n

e−ipxdx =
1

ip
√

2π
(eipn − e−ipn) =

√
2

π

sin pn

p
.

Thus we have the conclusion by virtue of Example 1.7.//

Example 1.9　Assume d ≥ 1. Let n = (n1, n2, · · · , nd) be a multi-index
of positive natural numbers. We denote |n| = n1 + n2 + · · ·+ nd. By using the
notation of Example 1.7, we denote

χn(x) = χn1(x1)χn2(x2) · · ·χnd
(xd), (x ∈ Rd),

6

χ̂n(p) = χ̂n1(p1)χ̂n2(p2) · · · χ̂nd
(pd), (p ∈ Rd).

Then we have
χ̂(p) → (

√
2π)dδ(p), (|n| → ∞)

in the topology of FD′.

Proof　 By virtue of Example 1,7, because we have

χ̂nj (pj) →
√

2πδ(pj)

for 1 ≤ j ≤ d, we have the conclusion. //

Theorem 1.1　We use the same notation as Example 1.9. Then, for

χn(x) = χn1(x1)χn2(x2) · · ·χnd
(xd), (x ∈ Rd),

we denote
χ̂n(p) = χ̂n1(p1)χ̂n2(p2) · · · χ̂nd

(pd), (p ∈ Rd).

For f(x) ∈ L2
loc, we put fn(x) = χn(x)f(x). Then we have fn(x) ∈ L2

loc. Now,
when we consider that fn and f are elements of D′, we denote their Fourier
transformations as Ffn = f̂n and Ff = f̂ . Then we have

f̂n → f̂ , (|n| → ∞)

in the topology of FD′.

Proof　When |n| → ∞, we have

fn(x) → f(x), (x ∈ Rd)

in the topology of L2
loc. Therefore, when |n| → ∞, we have

fn → f

in the topology of D′.
Since we have fn = χnf , we have the equality

f̂n = (χnf)∧ =
1

(
√

2π)d
χ̂n ∗ f

in FD′. Here the symbol ∗ denotes the convolution. By virtue of Example 1.9,
we have

χ̂n → (
√

2π)dδ, (|n| → ∞).

Thus, when |n| → ∞, we have

f̂n =
1

(
√

2π)d
χ̂n ∗ f̂ → δ ∗ f̂ = f̂

7
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in the topology of FD′. //

When we use the notation in Theorem 1.1, we have f̂n ∈ L2 and

f̂n(p) =
1

(
√

2π)d

∫
fn(x)e−ipxdx.

Therefore we have the equality

lim
|n|→∞

1

(
√

2π)d

∫
fn(x)e−ipxdx = f̂(p)

in FD′. In this sense, we use the notation

f̂(p) =
1

(
√

2π)d

∫
f(x)e−ipxdx

for f̂(p) ∈ FD′. Here we consider this integral in the sense of convergence in
the topology of FD′.

In this case, we say that this integral converges in the sense of generalized
functions.

Similarly, we define the Fourier inverse transformation as follows.

Definition 1.2(Fourier inverse transformation)　We define the Fourier
inverse transformation of g(p) ∈ L2
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(
√

2π)d
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in the sense of generalized functions.
We denote (F−1g)(x) as
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1

(
√

2π)d
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Namely Dαf means a L2

loc-derivatives, and Dα(Ff) means, in general, a partial
derivative of Ff in FD′ and so on .
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Here the integral converges in the sense of generalized functions. Namely we
have the equality

FF−1g = g.

Theorem 1.5　 For f ∈ L2
loc, we have the equalities:

F2f(x) = f(−x), F4f(x) = f(x).

2 Structure theorems

In this section, using Paley-Wiener theorem for L2-functions, we study
the structure theorems of the function spaces L2

loc and L2
c and the structure

theorems of the Fourier images FL2
loc and FL2

c .
Now we choose an exhausting sequence {Kj} of compact sets in Rd which

satisfies the following conditions (i) and (ii): 　　

(i)　K1 ⊂ K2 ⊂ · · · ⊂ Rd, Rd =
∞∪
j=1

Kj .

(ii)　Kj = cl(int(Kj)), Kj ⊂ int(Kj+1), (j = 1, 2, 3, · · · ).

