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Abstract

Consider the initial-boundary value problem for the coupled de-
generate strongly damped hyperbolic system of Kirchhoff type with
a homogeneous Dirichlet boundary condition. We give the polyno-
mially decay estimates of the solutions and their derivatives. More-
over, when either the wave coefficient or the initial data are appro-
priately small, we derive a lower decay rate for the solutions.
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1 Introduction

In this paper we consider the initial-boundary value problem for the coupled
degenerate hyperbolic system with strong damping of Kirchhoff type :

ρutt −
(
∥∇u(t)∥2 + ∥∇v(t)∥2

)γ
∆u−∆ut = 0 in Ω× (0,∞) , (1.1)

ρvtt −
(
∥∇u(t)∥2 + ∥∇v(t)∥2

)γ
∆v −∆vt = 0 in Ω× (0,∞) , (1.2)

with

u(x, 0) = u0(x) , ut(x, 0) = u1(x) , v(x, 0) = v0(x) , vt(x, 0) = v1(x) , (1.3)

u(x, t) = v(x, t) = 0 on ∂Ω× (0,∞) , (1.4)

where u = u(x, t) and v = v(x, t) are unknown real value functions, Ω is an open
boundary domain inN -dimensional Euclidean space RN with smooth boundary
∂Ω, ∆ = ∇·∇ =

∑N
j=1 ∂2/∂x2

j is the Laplacian, ∥·∥ = ∥·∥L2 is the usual norm

of L2(Ω), and ρ and γ are positive constants. The coupled hyperbolic system
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(1.1)–(1.4) will be useful for the research of amplitude vibrations of two kinds
of elastic stretched strings.

The coupled hyperbolic system (1.1)–(1.4) traces back to the single Kirch-
hoff type wave equation :

ρutt −
(
µ+

∫

Ω

|∇u(x, t)|2 dx

)γ

∆u− δ∆ut = 0 in Ω× (0,∞) (1.5)

with u(0) = u0, ut(0) = u1, and u|∂Ω = 0, which is called a non-degenerate
equation when µ > 0 and a degenerate one when µ = 0. When the dimension
N is one, it is well-known that (1.5) describes small amplitude vibrations of an
elastic stretched string. In the case of non-damping δ = 0, (1.5) was introduced
by Kirchhoff [5] (also see [3], [4]), and the problem of local-in-time solvability
has been studied by several authors (see [1], [2] and the references cited there).
In the case of damping δ > 0, the problem of global-in-time solvability has been
solved by several authors (see [6], [7], [11], [14] and the references cited there).

By the similar way as in [6] and [7], we see that the problem (1.1)–(1.4)
admits a unique global solution [u(t), v(t)] in the class (C0([0,∞);H1

0 (Ω)) ∩
C1([0,∞);L2(Ω)))2 if the initial data [u0, v0, u1, v1] belong to (H

1
0 (Ω))

2×(L2(Ω))2.
On the other hand, when γ = 1, in previous paper [16], we have derived the
upper decay estimates of the solutions and their derivatives of the coupled
hyperbolic system (1.1)–(1.4) (see [8], [18], [12], [13], [15] for single equations).

Our purpose in this paper is to derive the upper decay estimates of the
solutions and their derivatives of the coupled hyperbolic system (1.1)–(1.2)
when any γ > 0. Moreover, we will derive a lower decay estimate of the
solutions when either the coefficient ρ or the initial data are appropriate small,
and we will show a decay property for the H2(Ω) norm of the solutions.

In order to derive the energy decay estimate and a lower decay estimate of
the solutions, we will use the following energy and functional associated with
(1.1)–(1.2) :

E(u, v, ut, vt) ≡ ρ
(
∥ut∥2 + ∥vt∥2

)
+

1

γ + 1

(
∥∇u∥2 + ∥∇v∥2

)γ+1
(1.6)

and

H(u, v, ut, vt) ≡ ρ
∥ut∥2 + ∥vt∥2

(∥∇u∥2 + ∥∇v∥2)1+[γ−1]+
+
(
∥∇u∥2 + ∥∇v∥2

)1−[1−γ]+

(1.7)

where [a]+ = max{0, a}, and we often write E(t) ≡ E(u(t), v(t), ut(t), vt(t))
and H(t) ≡ H(u(t), v(t), ut(t), vt(t)) for simplicity. In particular, we will use
the following notations related with the initial data [u0, v0, u1, v1] :

E(0) ≡ ρ
(
∥u1∥2 + ∥v1∥2

)
+

1

γ + 1

(
∥∇u0∥2 + ∥∇v0∥2

)γ+1

and

H(0) ≡ ρ
∥u1∥2 + ∥v1∥2

(∥∇u0∥2 + ∥∇v0∥2)1+[γ−1]+
+

(
∥∇u0∥2 + ∥∇v0∥2

)1−[1−γ]+

.

Moreover, we denote the Poincaré constant by c∗ = c∗(Ω), that is,

c∗ = inf
{
∥ϕ∥/∥∇ϕ∥

�� ϕ ∈ H1
0 (Ω) , ϕ ̸= 0

}
.

Our main results are as follows.

Theorem 1.1 Let the initial data [u0, v0, u1, v1] belong to (H1
0 (Ω))

2×(L2(Ω))2.
Then the solutions u(t) and v(t) of (1.1)–(1.4) satisfy

∥u(t)∥2H1 + ∥v(t)∥2H1 ≤ C(1 + t)−
1
γ , (1.8)

∥ut(t)∥2 + ∥vt(t)∥2 ≤ C(1 + t)−2− 1
γ (1.9)

for t ≥ 0 with some positive constant C.
Moreover, if the initial data [u0, v0, u1, v1] belong to (H2(Ω)∩H1

0 (Ω))
4, then

∥ut(t)∥2H1 + ∥vt(t)∥2H1 ≤ C(1 + t)−2− 1
γ , (1.10)

∥utt(t)∥2 + ∥vtt(t)∥2 ≤ C(1 + t)−4− 1
γ (1.11)

for t ≥ 0 with some positive constant C.

Theorem 1.2 Let the initial data [u0, v0, u1, v1] belong to (H1
0 (Ω))

2×(L2(Ω))2.
Suppose that u0 ̸= 0 (or v0 ̸= 0) and

((γ + 2)c∗)
2ρH(0)γ < 1 if γ ≥ 1 ;

((2γ + 1)c∗)
2ρ(H(0) + E(0)

1
γ+1 B(0)) < 1 if 0 < γ < 1

with B(0) ≡ (22(22c2∗ρ + 1)(1 − γ)(E(0)
γ

2(γ+1) + 1))2. Then the solutions u(t)
and v(t) of (1.1)–(1.4) satisfy

C−1(1 + t)−
1
γ ≤ ∥∇u(t)∥2 + ∥∇v(t)∥2 ≤ C(1 + t)−

1
γ (1.12)

for t ≥ 0 with some positive constant C.
Moreover, if the initial data [u0, v0, u1, v1] belong (H2(Ω) ∩H1

0 (Ω))
4, then

∥u(t)∥2H2 + ∥v(t)∥2H2 ≤ C(1 + t)−ε (1.13)

∥ut(t)∥2H2 + ∥vt(t)∥2H2 ≤ C(1 + t)−2−ε (1.14)

for t ≥ 0 with some number 0 < ε ≤ 1/γ and some positive constant C.



