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Abstract

In this note, we consider the Cauchy problem of nonlinear degenerate
parabolic equations including the level set equation of the mean curvatue
equation and the p-Laplace diffusion equation with p ≥ 2. We shall give
existence and uniqueness results to such equations provided that the
initial data is uniformly continuous.
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Introduction

We consider the Cauchy problem of nonlinear degenerate parabolic equations
of the form

(1) ut + F (∇u,∇2u) = 0 in QT := (0, T )×RN ,

(2) u(0, x) = a(x) on RN ,

where u : QT → R is an unknown function, F = F (q,X) is a given function,
a(x) is uniformly continuous and T > 0. Here ut = ∂u/∂t, ∇u and ∇2u denote,
respectively, the time derivative of u, the gradient of u and the Hessian of u in
space variables. The function F = F (q,X) needs not to be geometric in the
sense of Chen, Giga and Goto [1], i.e.,

F (λq, λX + µq ⊗ q) = λF (q,X) for all λ > 0, µ ∈ R, q ∈ RN\{0}, X ∈ SN ,
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where SN denotes the space of all real symmetric matrices with order N.
A typical example of (1) we consider is the p-Laplace diffusion equation

(3) ut − div(|∇u|p−2∇u) = 0 in QT ,

with p ≥ 2. For this equation F = F (q,X) is given by

(4) F (q,X) = −|q|p−2trace

{(
I + (p− 2)q ⊗ q

|q|2
)
X

}
,

where ⊗ denotes the tensor product.
A comparison principle for (1) was established by the author and K. Sato [9].

Once the comparison principle for (1) was proved, we can construct the unique
global-in-time viscosity solution of (1)-(2) with bounded uniformly continuous
data (cf. [9]).
One can improve the proof of the unique existence theorem of (1)-(2) when

the initial data is uniformly continuous on RN . For the proof we take similar
procedures as in [9]. We have to modify the proof [9, Lemma 4.5, 4.6] since
the initial data is not bounded. Moreover, we have to prepare a comparison
principle for (1) to unbounded solutions. When we can improve the lemmas
and a comparison principle, we conclude the same unique existence theorem of
(1)-(2) for any uniformly continuous initial data a(x).
Here we shall write a little bit generalized equation of (3)

(5) ut − |∇u|p−2trace

{(
I + (p′ − 2)∇u⊗∇u

|∇u|2
)
∇2u

}
= 0 in QT ,

where p′ ≥ 1 and p ≥ 2. For this equation

(6) F (q,X) = −|q|p−2trace

{(
I + (p′ − 2)q ⊗ q

|q|2
)
X

}
.

The equation (5) has interesting examples.
Example 1. If p = p′ then (5) is nothing but the p-Laplace diffusion equation
(3)

ut − div(|∇u|p−2∇u) = 0 in QT .

The p-Laplace diffusion equation has been studied by many authors. Al-
though we use viscosity solutions as a weak solution (cf. [2, 5]), many authors
are familiar with usual weak solutions defined in distribution sense, since the
p-Laplace diffusion equation has the divergence structure. In fact, our unique
existence theorem has already been known by interpreting solutions as usual
weak solutions. However, the proof of the continuity of such a weak solution
needs many procedures, since it was done by using the Harnak inequality and
many a priori estimates. For details, we refer to the book by DiBenedetto [3].
Our procedures are based on Perron’s method, so the proof is simpler than
that of usual one.

Note that the equation (3) is not geometric.
Example 2. If p = 2 and p′ = 1 then (5) is the level set mean curvature flow
equation

(7) ut − |∇u|div
(

∇u

|∇u|

)
= 0 in QT .

This equation was initially studied by Chen, Giga and Goto [1] and Evans
and Spruck [4]. They established the comparison principle and proved the
unique existence theorem of (7)-(2), independently. In [1] they consider more
general equations (1). To establish the comparison principle they assume F =
F (q,X) can be extended continuously at (q,X) = (0, O), i.e., −∞ < F∗(0, O) =
F ∗(0, O) < +∞, especially F of (7) satisfies F∗(0, O) = F ∗(0, O) = 0. Here
F∗(q,X) and F ∗(q,X) denotes the upper and lower semicontinuous envelope of
F (q,X), respectively (cf. [1]). The equation (7) does not have the divergence
structure. So the theory of usual weak solution does not apply to (7). This
situation is different from that of (3) and (7) is geometric.