Then we denote the projective limit of projective system {L2(Kj)} of Hilbert
spaces as

lim←−L2(Kj).

Then we have the isomorphism

L2
loc

∼= lim←−L2(Kj)

as TVS’s. Here, since, for each j, the restriction mapping L2(Kj+1) → L2(Kj)
is a weakly compact mapping, L2

loc is a FS∗-space.
Further, because the system {L2(Kj)} of Hilbert spaces can be considered

as an inductive system, we denote the inductive limit as

lim−→L2(Kj).

Then we have the isomorphism

L2
c
∼= lim−→L2(Kj)

as TVS’s. Here L2
c denotes the TVS of all L2-functions with compact support.

Then, since, for each j, the inclusion mapping L2(Kj) → L2(Kj+1) is a weakly
compact mapping, L2

c is a DFS∗-space.

10

Since L2(Kj) is a self-dual space, we have the isomorphism

L2
loc

∼= (L2
c)

′

as TVS’s. Here(L2
c)

′ denotes the dual space of L2
c and we define the dual inner

product of f ∈ L2
loc and g ∈ L2

c by the equality

< f, g >=

∫
f(x)g(x)dx.

Here the dual inner product is a bilinear functional which defines the duality
relation of the pair of two TVS’s L2

loc and L2
c .

Then, because we have the inclusion relation L2
c ⊂ L2, we define the Fourier

transformation of a L2
c-function g(x) by using the Fourier transformation of L2-

functions

Fg(p) =
1

(
√

2π)d

∫
g(x)e−ipxdx.

Further we define the Fourier transformation of a L2
loc-function f by the

relation

Ff(p) = lim
j→∞

1

(
√

2π)d

∫

Kj

f(x)e−ipxdx

in the sense of generalized functions in D′ and FD′.
By virtue of the definition of the Fourier transformation of f ∈ L2

loc, we
have the equality

< Ff, Fg >=< f, g >

for any g ∈ D.
Since a L2

c-function g has the compact support, there exists some Kj such
that supp(g) ⊂ Kj holds by the definition of {Kj}. Therefore, for an arbitrary
k ≥ j, we have the equalities

< fKk
, g >=

∫

Kk

fKk
(x)g(x)dx =

∫

Kj

f(x)g(x)dx =< f, g > .

Here fKk
(x) denotes the image of f(x) ∈ L2

loc by the restriction mapping
L2
loc → L2(Kk).

Since we have the equality

∫
FfKk

(p)Fg(−p)dp =

∫
fKk

(x)g(x)dx

by virtue of Parseval’s formula, we have the equality

lim
k→∞

∫
FfKk

(p)Fg(−p)dp = lim
k→∞

∫
fKk

(x)g(x)dx

11
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=

∫
fKj (x)g(x)dx =

∫
FfKj (p)Fg(−p)dp.

Especially, supposing that we have

DKj ⊂ L2(Kj), g ∈ DKj ,

we have the equality

∫
Ff(p)Fg(−p)dp =

∫
f(x)g(x)dx.

We can choose a compact set Kj arbitrarily. Thus, if we consider that
g ∈ DKj holds for an arbitrary DKj , we have the equality in the above for an
arbitrary g ∈ D.

Then, because the dual inner product

< f, g >=

∫
f(x)g(x)dx

is defined for an arbitrary f ∈ L2
loc and g ∈ L2

c , we have the equality

< Ff, Fg >=

∫
Ff(p)Fg(−p)dp =

∫
f(x)g(x)dx =< f, g >

for an arbitrary f ∈ L2
loc and an arbitrary g ∈ L2

c .
Now we choose one exhausting sequence {Kj} of compact sets in Rd as in

the above.
Then, for the sequence

L2(K1) ⊂ L2(K2) ⊂ · · · ,

we have the isomorphisms

L2
c
∼= lim−→L2(Kj), L

2
loc

∼= lim←−L2(Kj).

Further we have the isomorphisms

L2
c
∼=

∞∪
j=1

L2(Kj), L
2
loc

∼=
∞∩
j=1

L2(Kj).