Time Decay for Some Degenerate Hyperbolic Systems ��

(1.1)–(1.4) will be useful for the research of amplitude vibrations of two kinds
of elastic stretched strings.

The coupled hyperbolic system (1.1)–(1.4) traces back to the single Kirch-
hoff type wave equation :

ρutt −
(
µ+

∫

Ω

|∇u(x, t)|2 dx

)γ

∆u− δ∆ut = 0 in Ω× (0,∞) (1.5)

with u(0) = u0, ut(0) = u1, and u|∂Ω = 0, which is called a non-degenerate
equation when µ > 0 and a degenerate one when µ = 0. When the dimension
N is one, it is well-known that (1.5) describes small amplitude vibrations of an
elastic stretched string. In the case of non-damping δ = 0, (1.5) was introduced
by Kirchhoff [5] (also see [3], [4]), and the problem of local-in-time solvability
has been studied by several authors (see [1], [2] and the references cited there).
In the case of damping δ > 0, the problem of global-in-time solvability has been
solved by several authors (see [6], [7], [11], [14] and the references cited there).

By the similar way as in [6] and [7], we see that the problem (1.1)–(1.4)
admits a unique global solution [u(t), v(t)] in the class (C0([0,∞);H1

0 (Ω)) ∩
C1([0,∞);L2(Ω)))2 if the initial data [u0, v0, u1, v1] belong to (H

1
0 (Ω))

2×(L2(Ω))2.
On the other hand, when γ = 1, in previous paper [16], we have derived the
upper decay estimates of the solutions and their derivatives of the coupled
hyperbolic system (1.1)–(1.4) (see [8], [18], [12], [13], [15] for single equations).

Our purpose in this paper is to derive the upper decay estimates of the
solutions and their derivatives of the coupled hyperbolic system (1.1)–(1.2)
when any γ > 0. Moreover, we will derive a lower decay estimate of the
solutions when either the coefficient ρ or the initial data are appropriate small,
and we will show a decay property for the H2(Ω) norm of the solutions.

In order to derive the energy decay estimate and a lower decay estimate of
the solutions, we will use the following energy and functional associated with
(1.1)–(1.2) :

E(u, v, ut, vt) ≡ ρ
(
∥ut∥2 + ∥vt∥2

)
+

1

γ + 1

(
∥∇u∥2 + ∥∇v∥2

)γ+1
(1.6)

and

H(u, v, ut, vt) ≡ ρ
∥ut∥2 + ∥vt∥2

(∥∇u∥2 + ∥∇v∥2)1+[γ−1]+
+
(
∥∇u∥2 + ∥∇v∥2

)1−[1−γ]+

(1.7)

where [a]+ = max{0, a}, and we often write E(t) ≡ E(u(t), v(t), ut(t), vt(t))
and H(t) ≡ H(u(t), v(t), ut(t), vt(t)) for simplicity. In particular, we will use
the following notations related with the initial data [u0, v0, u1, v1] :

E(0) ≡ ρ
(
∥u1∥2 + ∥v1∥2

)
+

1

γ + 1

(
∥∇u0∥2 + ∥∇v0∥2

)γ+1

and

H(0) ≡ ρ
∥u1∥2 + ∥v1∥2

(∥∇u0∥2 + ∥∇v0∥2)1+[γ−1]+
+

(
∥∇u0∥2 + ∥∇v0∥2

)1−[1−γ]+

.
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Theorems 1.1 and 1.2 follow from Theorems 3.4 and 4.4 in the subsequent
sections.

The notations we use in this paper are standard. The symbol (·, ·) means
the inner product in the Hilbert space L2(Ω) or sometimes duality between
the space X and its dual X ′. We put [a]+ = max{0, a} where 1/[a]+ = ∞ if
[a]+ = 0. Positive constants will be denoted by C and will change from line to
line.

2 Energy Decay

First we introduce the following functions associated with the coupled sys-
tem (1.1)–(1.2) which we will use through this paper :

K(t) ≡ ∥u(t)∥2 + ∥v(t)∥2 , L(t) ≡ ∥ut(t)∥2 + ∥vt(t)∥2 ,

M(t) ≡ ∥∇u(t)∥2 + ∥∇v(t)∥2 , X(t) ≡ ∥utt(t)∥2 + ∥vtt(t)∥2 ,

Y (t) ≡ ∥∇ut(t)∥2 + ∥∇vt(t)∥2 , Z(t) ≡ ∥∆u(t)∥2 + ∥∆v(t)∥2 ,

Φ(t) ≡ ∥∇utt(t)∥2 + ∥∇vtt(t)∥2 , Ψ(t) ≡ ∥∆ut(t)∥2 + ∥∆vt(t)∥2 ,

and then, we see from (1.6) and (1.7) that

E(t) = ρL(t) +
1

γ + 1
M(t)γ+1 and H(t) = ρ

L(t)

M(t)1+[γ−1]+
+M(t)1−[1−γ]+ .

(2.1)

The energy E(t) of (1.1)–(1.2) has the following decay rate.

Proposition 2.1 Suppose that the initial data [u0, v0, u1, v1] belong to
(H1

0 (Ω))
2 × (L2(Ω))2. The the energy E(t) satisfies

E(t) ≤
(
E(0)−

γ
γ+1 +

(
2(4c2∗ + 1)

2(1 + γ−1)(E(0)
γ

2(γ+1) + 1)2
)−1

[t− 1]+
)− γ+1

γ

(2.2)

that is,

M(t) ≤ C(1 + t)−
1
γ and L(t) ≤ C(1 + t)−1− 1

γ for t ≥ 0 . (2.3)

Proof. Multiplying (1.1) and (1.2) by 2ut and 2vt, respectively, and integrat-
ing them over Ω, we have

ρ
d

dt
∥ut∥2 +M(t)γ

d

dt
∥∇u∥2 + 2∥∇ut∥2 = 0 ,

ρ
d

dt
∥vt∥2 +M(t)γ

d

dt
∥∇v∥2 + 2∥∇vt∥2 = 0 .

Adding these two equations, we obtain

ρ
d

dt
L(t) +M(t)γ

d

dt
M(t) + 2Y (t) = 0 or

d

dt
E(t) + 2Y (t) = 0 , (2.4)

and integrating (2.4) over [0, t], we have

E(t) + 2

∫ t

0

Y (s) ds = E(0) . (2.5)

For any t > 0, integrating (2.4) over [t, t+ 1], we have

2

∫ t+1

t

Y (s) ds = E(t)− E(t+ 1)
(
≡ 2D(t)2

)
. (2.6)

Then, there exist t1 ∈ [t, t+ 1/4] and t2 ∈ [t+ 3/4, t+ 1] such that

Y (tj) ≤ 4

∫ t+1

t

Y (s) ds = 4D(t)2 for j = 1, 2 . (2.7)

On the other hand, integrating (1.1) and (1.2) by u and v, respectively, and
integrating them over Ω, we have

ρ
d

dt
(u, ut)− ρ∥ut∥2 +M(t)γ∥∇u∥2 + (∇u,∇ut) = 0 ,

ρ
d

dt
(v, vt)− ρ∥vt∥2 +M(t)γ∥∇v∥2 + (∇v,∇vt) = 0 .