1 Definition of viscosity solutions and a com-
parison theorem

Here and hereafter we shall study a general equation of form

(1.1) ut + F (∇u,∇2u) = 0 in QT .

We list assumptions on F = F (q,X).
(F1) F is continuous in (RN\{0})× SN .
(F2) F is degenerate elliptic, i.e.,

if X ≥ Y then F (q,X) ≤ F (q, Y ) for all q ∈ RN\{0}.

(F3) F∗(0, O) = F ∗(0, O) = 0.
(F4) For every R > 0,

cR = sup{|F (q,X)|; |q| ≤ R, |X| ≤ R, q ̸= 0} < +∞.

Remark 1.1. For the levet set mean curvature flow equation,

|F (q,X)| ≤ R(N + 1).

This F (q,X) satisfies (F4). For (6) with p′ ≥ 1 and p ≥ 2,

|F (q,X)| ≤ |q|p−2RN + |p′ − 2||q|p−2R.

When p ≥ 2, we have

|F (q,X)| ≤ Rp−1(N + |p′ − 2|).
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This F (q,X) satisfies (F4). To define viscosity solutions we have to prepare a
class of “test functions”. This class is important and a part of test functions
as space variable functions.
Definition 1.2. We denote by F(F ) the set of function f ∈ C2[0,∞) which
satisfies

(1.2) f(0) = f ′(0) = f ′′(0) = 0, f ′′(r) > 0 for all r > 0

and

(1.3) lim
|x|→0,x ̸=0

F
(
±∇f(|x|),±∇2f(|x|)

)
= 0.

Remark 1.3. Our definition of F(F ) is an extension of that in [7]. Actually,
if F is geometric then the set F(F ) is the same in [7].
For F of (6) with p′ ≥ 1, we shall write an example f ∈ F(F ) if it is

possible.
(i) If 1 < p < 2 then f(r) = r1+σ with σ > 1/(p− 1) > 1.
(ii) If p ≥ 2 then f(r) = r4.
(iii) If p ≤ 1 then F(F ) is empty.
On the other hand, if F is geometric then F(F ) is not empty (cf. [7]). We

shall define a class of test function so called admissible.
Definition 1.4. A function φ ∈ C2(QT ) is admissible (in short φ ∈ A(F )) if
for any ẑ = (t̂, x̂) ∈ QT with ∇φ(ẑ) = 0, there exist a constant δ > 0, f ∈ F(F )
and ω ∈ C[0,∞) satisfying ω ≥ 0 and limr→0 ω(r)/r = 0 such that

(1.4) |φ(z)− φ(ẑ)− φt(ẑ)(t− t̂)| ≤ f(|x− x̂|) + ω(|t− t̂|)

for all z = (t, x) with |z − ẑ| < δ. Now we shall introduce a notion of viscosity
solutions of (1.1).
Definition 1.5. Assume that (F1) and (F2) hold and that F(F ) is not empty.
1. A function u : QT → R ∪ {−∞} is a viscosity subsolution of (1.1) if u∗ is
locally bounded from above in QT and for all φ ∈ A(F ) and all local maximum
point z of u∗ − φ in QT ,

{
φt(z) + F (∇φ(z),∇2φ(z)) ≤ 0 if ∇φ(z) ̸= 0,
φt(z) ≤ 0 otherwise.

2. A function u : QT → R ∪ {+∞} is a viscosity supersolution of (1.1) if u∗ is
locally bounded from below in QT and for all φ ∈ A(F ) and all local minimum
point z of u∗ − φ in QT ,

{
φt(z) + F (∇φ(z),∇2φ(z)) ≥ 0 if ∇φ(z) ̸= 0,
φt(z) ≥ 0 otherwise.