Then we have the isomorphisms

FL2(Kj) ∼= L2(Kj), (j = 1, 2, 3, · · · ).

Further, for the sequence

FL2(K1) ⊂ FL2(K2) ⊂ · · · ,

12

we have the isomorphisms

FL2
c
∼= lim−→FL2(Kj) ∼= lim−→L2(Kj) ∼= L2

c ,

FL2
loc

∼= lim←−FL2(Kj) ∼= lim←−L2(Kj) ∼= L2
loc.

Then we have the relations

FL2
loc ⊂ FD′, FL2

loc ̸= L2
loc.

Therefore we have the following theorem.

Theorem 2.1 　 We use the notation in the above. Then we have the
following isomorphisms (1) ∼ (4):

(1)　 L2
c
∼= lim−→L2(Kj) ∼=

∞∪
j=1

L2(Kj).

(2)　 FL2
c
∼= lim−→FL2(Kj).

(3)　 FL2(Kj) ∼= L2(Kj), (j = 1, 2, 3, · · · ).

(4)　 FL2
c
∼= L2

c , FL2
c ⊂ L2, L2

c ⊂ L2.

Further we have the following theorem.

Theorem 2.2 　 We use the notation in the above. Then we have the
following isomorphisms (1) ∼ (3) and the relation (4):

(1)　 L2
loc

∼= lim←−L2(Kj) ∼=
∞∩
j=1

L2(Kj) ∼= (L2
c)

′.

(2)　 FL2
loc

∼= lim←−FL2(Kj).

(3)　 FL2
loc

∼= L2
loc.

(4)　 FL2
loc ⊂ FD′, FL2

loc ̸= L2
loc, L

2
loc ⊂ D′.

13
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3 Convolution

In this section, we study the convolution f∗g of a function f in L2
c = L2

c(R
d)

and a function g in L2
loc = L2

loc(R
d). Here assume d ≥ 1.

We define the convolution f ∗ g of f ∈ L2
c and g ∈ Lloc by the relation

(f ∗ g)(x) =

∫
f(x− y)g(y)dy.

Then we have the equality

∫
f(x− y)g(y)dy =

∫
g(x− y)f(y)dy.

Therefore we have the following theorem.

Theorem 3.1　 For f ∈ L2
c and g ∈ L2

loc, we have f ∗ g ∈ L2
loc. Further

we have the relation
f ∗ g = g ∗ f.

Theorem 3.2 　 Let α = (α1, α2, · · · , αd) be a multi-index of natural
numbers. Then, for f ∈ L2

c and g ∈ L2
loc, we have the equality

Dα(f ∗ g) = (Dαf) ∗ g = f ∗ (Dαg).

Here the partial derivatives are considered in the sense of topologies of L2
c and

L2
loc.

Corollary 3.1　 Assume f ∈ L2
c . Then the linear transformation of L

2
loc

defined by the convolution

Tf : g → f ∗ g, (g ∈ L2
loc)

is continuous in L2
loc.

Now assume that {gn} is a sequence of L2
loc-functions and it converges to

g ∈ L2
loc in the topology of L2

loc. Namely, assume that gn → g, (n → ∞) in the
topology of L2

loc. Then we have

Tf (gn) → Tf (g), (n → ∞).

Corollary 3.2 　 Assume g ∈ L2
loc. Then the linear mapping Tg = f ∗

g, (f ∈ L2
c) defined by the convolution is a continuous linear mapping from L2

c

into L2
loc.

14

Therefore, if a sequence {fn} of functions in L2
c convergences to f ∈ L2

c in
the topology of L2

c , we have

Tg(fn) → Tg(f), (n → ∞).

Here the convolution of a function f in L2
c and a function g in L2

loc is a separately
continuous bilinear mapping L2

c × L2
loc → L2

loc.

Theorem 3.3　 Assume f ∈ L2
c and g ∈ L2

loc. Then we have

F(f ∗ g) = (
√

2π)dF(f)F(g).

4 Characterization of the local Sobolev spaces

In this section, we define the local Sobolev space Hs
loc(R

d) and study its
fundamental properties. As for the precise concerning these results, we refer to
Ito [1], [15], [16], [17]. This problem is the characterization of the local Sobolev
space by using the Fourier transformation.