Adding these two equations, we obtain

M(t)γ+1 = ρL(t)− ρ

2

d

dt
K ′(t)− 1

2
M ′(t) . (2.8)

Integrating (2.8) over [t1, t2], we have from (2.6) and (2.7) that

∫ t2

t1

M(s)γ+1 ds ≤ ρ

∫ t2

t1

L(s) ds+
ρ

2

2∑
j=1

|K ′(tj)|+
1

2

∫ t2

t1

|M ′(s)| ds

≤ c2∗ρ

∫ t+1

t

Y (s) ds+ c2∗ρ
2∑

j=1

M(tj)
1
2 Y (tj)

1
2 +

∫ t+1

t

M(s)
1
2 Y (s)

1
2 ds (2.9)

≤ c2∗ρD(t)
2 + (4c2∗ρ+ 1)D(t) sup

t≤s≤t+1
M(s)

1
2 , (2.10)

where we used the facts that L(t) ≤ c2∗Y (t), |M ′(t)| ≤ 2M(t)
1
2 Y (t)

1
2 , and

|K ′(t)| ≤ 2K(t)
1
2 L(t)

1
2 ≤ 2c2∗M(t)

1
2 Y (t)

1
2 . (2.11)
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1
2 +

∫ t+1

t

M(s)
1
2 Y (s)

1
2 ds (2.9)

≤ c2∗ρD(t)
2 + (4c2∗ρ+ 1)D(t) sup

t≤s≤t+1
M(s)

1
2 , (2.10)

where we used the facts that L(t) ≤ c2∗Y (t), |M ′(t)| ≤ 2M(t)
1
2 Y (t)

1
2 , and

|K ′(t)| ≤ 2K(t)
1
2 L(t)

1
2 ≤ 2c2∗M(t)

1
2 Y (t)

1
2 . (2.11)
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Moreover, sinceM(t) ≤ ((γ+1)E(t))
1

γ+1 and E(t) is a non-increasing function,
it follows that∫ t2

t1

M(s)γ+1 ds ≤ c2∗ρD(t)
2 + (4c2∗ρ+ 1)D(t)((γ + 1)E(t))

1
2(γ+1) ,

and from (2.1) and (2.6) that
∫ t2

t1

E(s) ds = ρ

∫ t2

t1

L(s) ds+
1

γ + 1

∫ t2

t1

M(s)γ+1 ds

≤ c2∗ρ

∫ t+1

t

Y (s) ds+
1

γ + 1

∫ t2

t1

M(s)γ+1 ds

≤ 2c2∗ρD(t)
2 + (4c2∗ρ+ 1)D(t)E(t)

1
2(γ+1) . (2.12)

Integrating (2.4) over [t, t2], we have from (2.6) and (2.12) that

E(t) = E(t2) + 2

∫ t2

t

Y (s) ds

≤ 2

∫ t2

t1

E(s) ds+ 2

∫ t+1

t

Y (s) ds

≤ 2(2c2∗ρ+ 1)D(t)
2 + 2(4c2∗ρ+ 1)D(t)E(t)

1
2(γ+1) .

Since D(t) ≤ E(0)
γ

2(γ+1) E(t)
1

2(γ+1) by (2.5) and (2.6), we observe from the
Young inequality that

E(t) ≤ 2(4c2∗ρ+ 1)(E(0)
γ

2(γ+1) + 1)D(t)E(t)
1

2(γ+1)

≤ 2γ + 1

2(γ + 1)

(
2(4c2∗ρ+ 1)(E(0)

γ
2(γ+1) + 1)D(t)

) 2(γ+1)
2γ+1

+
1

2(γ + 1)
E(t)

and from (2.6) that

E(t)1+
γ

γ+1 = E(t)
2γ+1
γ+1 ≤

(
2(4c2∗ρ+ 1)(E(0)

γ
2(γ+1) + 1)D(t)

)2

≤ 2(4c2∗ρ+ 1)(E(0)
γ

2(γ+1) + 1)2(E(t)− E(t+ 1)) . (2.13)

Therefore, applying Lemma 2.2 below together with (2.5) to (2.13), we
obtain the desired estimate (2.2). □

In order to derive the decay estimate of the energy E(t), we used the fol-
lowing inequality in the proof of Proposition 2.1 (see [8], [9], [10] for the proof).

Lemma 2.2 Let ϕ(t) be a non-increasing and non-negative function on [0,∞)
and satisfy

ϕ(t)1+α ≤ k(ϕ(t)− ϕ(t+ 1))

with certain constants k ≥ 0 and α > 0. Then the function ϕ(t) satisfies

ϕ(t) ≤
(
ϕ(0)−α + αk−1[t− 1]+

)− 1
α for t ≥ 0 .

3 Decay for first order derivatives

In what follows, we suppose that the initial data [u0, v0, u1, v1] belong to
(H1

0 (Ω))
2 × (L2(Ω))2. First we will improve the decay rate of L(t) given by

(2.3).

Proposition 3.1 The function L(t) satisfies

L(t) ≤ C(1 + t)−2− 1
γ for t ≥ 0 . (3.1)

Proof. From (2.4) it follows that

ρ
d

dt
L(t) + 2Y (t) = −M(t)γM ′(t) ≤ 2M(t)γM(t)

1
2 Y (t)

1
2

and from the Young inequality and (2.3) that

ρ
d

dt
L(t) + Y (t) ≤ CM(t)2γ+1 ≤ C(1 + t)−2− 1

γ

and

ρ
d

dt
L(t) + c−2

∗ L(t) ≤ C(1 + t)−2− 1
γ

and hence, we obtain the desired estimate (3.1). □

Proposition 3.2 Let M(0) > 0. Suppose that M(t) > 0 for 0 ≤ t < T , and

(γc∗)
2ρH(0)γ < 1 if γ ≥ 1 ; (3.2)

(2c∗)
2ρ(H(0) + E(0)

1
γ+1 B(0)) < 1 if 0 < γ < 1 (3.3)

with B(0) ≡ (22(22c2∗ρ+ 1)(1− γ)(E(0)
γ

2(γ+1) + 1))2. Then it holds that

H(t) ≤

{
H(0) if γ ≥ 1 ;

H(0) + E(0)
1

γ+1 B(0) if 0 < γ < 1
(3.4)

for 0 ≤ t < T .

Proof. Multiplying (2.4) by M(t)−γ−k with k ≥ 0, we have

d

dt

(
ρ

L(t)

M(t)γ+k
+

1

M(t)k−1

)
+ 2

Y (t)

M(t)γ+k

= −(γ + k)ρ
M ′(t)

M(t)γ+k+1
L(t)− k

M ′(t)

M(t)k
. (3.5)
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Moreover, sinceM(t) ≤ ((γ+1)E(t))
1

γ+1 and E(t) is a non-increasing function,
it follows that∫ t2

t1

M(s)γ+1 ds ≤ c2∗ρD(t)
2 + (4c2∗ρ+ 1)D(t)((γ + 1)E(t))

1
2(γ+1) ,

and from (2.1) and (2.6) that
∫ t2

t1

E(s) ds = ρ

∫ t2

t1

L(s) ds+
1

γ + 1

∫ t2

t1

M(s)γ+1 ds

≤ c2∗ρ

∫ t+1

t

Y (s) ds+
1

γ + 1

∫ t2

t1

M(s)γ+1 ds

≤ 2c2∗ρD(t)
2 + (4c2∗ρ+ 1)D(t)E(t)

1
2(γ+1) . (2.12)

Integrating (2.4) over [t, t2], we have from (2.6) and (2.12) that

E(t) = E(t2) + 2

∫ t2

t

Y (s) ds

≤ 2

∫ t2

t1

E(s) ds+ 2

∫ t+1

t

Y (s) ds

≤ 2(2c2∗ρ+ 1)D(t)
2 + 2(4c2∗ρ+ 1)D(t)E(t)

1
2(γ+1) .