3. A function u is called a viscosity solution of (1.1) if u is both a viscosity
sub- and super-solution of (1.1). We often suppress the word “viscosity” except

in statements of theorems. Before we shall explain a comparison theorem, we
need an additional assumption on F .
(F5) (i) F(F ) is not empty. (ii) If f ∈ F(F ) then af ∈ F(F ) for all a > 0.
Remark 1.6. (i) When p > 1 and p′ ≥ 1, F of (6) satisfies (F1), (F2) and
(F5).
(ii) If F is geomtric, then (F1), (F2) and (F5) hold. Here we introduce a nice
comparison principle by Giga, Goto, Ishii and Sato [6]. Their comparison prin-
ciple use usual viscosity solutions (cf. [2]). By the aid of Giga’s book [5], under
our assumptions on F we know our viscosity subsolutions and supersolutions
are usual viscosity subsolutions and supersolutions, respectively. We can apply
the comparison principle in [6].

Theorem 1.7. (Comparison theorem) [6, Theorem 2.1]. Suppose that F sat-
isfies (F1), (F2), (F3) and (F4). Let u and v be upper semicontinuous and
lower semicontinuous on [0, T ) × RN , respectively. Let u and v be a viscosity
sub- and super-solution of (1.1), respectively. Assume that

(A1) u(t, x) ≤ K(|x|+1), v(t, x) ≥ −K(|x|+1) for some K > 0 independent
of (t, x) ∈ QT ;

(A2) there is a modulus m such that

u(0, x)− v(0, y) ≤ m(|x− y|) for all (x, y) ∈ RN ×RN ;

(A3) u(0, x) − v(0, y) ≤ K(|x − y| + 1) on RN × RN for some K > 0
independent of (x, y). Then there is a modulus m such that

u(t, x)− v(t, y) ≤ m(|x− y|) on (0, T )×RN ×RN .

In particular u(t, x) ≤ v(t, x) on QT .

2 Construction of solutions

We shall construct a viscosity solution to the Cauchy problem of (1)-(2). Our
construction of solutions is based on Perron’s method. The pocedure is the
same as in [9] so we omit the proofs. For details see [9].
As usual we obtain the following two propositions. We state them without

the proof.

Proposition 2.1 (9, Proposition 2.5). Assume that (F1), (F2) and (F5) hold.
Let S be a set of subsolutions of (1). We set

u(z) := sup{v(z); v ∈ S}, z ∈ QT .

If u∗ is locally bounded from above in QT , then u is a subsolution of (1).

A similar assertion holds for supersolutions of (1).
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If u∗ is locally bounded from above in QT , then u is a subsolution of (1).
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Proposition 2.2 (9, Proposition 2.6). Assume that (F1), (F2) and (F5) hold.
Let S be a set of subsolutions of (1). Let ℓ and h be a subsolution and a
supersolution of (1), respectively. Assume that ℓ and h are locally bounded in
QT and ℓ ≤ h holds. We set

u(z) := sup{v(z); v ∈ S, ℓ ≤ v ≤ h in QT }, z ∈ QT .

Then u is a solution of (1).

To construct a solution we only have to find a sub- and a super-solution,
respectively, which fulfills the hypotheses of Proposition 2.2 and the given initial
data a(x). From the degenerate elliptic condition (F2), we have a sufficient
condition that a C2 function to be a super- and a sub-solution, respectively.

Lemma 2.3. Assume that F satisfies (F1), (F2). Suppose that F(F ) is not
empty. If u ∈ C2(QT ) satisfies

{
ut(z) + F (∇u(z),∇2u(z)) ≥ 0 if ∇u ̸= 0,
ut(z) ≥ 0 otherwise,

(
resp.

{
ut(z) + F (∇u(z),∇2u(z)) ≤ 0 if ∇u ̸= 0,
ut(z) ≤ 0 otherwise,

)

then u is a viscosity supersolution (resp. subsolution) of (1).

Here we shall write down an outline of construction of a solution of (1)-(2).
(a) Introduction of G (a family of C2 functions).
(b) Construction of C2 typical subsolutions and supersolutions of (1), respec-
tively. These are of form: (function of the time variable)+(function of the space
variable) and (function of the space variable)∈ G.
(c) Construction of a subsolution and a supersolution of (1)-(2), respectively.
Here we will use Proposition 2.1.
(d) We shall check the hypotheses of Proposition 2.2.
(e) Finally, we can construct a solution of (1)-(2) by using Propositon 2.2.