For a real number s, we define L2, s = L2, s(Rd) to be the Hilbert space of
all complex valued measurable functions f which satisfies the condition

∫
(1 + |x|2)s|f(x)|2dx < ∞.

Assume that s is a real number and F is the Fourier transformation of
L2 = L2(Rd). Then we define the Solobev space Hs = Hs(Rd) to be the
Hilbert space

Hs(Rd) = {f ∈ L2(Rd); Ff ∈ L2, s(Rd)}.

Especially when m is a natural number, the Solobev space Hm = Hm(Rd)
is equal to the Sobolev space

Wm, 2(Rd) = {f ∈ L2(Rd); Dαf ∈ L2, |α| ≤ m}.

Here, for a multi-index α = (α1, α2, · · · , αd) of natural numbers, the
simbol

Dαf =
( ∂

∂x1

)α1

· · ·
( ∂

∂xd

)αd

f

denotes the L2-derivative. Further we put |α| = α1 + α2 + · · · + αd.
Then, for a real number s, the local Sobolev space Hs

loc = Hs
loc(R

d) is
assumed to be the TVS of all complex valued measurable functions f(x) on

15
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c and g ∈ L2
loc, we have the equality

Dα(f ∗ g) = (Dαf) ∗ g = f ∗ (Dαg).

Here the partial derivatives are considered in the sense of topologies of L2
c and

L2
loc.

Corollary 3.1　 Assume f ∈ L2
c . Then the linear transformation of L

2
loc

defined by the convolution

Tf : g → f ∗ g, (g ∈ L2
loc)

is continuous in L2
loc.

Now assume that {gn} is a sequence of L2
loc-functions and it converges to

g ∈ L2
loc in the topology of L2

loc. Namely, assume that gn → g, (n → ∞) in the
topology of L2

loc. Then we have

Tf (gn) → Tf (g), (n → ∞).

Corollary 3.2 　 Assume g ∈ L2
loc. Then the linear mapping Tg = f ∗

g, (f ∈ L2
c) defined by the convolution is a continuous linear mapping from L2

c

into L2
loc.
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Therefore, if a sequence {fn} of functions in L2
c convergences to f ∈ L2

c in
the topology of L2

c , we have

Tg(fn) → Tg(f), (n → ∞).

Here the convolution of a function f in L2
c and a function g in L2

loc is a separately
continuous bilinear mapping L2

c × L2
loc → L2

loc.

Theorem 3.3　 Assume f ∈ L2
c and g ∈ L2

loc. Then we have

F(f ∗ g) = (
√

2π)dF(f)F(g).

4 Characterization of the local Sobolev spaces

In this section, we define the local Sobolev space Hs
loc(R

d) and study its
fundamental properties. As for the precise concerning these results, we refer to
Ito [1], [15], [16], [17]. This problem is the characterization of the local Sobolev
space by using the Fourier transformation.

For a real number s, we define L2, s = L2, s(Rd) to be the Hilbert space of
all complex valued measurable functions f which satisfies the condition

∫
(1 + |x|2)s|f(x)|2dx < ∞.

Assume that s is a real number and F is the Fourier transformation of
L2 = L2(Rd). Then we define the Solobev space Hs = Hs(Rd) to be the
Hilbert space

Hs(Rd) = {f ∈ L2(Rd); Ff ∈ L2, s(Rd)}.

Especially when m is a natural number, the Solobev space Hm = Hm(Rd)
is equal to the Sobolev space

Wm, 2(Rd) = {f ∈ L2(Rd); Dαf ∈ L2, |α| ≤ m}.

Here, for a multi-index α = (α1, α2, · · · , αd) of natural numbers, the
simbol

Dαf =
( ∂

∂x1

)α1

· · ·
( ∂

∂xd

)αd

f

denotes the L2-derivative. Further we put |α| = α1 + α2 + · · · + αd.
Then, for a real number s, the local Sobolev space Hs

loc = Hs
loc(R

d) is
assumed to be the TVS of all complex valued measurable functions f(x) on

15
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Rd such that, for an arbitrary compact set K in Rd, the function fK(x) =
f(x)χK(x) belongs to Hs. Here χK(x) denotes the characteristic function of
the set K.