Since D(t) ≤ E(0)
γ

2(γ+1) E(t)
1

2(γ+1) by (2.5) and (2.6), we observe from the
Young inequality that

E(t) ≤ 2(4c2∗ρ+ 1)(E(0)
γ

2(γ+1) + 1)D(t)E(t)
1

2(γ+1)

≤ 2γ + 1

2(γ + 1)

(
2(4c2∗ρ+ 1)(E(0)

γ
2(γ+1) + 1)D(t)

) 2(γ+1)
2γ+1

+
1

2(γ + 1)
E(t)

and from (2.6) that

E(t)1+
γ

γ+1 = E(t)
2γ+1
γ+1 ≤

(
2(4c2∗ρ+ 1)(E(0)

γ
2(γ+1) + 1)D(t)

)2

≤ 2(4c2∗ρ+ 1)(E(0)
γ

2(γ+1) + 1)2(E(t)− E(t+ 1)) . (2.13)

Therefore, applying Lemma 2.2 below together with (2.5) to (2.13), we
obtain the desired estimate (2.2). □

In order to derive the decay estimate of the energy E(t), we used the fol-
lowing inequality in the proof of Proposition 2.1 (see [8], [9], [10] for the proof).

Lemma 2.2 Let ϕ(t) be a non-increasing and non-negative function on [0,∞)
and satisfy

ϕ(t)1+α ≤ k(ϕ(t)− ϕ(t+ 1))

with certain constants k ≥ 0 and α > 0. Then the function ϕ(t) satisfies

ϕ(t) ≤
(
ϕ(0)−α + αk−1[t− 1]+

)− 1
α for t ≥ 0 .

3 Decay for first order derivatives

In what follows, we suppose that the initial data [u0, v0, u1, v1] belong to
(H1

0 (Ω))
2 × (L2(Ω))2. First we will improve the decay rate of L(t) given by

(2.3).

Proposition 3.1 The function L(t) satisfies

L(t) ≤ C(1 + t)−2− 1
γ for t ≥ 0 . (3.1)

Proof. From (2.4) it follows that

ρ
d

dt
L(t) + 2Y (t) = −M(t)γM ′(t) ≤ 2M(t)γM(t)

1
2 Y (t)

1
2

and from the Young inequality and (2.3) that

ρ
d

dt
L(t) + Y (t) ≤ CM(t)2γ+1 ≤ C(1 + t)−2− 1

γ

and

ρ
d

dt
L(t) + c−2

∗ L(t) ≤ C(1 + t)−2− 1
γ

and hence, we obtain the desired estimate (3.1). □

Proposition 3.2 Let M(0) > 0. Suppose that M(t) > 0 for 0 ≤ t < T , and

(γc∗)
2ρH(0)γ < 1 if γ ≥ 1 ; (3.2)

(2c∗)
2ρ(H(0) + E(0)

1
γ+1 B(0)) < 1 if 0 < γ < 1 (3.3)

with B(0) ≡ (22(22c2∗ρ+ 1)(1− γ)(E(0)
γ

2(γ+1) + 1))2. Then it holds that

H(t) ≤

{
H(0) if γ ≥ 1 ;

H(0) + E(0)
1

γ+1 B(0) if 0 < γ < 1
(3.4)

for 0 ≤ t < T .

Proof. Multiplying (2.4) by M(t)−γ−k with k ≥ 0, we have

d

dt

(
ρ

L(t)

M(t)γ+k
+

1

M(t)k−1

)
+ 2

Y (t)

M(t)γ+k

= −(γ + k)ρ
M ′(t)

M(t)γ+k+1
L(t)− k

M ′(t)

M(t)k
. (3.5)
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(1) When γ ≥ 1, we observe

ρ

(
L(t)

M(t)

) 1
2

= ρ
1
2

(
L(t)

M(t)γ
M(t)γ−1

) 1
2

≤ (ρH(t)γ)
1
2 (3.6)

where H(t) is given by (2.1), that is, H(t) ≡ ρL(t)/M(t)γ +M(t). From (3.5)
with k = 0, it follows that

d

dt
H(t) + 2

Y (t)

M(t)γ
= −γρ

M ′(t)

M(t)γ+1
L(t) ≤ 2γc∗ρ

(
L(t)

M(t)

) 1
2 Y (t)

M(t)γ

and from (3.6) that

d

dt
H(t) + 2

(
1− γc∗(ρH(t)

γ)
1
2

) Y (t)

M(t)γ
≤ 0 (3.7)

for t ≤ t < T .
If γc∗(ρH(0)

γ)
1
2 < 1 (equivalent to (3.2)), then there exists T1 such that

0 < T1 ≤ T and

γc∗(ρH(t))
1
2 ≤ 1 (3.8)

for 0 ≤ t ≤ T1, and we observe from (3.7) that

d

dt
H(t) ≤ 0 and H(t) ≤ H(0) (3.9)

for 0 ≤ t ≤ T1. Therefore, we see that (3.8) and (3.9) hold true for 0 ≤ t < T ,
and hence we obtain (3.4) with γ ≥ 1.

(2) When 0 < γ < 1, we observe

ρ

(
L(t)

M(t)

) 1
2

≤ (ρH(t))
1
2 (3.10)

where H(t) is given by (2.1), that is, H(t) ≡ ρL(t)/M(t) +M(t)γ .
Moreover, from the energy decay (2.2) it follows that

∫ t

0

E(s)
2γ

γ+1 ds

≤
∫ t

0

(
E(0)−

γ
γ+1 +

γ

γ + 1

(
2(4c2∗ρ+ 1)

2(E(0)
γ

2(γ+1) + 1)2
)−1

[t− 1]+
)− γ+1

γ

ds

≤ E(0) + 2(γ + 1)(4c2∗ρ+ 1)
2E(0)

1
γ+1 (E(0)

γ
2(γ+1) + 1)2

≤ 23(4c2∗ρ+ 1)
2E(0)

1
γ+1 (E(0)

γ
2(γ+1) + 1)2 (≡ K(0) ) . (3.11)

From (3.5) with k = 1− γ, it follows that

d

dt
H(t) + 2

Y (t)

M(t)
= −ρ

M ′(t)

M(t)2
L(t)− (1− γ)

M ′(t)

M(t)1−γ

≤ 2c∗ρ

(
L(t)

M(t)

) 1
2 Y (t)

M(t)
+ 2(1− γ)M(t)γ

(
Y (t)

M(t)

) 1
2

and from the Young inequality and (3.10) that

d

dt
H(t) +

(
1− 2c∗(ρH(t))

1
2

) Y (t)

M(t)

≤ (1− γ)2 ((1 + γ)E(t))
2γ

γ+1 ≤ 2(1− γ)2E(t)
2γ

γ+1 (3.12)

for 0 ≤ t < T .