Now we shall carry out all steps.
(a) We introduce a set of C2 functions G;

G := {g ∈ C2[0,∞); g(0) = g′(0) = 0, g′(r) > 0 (r > 0), lim
r→0

g(r) = +∞}.

Remark 2.4. (i) If g(r) ∈ G then g(|x|) ∈ C2(RN ). A direct calculation yields

∇2g(|x|) = g′(|x|)
|x|

I +

(
g′′(|x|)− g′(|x|)

|x|

)(
x

|x|
⊗ x

|x|

)
.

Although ∇2g(|x|) does not appear to be continuous at x = 0, it is regarded as
a continuous function. Indeed, ∇2g(0) = g′′(0)I holds since limr→0 g

′(r)/r =
g′′(0) by the definition of G.

(ii) If f(r) ∈ F(F ) then f(r) ∈ G.
(iii) We may assume that

sup
r≥0

g′(r) < +∞, sup
r≥0

g′′(r) < +∞.

(b) We observe nice properties of F , which is important to construct a sub-
and a super-solution, respectively.

Lemma 2.5 (9, Lemma 4.3). Assume that F satisfies (F1), (F2) and (F5).
Then the following properties hold.
(F6)+ There exists g ∈ G such that for each A > 0, there exists B > 0 that
satisfies

(2.1) F
(
∇(Ag(|x|)),∇2(Ag(|x|))

)
≥ −B for all x ∈ RN\{0}.

(F6)− There exists g ∈ G such that for each A > 0, there exists B > 0 that
satisfies

(2.2) F
(
∇(−Ag(|x|)),∇2(−Ag(|x|))

)
≤ B for all x ∈ RN\{0}.

Then we obtain the following by Lemma 2.3.

Lemma 2.6 (9, Lemma 4.4). Assume that F satisfies (F1), (F2) and (F5).
Then u+(t, x) := Bt + Ag(|x|) and u−(t, x) := −Bt − Ag(|x|) is a viscosity
supersolution and a subsolution of (1), respectively, where g, A and B are
appeared in (F6)+ and (F6)−.

(c) Since the equation (1) is invariant under the translation and addition of
constants, we know u+,ξ(t, x; ε) := a(ξ)+Bt+Ag(|x−ξ|)+ε is a supersolution
of (1) and u−,ξ(t, x; ε) := a(ξ) − Bt − Ag(|x − ξ|) − ε is a subsolution of (1)
for each ε > 0 and ξ ∈ RN , where g, A, B are appeared in (F6)+ and (F6)−,
respectively.
Up to now we only consider the equation (1). We shall construct a super-

solution and a subsolution of (1)-(2), respectively. We shall explain how to
construct a supersolution of (1) satisfying the initial data. This is only new
parts compared with [9] because a(x) is not bounded. We can construct a
subsolution by similar procedure.

Lemma 2.7 (8, Lemma 3.7). Suppose that a(x) is a given uniformly continuous
function on RN (in short a(x) ∈ UC(RN )). For all ε > 0 with 0 < ε < 1,
there exist A(ε) > 0 and B(ε) > 0 such that for each ξ ∈ RN

(2.3) u+,ξ(0, x; ε) ≥ a(x) for all x ∈ RN

and

(2.4) inf
ξ∈RN

u+,ξ(0, x; ε) ≤ a(x) + ε for all x ∈ RN .
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Proposition 2.2 (9, Proposition 2.6). Assume that (F1), (F2) and (F5) hold.
Let S be a set of subsolutions of (1). Let ℓ and h be a subsolution and a
supersolution of (1), respectively. Assume that ℓ and h are locally bounded in
QT and ℓ ≤ h holds. We set

u(z) := sup{v(z); v ∈ S, ℓ ≤ v ≤ h in QT }, z ∈ QT .

Then u is a solution of (1).