Now, for a real number s, we define the vector space L2, s
loc by the condition

L2, s
loc = L2, s

loc (Rd) =
{
f ∈ L2

loc;
√

(1 + |x|2)sf(x) ∈ L2
loc

}
.

L2, s
loc is equal to the vector space of all complex valued measurable functions

f on Rd which satisfy the condition
∫

K

(1 + |x|2)s|f(x)|2dx < ∞

for an arbitrary compact set K in Rd.
We define the seminorm ∥f∥2, s, K by the relation

∥f∥2, s, K =
{ ∫

K

(1 + |x|2)s|f(x)|2dx
}1/2

.

Here K denotes a compact set K in Rd.
Then the topology of L2, s

loc is defined by the system of seminorms

{
∥ · ∥2, s, K ; K is a compact set in Rd

}
.

Thereby L2, s
loc is a Fréchet space.

For f ∈ L2, s
loc , we have the inequalities

BK

∫

K

|f(x)|2dx ≤
∫

K

(1 + |x2|)s|f(x)|2dx ≤ CK

∫

K

|f(x)|2dx.

Here BK and CK are two positive constants depending on K.
Therefore, for an arbitrary real number s, we have the equality L2, s

loc = L2
loc

as the sets of functions. Then L2, s
loc is equal to the LCV L2

loc endowed with the
topology defined by the system of seminorms {∥·∥2, s, K ; K is a compact set in
Rd}.

Now, for f ∈ L2
loc and a compact set K in Rd, we define the seminorm

∥f∥K of L2
loc by the relation

∥f∥K =
( ∫

K

|f(x)|2dx
)1/2

.

Thereby L2
loc is a Fréchet space. Here, because the topologies of L2, s

loc and L2
loc

are equivalent, L2, s
loc and L2

loc are topologically isomorphic.
Then we have the following theorem.

Theorem 4.1　 For a real number s, we have the equality

Hs
loc = Hs

loc(R
d) =

{
f ∈ L2

loc; Ff ∈ L2, s
loc

}
.
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Here Ff ∈ L2, s
loc is the Fourier transform of f ∈ L2

loc.

Since, in general, we happen to have Ff ̸∈ L2
loc for f ∈ L2

loc,Ff ∈ L2, s
loc is

one restriction condition. In fact, though we have 1 ∈ L2
loc, we have 1 ̸∈ Hs

loc.
Especially, for a natural number m, we have the equalities

Hm
loc = Hm

loc(R
d) = Wm, 2

loc (Rd) =
{
f ∈ L2

loc; D
αf ∈ L2

loc, |α| ≤ m
}
.

Here , for a multi-index α = (α1, α2, · · · , αd) of natural numbers, Dαf
means the L2

loc-derivatives as same as in the case of L2. Further we put |α| =
α1 + α2 + · · · + αd.

Then, for f ∈ Hm
loc and an arbitrary compact set K in Rd, we define the

seminorm ∥f∥m, K of Hm
loc by the relation

∥f∥m, K =
( ∑

|α|≤m

∥Dαf∥2K
)1/2

.

Thereby, the topology of Hm
loc is defined by the system of seminorms

{
∥ · ∥m, K ; K is a compact set in Rd

}
.

Therefore Hm
loc is a Fréchet space.

Especially we remark that H0
loc ⊊ W 0, 2

loc = L2
loc holds.

In the sequel, we denote H0
loc as Hloc. Then Hloc is the closed subspace of

L2
loc.

Since, for all real number s, we have

L2, s
loc = L2

loc

as sets of functions, we have, for all real number s

Hs
loc = Hloc

similarly.
Therefore, for the Fourier transform Ff(p) ∈ L2

loc of f(x) ∈ Hloc, we have
the equality

Ff(p) = lim
R→∞

1

(
√

2π)d

∫

|x|≤R

f(x)e−ipxdx

in the topology of L2
loc. Further, since we have Ff(p) ∈ L2

loc for f(x) ∈ Hs
loc,

we have the Fourier inversion formula

f(x) =
1

(2π)d

∫
eipxdp

∫
f(y)e−ipydy

in the topology of L2
loc.
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Remark 4.1　 Since the conditions of definitions Hs and Hs
loc are given

by the integral estimates of the classical functions, we remark that Hs and Hs
loc

are some classes of classical functions and are characterized without using the
theory of distributions.