If 2c∗
(
ρ(H(0) + 2(1− γ)2K(0))

) 1
2 < 1 (equivalent to (3.3)), then there

exists T2 such that 0 < T2 ≤ T and

2c∗(ρH(t))
1
2 < 1 (3.13)

for 0 ≤ t < T2, we observe from (3.11) and (3.12) that

d

dt
H(t) ≤ 2(1− γ)2E(t)

2γ
γ+1 and H(t) ≤ H(0) + 2(1− γ)2K(0) (3.14)

for 0 ≤ t ≤ T2. Therefore we see that (3.13) and (3.14) hold true for 0 ≤ t < T ,
and hence we obtain (3.4) with 0 < γ < 1. □

Proposition 3.3 In addition to the assumption of Proposition 3.2, suppose
that

((γ + 2)c∗)
2
ρH(0)γ < 1 if γ ≥ 1 ; (3.15)

((2γ + 1)c∗)
2
ρ
(
H(0) + E(0)

1
γ+1 B(0)

)
< 1 if 0 < γ < 1 (3.16)

with B(0) ≡ (22(22c2∗ρ+ 1)(1− γ)(E(0)
γ

2(γ+1) + 1))2. Then it holds that

M(t) ≥ C ′(1 + t)−
1
γ (3.17)

for 0 ≤ t < T with a positive constant C ′ > 0.

Proof. (1) When γ ≥ 1, from (3.5) with k = 2 it follows that

d

dt

(
ρ

L(t)

M(t)γ+2
+

1

M(t)

)
+ 2

Y (t)

M(t)γ+2
= −(γ + 2)ρ M ′(t)

M(t)γ+3
L(t)− 2

M ′(t)

M(t)2

≤ 2(γ + 2)c∗ρ

(
L(t)

M(t)

) 1
2 Y (t)

M(t)γ+2
+ 4

(
Y (t)

M(t)γ+2
M(t)γ−1

) 1
2



Time Decay for Some Degenerate Hyperbolic Systems ��

(1) When γ ≥ 1, we observe

ρ

(
L(t)

M(t)

) 1
2

= ρ
1
2

(
L(t)

M(t)γ
M(t)γ−1

) 1
2

≤ (ρH(t)γ)
1
2 (3.6)

where H(t) is given by (2.1), that is, H(t) ≡ ρL(t)/M(t)γ +M(t). From (3.5)
with k = 0, it follows that

d

dt
H(t) + 2

Y (t)

M(t)γ
= −γρ

M ′(t)

M(t)γ+1
L(t) ≤ 2γc∗ρ

(
L(t)

M(t)

) 1
2 Y (t)

M(t)γ

and from (3.6) that

d

dt
H(t) + 2

(
1− γc∗(ρH(t)

γ)
1
2

) Y (t)

M(t)γ
≤ 0 (3.7)

for t ≤ t < T .
If γc∗(ρH(0)

γ)
1
2 < 1 (equivalent to (3.2)), then there exists T1 such that

0 < T1 ≤ T and

γc∗(ρH(t))
1
2 ≤ 1 (3.8)

for 0 ≤ t ≤ T1, and we observe from (3.7) that

d

dt
H(t) ≤ 0 and H(t) ≤ H(0) (3.9)

for 0 ≤ t ≤ T1. Therefore, we see that (3.8) and (3.9) hold true for 0 ≤ t < T ,
and hence we obtain (3.4) with γ ≥ 1.

(2) When 0 < γ < 1, we observe

ρ

(
L(t)

M(t)

) 1
2

≤ (ρH(t))
1
2 (3.10)

where H(t) is given by (2.1), that is, H(t) ≡ ρL(t)/M(t) +M(t)γ .
Moreover, from the energy decay (2.2) it follows that

∫ t

0

E(s)
2γ

γ+1 ds

≤
∫ t

0

(
E(0)−

γ
γ+1 +

γ

γ + 1

(
2(4c2∗ρ+ 1)

2(E(0)
γ

2(γ+1) + 1)2
)−1

[t− 1]+
)− γ+1

γ

ds

≤ E(0) + 2(γ + 1)(4c2∗ρ+ 1)
2E(0)

1
γ+1 (E(0)

γ
2(γ+1) + 1)2

≤ 23(4c2∗ρ+ 1)
2E(0)

1
γ+1 (E(0)

γ
2(γ+1) + 1)2 (≡ K(0) ) . (3.11)

From (3.5) with k = 1− γ, it follows that

d

dt
H(t) + 2

Y (t)

M(t)
= −ρ

M ′(t)

M(t)2
L(t)− (1− γ)

M ′(t)

M(t)1−γ

≤ 2c∗ρ

(
L(t)

M(t)

) 1
2 Y (t)

M(t)
+ 2(1− γ)M(t)γ

(
Y (t)

M(t)

) 1
2

and from the Young inequality and (3.10) that

d

dt
H(t) +

(
1− 2c∗(ρH(t))

1
2

) Y (t)

M(t)

≤ (1− γ)2 ((1 + γ)E(t))
2γ

γ+1 ≤ 2(1− γ)2E(t)
2γ

γ+1 (3.12)

for 0 ≤ t < T .

If 2c∗
(
ρ(H(0) + 2(1− γ)2K(0))

) 1
2 < 1 (equivalent to (3.3)), then there

exists T2 such that 0 < T2 ≤ T and

2c∗(ρH(t))
1
2 < 1 (3.13)

for 0 ≤ t < T2, we observe from (3.11) and (3.12) that

d

dt
H(t) ≤ 2(1− γ)2E(t)

2γ
γ+1 and H(t) ≤ H(0) + 2(1− γ)2K(0) (3.14)

for 0 ≤ t ≤ T2. Therefore we see that (3.13) and (3.14) hold true for 0 ≤ t < T ,
and hence we obtain (3.4) with 0 < γ < 1. □

Proposition 3.3 In addition to the assumption of Proposition 3.2, suppose
that

((γ + 2)c∗)
2
ρH(0)γ < 1 if γ ≥ 1 ; (3.15)

((2γ + 1)c∗)
2
ρ
(
H(0) + E(0)

1
γ+1 B(0)

)
< 1 if 0 < γ < 1 (3.16)

with B(0) ≡ (22(22c2∗ρ+ 1)(1− γ)(E(0)
γ

2(γ+1) + 1))2. Then it holds that

M(t) ≥ C ′(1 + t)−
1
γ (3.17)

for 0 ≤ t < T with a positive constant C ′ > 0.

Proof. (1) When γ ≥ 1, from (3.5) with k = 2 it follows that

d

dt

(
ρ

L(t)

M(t)γ+2
+

1

M(t)

)
+ 2

Y (t)

M(t)γ+2
= −(γ + 2)ρ M ′(t)

M(t)γ+3
L(t)− 2

M ′(t)

M(t)2

≤ 2(γ + 2)c∗ρ

(
L(t)

M(t)

) 1
2 Y (t)

M(t)γ+2
+ 4

(
Y (t)

M(t)γ+2
M(t)γ−1

) 1
2
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and from (3.6) and (3.4) that

d

dt

(
ρ

L(t)

M(t)γ+2
+

1

M(t)

)
+ 2

(
1− (γ + 2)c∗(ρH(0)

γ)
1
2

) Y (t)

M(t)γ+2

≤ 4

(
Y (t)

M(t)γ+2
M(t)γ−1

) 1
2

for 0 ≤ t < T .
If (γ + 2)c∗(ρH(0)

γ)
1
2 < 1 (equivalent to (3.15)), then we observe from the

Young inequality and (2.3) that

d

dt

(
ρ

L(t)

M(t)γ+2
+

1

M(t)

)
≤ CM(t)γ−1 ≤ C(1 + t)−1+ 1

γ

and

ρ
L(t)

M(t)γ+2
+

1

M(t)
≤ C(1 + t)

1
γ

for 0 ≤ t < T , which implies the desired estimate (3.17) with γ ≥ 1.
(2) When 0 < γ < 1, from (3.5) with k = γ + 1 it follows that

d

dt

(
ρ

L(t)

M(t)2γ+1
+

1

M(t)γ

)
+ 2

Y (t)

M(t)2γ+1

= −(2γ + 1)ρ M ′(t)

M(t)2γ+2
L(t)− (γ + 1)

M ′(t)

M(t)γ+1

≤ 2(2γ + 1)c∗ρ

(
Y (t)

M(t)

) 1
2 Y (t)

M(t)2γ+1
+ 2(γ + 1)

(
Y (t)

M(t)2γ+1

) 1
2

and from (3.10) and (3.4) that

d

dt

(
ρ

L(t)

M(t)2γ+1
+

1

M(t)γ

)

+ 2

(
1− (2γ + 1)c∗

(
ρ(H(0) + E(0)

1
γ+1 B(0))

) 1
2

)
Y (t)

M(t)2γ+1

≤ 2(γ + 1)

(
Y (t)

M(t)2γ+1

) 1
2

for 0 ≤ t < T .

If (2γ + 1)c∗

(
ρ(H(0) + E(0)

1
γ+1 B(0))

) 1
2

< 1 (equivalent to (3.16)), then

we observe from the Young inequality that

d

dt

(
ρ

L(t)

M(t)2γ+1
+

1

M(t)γ

)
≤ C and ρ

L(t)

M(t)2γ+1
+

1

M(t)γ
≤ C(1 + t)

for 0 ≤ t < T , which implies the desired estimate (3.17) with 0 < γ < 1. □

Theorem 3.4 Let the initial data [u0, v0, u1, v1] belong to (H1
0 (Ω))

2×(L2(Ω))2.
Then the solutions u(t) and v(t) of (1.1)–(1.4) satisfy

M(t) ≤ C(1 + t)−
1
γ and L(t) ≤ C(1 + t)−2− 1

γ for t ≥ 0 . (3.18)

Moreover, suppose that M(0) > 0 and

((γ + 2)c∗)
2ρH(0)γ < 1 if γ ≥ 1 ;

((2γ + 1)c∗)
2ρ

(
H(0) + E(0)

1
γ+1 B(0)

)
< 1 if 0 < γ < 1

with B(0) ≡ (22(22c2∗ρ+ 1)(1− γ)(E(0)
γ

2(γ+1) + 1))2. Then

M(t) ≥ C ′(t+ 1)−
1
γ for t ≥ 0 (3.19)

with a positive constant C ′ > 0.

Proof. (3.18) follows (2.3) and (3.1). Since M(0) > 0, putting

T ≡ sup
{
t ∈ [0,∞)

�� M(s) > 0 for 0 ≤ s < t
}

,

we see that T > 0 and M(t) > 0 for 0 ≤ t < T . If T < ∞, then M(T ) =
0. However, from the lower estimate (3.17) we observe that limt→T M(t) ≥
C ′(1+T )−

1
γ > 0, and hence we obtain that T =∞ and M(t) > 0 for all t ≥ 0.

Therefore (3.19) follows (3.17). □

4 Decay for second order derivatives

In this section we will derive the decay rate of the functions X(t), Y (t),
Z(t), and Ψ(t).

In what follows, we suppose that the initial data [u0, v0, u1, v1] belong to
(H2(Ω) ∩H1

0 (Ω))
4.

Proposition 4.1 The functions Z(t) and Y (t) satisfy

Z(t) ≤ C and Y (t) ≤ C(1 + t)−2 for t ≥ 0 . (4.1)

Proof. Multiplying (1.1) and (1.2) by −2∆u and −2∆v, respectively, and
integrating them over Ω, and adding the resulting equations, we have

d

dt
Z(t) + 2M(t)γZ(t) = 2ρ

d

dt
((ut,∆u) + (vt,∆v)) + 2ρY (t) (4.2)

and

Z(t) + 2

∫ t

0

M(s)γZ(s) ds

≤ Z(0) + 2ρ
(
L(t)

1
2 Z(t)

1
2 + L(0)

1
2 Z(0)

1
2

)
+ 2ρ

∫ t

0

Y (s) ds .
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and from (3.6) and (3.4) that

d

dt

(
ρ

L(t)

M(t)γ+2
+

1

M(t)

)
+ 2

(
1− (γ + 2)c∗(ρH(0)

γ)
1
2

) Y (t)

M(t)γ+2

≤ 4

(
Y (t)

M(t)γ+2
M(t)γ−1

) 1
2

for 0 ≤ t < T .
If (γ + 2)c∗(ρH(0)

γ)
1
2 < 1 (equivalent to (3.15)), then we observe from the

Young inequality and (2.3) that

d

dt

(
ρ

L(t)

M(t)γ+2
+

1

M(t)

)
≤ CM(t)γ−1 ≤ C(1 + t)−1+ 1

γ

and

ρ
L(t)

M(t)γ+2
+

1

M(t)
≤ C(1 + t)

1
γ

for 0 ≤ t < T , which implies the desired estimate (3.17) with γ ≥ 1.
(2) When 0 < γ < 1, from (3.5) with k = γ + 1 it follows that

d

dt

(
ρ

L(t)

M(t)2γ+1
+

1

M(t)γ

)
+ 2

Y (t)

M(t)2γ+1

= −(2γ + 1)ρ M ′(t)

M(t)2γ+2
L(t)− (γ + 1)

M ′(t)

M(t)γ+1

≤ 2(2γ + 1)c∗ρ

(
Y (t)

M(t)

) 1
2 Y (t)

M(t)2γ+1
+ 2(γ + 1)

(
Y (t)

M(t)2γ+1

) 1
2

and from (3.10) and (3.4) that

d

dt

(
ρ

L(t)

M(t)2γ+1
+

1

M(t)γ

)

+ 2

(
1− (2γ + 1)c∗

(
ρ(H(0) + E(0)

1
γ+1 B(0))

) 1
2

)
Y (t)

M(t)2γ+1

≤ 2(γ + 1)

(
Y (t)

M(t)2γ+1

) 1
2

for 0 ≤ t < T .

If (2γ + 1)c∗

(
ρ(H(0) + E(0)

1
γ+1 B(0))

) 1
2

< 1 (equivalent to (3.16)), then

we observe from the Young inequality that

d

dt

(
ρ

L(t)

M(t)2γ+1
+

1

M(t)γ

)
≤ C and ρ

L(t)

M(t)2γ+1
+

1

M(t)γ
≤ C(1 + t)

for 0 ≤ t < T , which implies the desired estimate (3.17) with 0 < γ < 1. □

Theorem 3.4 Let the initial data [u0, v0, u1, v1] belong to (H1
0 (Ω))

2×(L2(Ω))2.
Then the solutions u(t) and v(t) of (1.1)–(1.4) satisfy

M(t) ≤ C(1 + t)−
1
γ and L(t) ≤ C(1 + t)−2− 1

γ for t ≥ 0 . (3.18)

Moreover, suppose that M(0) > 0 and

((γ + 2)c∗)
2ρH(0)γ < 1 if γ ≥ 1 ;

((2γ + 1)c∗)
2ρ

(
H(0) + E(0)

1
γ+1 B(0)

)
< 1 if 0 < γ < 1

with B(0) ≡ (22(22c2∗ρ+ 1)(1− γ)(E(0)
γ

2(γ+1) + 1))2. Then

M(t) ≥ C ′(t+ 1)−
1
γ for t ≥ 0 (3.19)

with a positive constant C ′ > 0.