Further, the fact that L2, s
loc and Hs

loc are different TVS’s for some different
real number s means that the definitions of the topologies of those TVS’s are
different

5 Characterization of solutions of Schrödinger
equations

In this section, we determine the space of solutions of Schrödinger equations
which describe the law of natural statistical phenomena in the space Rd. Here
assume d ≥ 1.

Now assume that, for p ∈ Rd, ψp(x) ∈ L2
loc satisfies the condition ψ̂p(q) =

δp(q). Then we have δ̂p(x) = ψ−p(x).

When we denote the subspace of D′ spanned by {ψp, δp; p ∈ Rd} as

V {ψp, δp; p ∈ Rd}, we define the subspace N of D′ by the relation

N = Hloc ⊕ V {ψp, δp; p ∈ Rd}.

Then we have the inclusion relation

L2 ⊂ H2
loc, L

2 ⊂ N .

The function space C0 = C0(Rd) is the TVS of all continuous functions with
compact support in Rd.

We say that a continuous linear functional µ on C0 as a Radon measure
on Rd.

The TVS of all Radon measures on Rd is equal to the dual space (C0)′.
Then we have the inclusion relation

N ⊂ (C0)′ ⊂ D′.

When f ∈ N and f ̸= δp, (p ∈ Rd), we define µ ∈ (C0)′ by the relation

µ(φ) =

∫
f(x)φ(x)dx, (φ ∈ C0).

Then, if we denote µ = µf , the correspondence f → µf is one to one corre-
spondence.

Thereby, when f ∈ N and f ̸= δp, (p ∈ Rd), we can identify f and
µ = µf ∈ (C0)′.
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When f ∈ N and f ∈ Hloc, we have f ∈ L2 or f ∈ L2
loc. Therefore, we have

Ff ∈ L2 or Ff ∈ L2
loc respectively.

Further, because we have

Fψp = δp, Fδp = ψ−p, (p ∈ Rd),

the Fourier transformation F is the isomorphism

F : N → FN .

Hence we have

FN ∼= N , FN ⊂ L2
loc + V {ψp, δp; p ∈ Rd}.

Thus we have the following theorem.

Theorem 5.1　We use the notations in the above. We define the subspace
N of D′ by the relation

N = Hloc ⊕ V {ψp, δp; p ∈ Rd}.

Denoting the Fourier transformation of D′ as F , we have the following (1) and
(2):

(1)　We have the isomorphism

FN ∼= N .

(2)　We have the inclusion relation

FN ⊂ L2
loc + V {ψp, δp; p ∈ Rd}.

Then, we consider that, in the space Rd, (d ≥ 1), the function in N which
is a solution of a Schrödinger equation determines the natural statistical dis-
tribution state for the natural statistical phenomenon of some physical system.
This fact is a restriction condition for a solution of a Schrödinger equation in
Rd. This is a restriction condition in order that a solution of a Schrödinger
equation satisfies the condition postulated for the law of natural statistical
physics. As for the laws of natural statistical physics, we refer to Ito [18].
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Abstract

In this paper, we study the phenomena of potential well of infinite
depth on the view point of natural statistical physics. The mathematical
model of this physical system is the system of micro-particles moving
periodically with constant velocity in the interval D = [−a, a], (a > 0).

Thereby we obtain the structure of this physical system at the sta-
tionary state.

Thus we clarify that this physical system is the composed state of
the proper physical systems at the stationary state and the ratio of their
composition is given by the sequence

{|an|2}n=0 ∪ {|bn|2}∞n=1,

where an, (n ≥ 0) and bn, (n ≥ 1) are the Fourier type coefficients of
the initial state ψ ∈ L2.

Then we obtain the energy expectation of the total physical system

E =

∞∑
n=0

n2π2ℏ2

2ma2
(|an|2 + |bn|2),

where m denotes the mass of one micro-particle.
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