Proof. (3.18) follows (2.3) and (3.1). Since M(0) > 0, putting

T ≡ sup
{
t ∈ [0,∞)

�� M(s) > 0 for 0 ≤ s < t
}

,

we see that T > 0 and M(t) > 0 for 0 ≤ t < T . If T < ∞, then M(T ) =
0. However, from the lower estimate (3.17) we observe that limt→T M(t) ≥
C ′(1+T )−

1
γ > 0, and hence we obtain that T =∞ and M(t) > 0 for all t ≥ 0.

Therefore (3.19) follows (3.17). □

4 Decay for second order derivatives

In this section we will derive the decay rate of the functions X(t), Y (t),
Z(t), and Ψ(t).

In what follows, we suppose that the initial data [u0, v0, u1, v1] belong to
(H2(Ω) ∩H1

0 (Ω))
4.

Proposition 4.1 The functions Z(t) and Y (t) satisfy

Z(t) ≤ C and Y (t) ≤ C(1 + t)−2 for t ≥ 0 . (4.1)

Proof. Multiplying (1.1) and (1.2) by −2∆u and −2∆v, respectively, and
integrating them over Ω, and adding the resulting equations, we have

d

dt
Z(t) + 2M(t)γZ(t) = 2ρ

d

dt
((ut,∆u) + (vt,∆v)) + 2ρY (t) (4.2)

and

Z(t) + 2

∫ t

0

M(s)γZ(s) ds

≤ Z(0) + 2ρ
(
L(t)

1
2 Z(t)

1
2 + L(0)

1
2 Z(0)

1
2

)
+ 2ρ

∫ t

0

Y (s) ds .
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Thus, from the Young inequality and (2.5) we obtain that Z(t) ≤ C(Z(0) +
L(0) + E(0)) for t ≥ 0.

Multiplying (1.1) and (1.2) by −2∆ut and −2∆vt, respectively, and inte-
grating them over Ω, and adding the resulting equations, we have

ρ
d

dt
Y (t) + 2Ψ(t) = −M(t)γZ ′(t) ≤ 2M(t)γZ(t)

1
2Ψ(t)

1
2 .

From the Young inequality it follows that

ρ
d

dt
Y (t) + Ψ(t) ≤ M(t)2γZ(t)

and from (2.3) that

ρ
d

dt
Y (t) + c−2

∗ Y (t) ≤ M(t)2γZ(t) ≤ C(1 + t)−2 ,

and hence, we obtain that Y (t) ≤ C(1 + t)−2 for t ≥ 0. □

Proposition 4.2 The functions X(t), Y (t), and Ψ(t) satisfy

X(t) ≤ C(1 + t)−4− 1
γ , Y (t) ≤ C(1 + t)−2− 1

γ , (4.3)

Ψ(t) ≤ C(1 + t)−2 for t ≥ 0 . (4.4)

Proof. Multiplying (1.1) and (1.2) differentiated once with respect to t
by 2utt and 2vtt, respectively, and integrating them over Ω, and adding the
resulting equations, we have

ρ
d

dt
X(t) + 2Φ(t) = −M(t)γY ′(t)− 2γM(t)γ−1M ′(t) ((∇u,∇utt) + (∇v,∇vtt))

≤ (2 + 4γ)M(t)γY (t)
1
2Φ(t)

1
2 .

From the Young inequality it follows that

ρ
d

dt
X(t) + Φ(t) ≤ CM(t)2γY (t)

and from (2.3) and (4.1) that

ρ
d

dt
X(t) + c−2

∗ X(t) ≤ CM(t)2γY (t) ≤ C(1 + t)−θ1 (4.5)

with θ1 = 2 + 2 = 4, and hence, we have

X(t) ≤ C(1 + t)−θ1 , θ1 = 4 . (4.6)

From (2.4) it follows that

Y (t) = −1
2
ρL′(t)− 1

2
M(t)γM ′(t) ≤ c∗ρY (t)

1
2 X(t)

1
2 +M(t)γM(t)

1
2 Y (t)

1
2 ,

and from the Young inequality and (2.3) and (4.6) that

Y (t) ≤ CX(t) + CM(t)2γ+1 ≤ C(1 + t)−ω1 , ω1 = min {θ1, 2 + 1/γ} .
(4.7)

Applying (2.3) and (4.7) to (4.5), we obtain that

X(t) ≤ C(1 + t)−θ2 , θ2 = 2 + ω1 (4.8)

and from (4.7) that

Y (t) ≤ C(1 + t)−ω2 , ω2 = min {θ2, 2 + 1/γ} .

By induction, for m = 2, 3, · · · , we observe

X(t) ≤ C(1 + t)−θm , θm = 2 + ωm−1

and

Y (t) ≤ C(1 + t)−ωm , ωm = min {θm, 2 + 1/γ} .

Therefore, we arrive at the desired estimate (4.3) for large m.
Moreover, from (1.1) and (1.2) together with (2.3), (4.1), and (4.3) we have

Ψ(t) ≤ 2
(
ρ2X(t) +M(t)2γZ(t)

)
≤ C(1 + t)−2 (4.9)

for t ≥ 0. □

Proposition 4.3 Suppose that the assumptions of Theorem 3.4 are fulfilled.
Then the functions Z(t) and Ψ(t) satisfy

Z(t) ≤ C(1 + t)−ε and Ψ(t) ≤ C(1 + t)−2−ε for t ≥ 0 (4.10)

with some 0 < ε ≤ 1/γ.

Proof. From (4.2) it follows that

d

dt
Z(t) + 2M(t)γZ(t) = 2ρ ((utt,∆u) + (vtt,∆v)) ≤ 2ρX(t)

1
2 Z(t)

1
2

and

d

dt
Z(t) +M(t)γZ(t) ≤ ρ2

X(t)

M(t)γ
.
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Thus, from the Young inequality and (2.5) we obtain that Z(t) ≤ C(Z(0) +
L(0) + E(0)) for t ≥ 0.

Multiplying (1.1) and (1.2) by −2∆ut and −2∆vt, respectively, and inte-
grating them over Ω, and adding the resulting equations, we have

ρ
d

dt
Y (t) + 2Ψ(t) = −M(t)γZ ′(t) ≤ 2M(t)γZ(t)

1
2Ψ(t)

1
2 .

From the Young inequality it follows that

ρ
d

dt
Y (t) + Ψ(t) ≤ M(t)2γZ(t)

and from (2.3) that

ρ
d

dt
Y (t) + c−2

∗ Y (t) ≤ M(t)2γZ(t) ≤ C(1 + t)−2 ,

and hence, we obtain that Y (t) ≤ C(1 + t)−2 for t ≥ 0. □

Proposition 4.2 The functions X(t), Y (t), and Ψ(t) satisfy

X(t) ≤ C(1 + t)−4− 1
γ , Y (t) ≤ C(1 + t)−2− 1

γ , (4.3)

Ψ(t) ≤ C(1 + t)−2 for t ≥ 0 . (4.4)

Proof. Multiplying (1.1) and (1.2) differentiated once with respect to t
by 2utt and 2vtt, respectively, and integrating them over Ω, and adding the
resulting equations, we have

ρ
d

dt
X(t) + 2Φ(t) = −M(t)γY ′(t)− 2γM(t)γ−1M ′(t) ((∇u,∇utt) + (∇v,∇vtt))

≤ (2 + 4γ)M(t)γY (t)
1
2Φ(t)

1
2 .

From the Young inequality it follows that

ρ
d

dt
X(t) + Φ(t) ≤ CM(t)2γY (t)

and from (2.3) and (4.1) that

ρ
d

dt
X(t) + c−2

∗ X(t) ≤ CM(t)2γY (t) ≤ C(1 + t)−θ1 (4.5)

with θ1 = 2 + 2 = 4, and hence, we have

X(t) ≤ C(1 + t)−θ1 , θ1 = 4 . (4.6)

From (2.4) it follows that

Y (t) = −1
2
ρL′(t)− 1

2
M(t)γM ′(t) ≤ c∗ρY (t)

1
2 X(t)

1
2 +M(t)γM(t)

1
2 Y (t)

1
2 ,

and from the Young inequality and (2.3) and (4.6) that

Y (t) ≤ CX(t) + CM(t)2γ+1 ≤ C(1 + t)−ω1 , ω1 = min {θ1, 2 + 1/γ} .
(4.7)

Applying (2.3) and (4.7) to (4.5), we obtain that

X(t) ≤ C(1 + t)−θ2 , θ2 = 2 + ω1 (4.8)

and from (4.7) that

Y (t) ≤ C(1 + t)−ω2 , ω2 = min {θ2, 2 + 1/γ} .

By induction, for m = 2, 3, · · · , we observe

X(t) ≤ C(1 + t)−θm , θm = 2 + ωm−1

and

Y (t) ≤ C(1 + t)−ωm , ωm = min {θm, 2 + 1/γ} .

Therefore, we arrive at the desired estimate (4.3) for large m.
Moreover, from (1.1) and (1.2) together with (2.3), (4.1), and (4.3) we have

Ψ(t) ≤ 2
(
ρ2X(t) +M(t)2γZ(t)

)
≤ C(1 + t)−2 (4.9)

for t ≥ 0. □

Proposition 4.3 Suppose that the assumptions of Theorem 3.4 are fulfilled.
Then the functions Z(t) and Ψ(t) satisfy

Z(t) ≤ C(1 + t)−ε and Ψ(t) ≤ C(1 + t)−2−ε for t ≥ 0 (4.10)

with some 0 < ε ≤ 1/γ.

Proof. From (4.2) it follows that

d

dt
Z(t) + 2M(t)γZ(t) = 2ρ ((utt,∆u) + (vtt,∆v)) ≤ 2ρX(t)

1
2 Z(t)

1
2

and

d

dt
Z(t) +M(t)γZ(t) ≤ ρ2

X(t)

M(t)γ
.
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Since M(t)γ ≥ ε(1 + t)−1 with some 0 < ε ≤ 1/γ by (2.3) and (3.19), we
observe from (4.3) that

d

dt
Z(t) + ε(1 + t)−1Z(t) ≤ C(1 + t)−3− 1

γ

and

d

dt
((1 + t)εZ(t)) ≤ C(1 + t)−3− 1

γ +ε

and hence,

Z(t) ≤ C(1 + t)−ε for t ≥ 0 . (4.11)

Moreover, using (4.9) together with (2.3), (4.3), (4.11), we obtain

Ψ(t) ≤ 2
(
ρ2X(t) +M(t)2γZ(t)

)
≤ C(1 + t)−2−ε

for t ≥ 0. □

Theorem 4.4 Let the initial data [u0, v0, u1, v1] belong (H2(Ω)∩H1
0 (Ω))

4. The
problem (1.1)–(1.4) admits a unique global solution [u(t), v(t)] in the class
(
C0([0,∞);H2(Ω) ∩H1

0 (Ω)) ∩ C1([0,∞);H2(Ω) ∩H1
0 (Ω)) ∩ C2([0,∞);L2(Ω))

)2

and it holds that

X(t) ≤ C(1 + t)−4− 1
γ and Y (t) ≤ C(1 + t)−2− 1

γ for t ≥ 0 . (4.12)

Moreover, suppose that the initial data [u0, v0, u1, v1] satisfy M(0) > 0 and

((γ + 2)c∗)
2ρH(0)γ < 1 if γ ≥ 1 ;

((2γ + 1)c∗)
2ρ(H(0) + E(0)

1
γ+1 B(0)) < 1 if 0 < γ < 1

with B(0) ≡ (22(22c2∗ρ+ 1)(1− γ)(E(0)
γ

2(γ+1) + 1))2. Then

Z(t) ≤ C(1 + t)−ε and Ψ(t) ≤ C(1 + t)−2−ε for t ≥ 0 (4.13)

with some 0 < ε ≤ 1/γ.

Proof. Applying the Banach contraction mapping theorem, we can get a
local existence theorem (see [1], [2], [17] and the references cited there), that
is, there exists a unique local solution [u(t), v(t)] of (1.1)–(1.4) in the class
(
C0([0, T );H2(Ω) ∩H1

0 (Ω)) ∩ C1([0, T );H2(Ω) ∩H1
0 (Ω)) ∩ C2([0, T );L2(Ω))

)2

for some T > 0. Moreover, if ∥u(t)∥H2+∥v(t)∥H2+∥ut(t)∥H2+∥vt(t)∥H2 < ∞
for t ≥ 0, then we can take T =∞.

On the other hand, Proposition 4.1 and Proposition 4.2 give the a-priori
estimate for the local solution [u(t), v(t)] of (1.1)–(1.4), and hence, the problem
(1.1)–(1.4) admits a unique global solution [u(t), v(t)]. Moreover, (4.12) and
(4.13) follow from (4.3) and (4.10), respectively. □
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and hence,
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γ and Y (t) ≤ C(1 + t)−2− 1

γ for t ≥ 0 . (4.12)
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for some T > 0. Moreover, if ∥u(t)∥H2+∥v(t)∥H2+∥ut(t)∥H2+∥vt(t)∥H2 < ∞
for t ≥ 0, then we can take T =∞.

On the other hand, Proposition 4.1 and Proposition 4.2 give the a-priori
estimate for the local solution [u(t), v(t)] of (1.1)–(1.4), and hence, the problem
(1.1)–(1.4) admits a unique global solution [u(t), v(t)]. Moreover, (4.12) and
(4.13) follow from (4.3) and (4.10), respectively. □
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Abstract

In this paper, we study the Fourier transformation of L2
loc-functions

and L2
c-functions in order to investigate the natural statistical phenomena

by using the theory of natural statistical physics. Thereby we prove the
structure theorems of the image spaces FL2

loc and FL2
c . We study the

convolution f ∗ g of a L2
c-function f and a L2

loc-function g. Further,
we characterize the local Sobolev spaces and the space of solutions of
Schrödinger equations. Here assume d ≥ 1. These results are the English
version of Ito [17], chapter 5.
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Introduction

In this paper, we study the Fourier transformation of L2
loc-functions and

L2
c-functions and some applications.

In section 1, we define the Fourier transformation and the inverse Fourier
transformation of L2

loc-functions. We show some examples of Fourier trans-
formation of L2

loc-functions. We prove the inversion formulas of the Fourier
transformation and the inverse Fourier transformation of L2

loc-functions.
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