To construct a solution we only have to find a sub- and a super-solution,
respectively, which fulfills the hypotheses of Proposition 2.2 and the given initial
data a(x). From the degenerate elliptic condition (F2), we have a sufficient
condition that a C2 function to be a super- and a sub-solution, respectively.

Lemma 2.3. Assume that F satisfies (F1), (F2). Suppose that F(F ) is not
empty. If u ∈ C2(QT ) satisfies

{
ut(z) + F (∇u(z),∇2u(z)) ≥ 0 if ∇u ̸= 0,
ut(z) ≥ 0 otherwise,

(
resp.

{
ut(z) + F (∇u(z),∇2u(z)) ≤ 0 if ∇u ̸= 0,
ut(z) ≤ 0 otherwise,

)

then u is a viscosity supersolution (resp. subsolution) of (1).

Here we shall write down an outline of construction of a solution of (1)-(2).
(a) Introduction of G (a family of C2 functions).
(b) Construction of C2 typical subsolutions and supersolutions of (1), respec-
tively. These are of form: (function of the time variable)+(function of the space
variable) and (function of the space variable)∈ G.
(c) Construction of a subsolution and a supersolution of (1)-(2), respectively.
Here we will use Proposition 2.1.
(d) We shall check the hypotheses of Proposition 2.2.
(e) Finally, we can construct a solution of (1)-(2) by using Propositon 2.2.

Now we shall carry out all steps.
(a) We introduce a set of C2 functions G;

G := {g ∈ C2[0,∞); g(0) = g′(0) = 0, g′(r) > 0 (r > 0), lim
r→0

g(r) = +∞}.

Remark 2.4. (i) If g(r) ∈ G then g(|x|) ∈ C2(RN ). A direct calculation yields

∇2g(|x|) = g′(|x|)
|x|

I +

(
g′′(|x|)− g′(|x|)

|x|

)(
x

|x|
⊗ x

|x|

)
.

Although ∇2g(|x|) does not appear to be continuous at x = 0, it is regarded as
a continuous function. Indeed, ∇2g(0) = g′′(0)I holds since limr→0 g

′(r)/r =
g′′(0) by the definition of G.

(ii) If f(r) ∈ F(F ) then f(r) ∈ G.
(iii) We may assume that

sup
r≥0

g′(r) < +∞, sup
r≥0

g′′(r) < +∞.

(b) We observe nice properties of F , which is important to construct a sub-
and a super-solution, respectively.

Lemma 2.5 (9, Lemma 4.3). Assume that F satisfies (F1), (F2) and (F5).
Then the following properties hold.
(F6)+ There exists g ∈ G such that for each A > 0, there exists B > 0 that
satisfies

(2.1) F
(
∇(Ag(|x|)),∇2(Ag(|x|))

)
≥ −B for all x ∈ RN\{0}.

(F6)− There exists g ∈ G such that for each A > 0, there exists B > 0 that
satisfies

(2.2) F
(
∇(−Ag(|x|)),∇2(−Ag(|x|))

)
≤ B for all x ∈ RN\{0}.

Then we obtain the following by Lemma 2.3.

Lemma 2.6 (9, Lemma 4.4). Assume that F satisfies (F1), (F2) and (F5).
Then u+(t, x) := Bt + Ag(|x|) and u−(t, x) := −Bt − Ag(|x|) is a viscosity
supersolution and a subsolution of (1), respectively, where g, A and B are
appeared in (F6)+ and (F6)−.

(c) Since the equation (1) is invariant under the translation and addition of
constants, we know u+,ξ(t, x; ε) := a(ξ)+Bt+Ag(|x−ξ|)+ε is a supersolution
of (1) and u−,ξ(t, x; ε) := a(ξ) − Bt − Ag(|x − ξ|) − ε is a subsolution of (1)
for each ε > 0 and ξ ∈ RN , where g, A, B are appeared in (F6)+ and (F6)−,
respectively.
Up to now we only consider the equation (1). We shall construct a super-

solution and a subsolution of (1)-(2), respectively. We shall explain how to
construct a supersolution of (1) satisfying the initial data. This is only new
parts compared with [9] because a(x) is not bounded. We can construct a
subsolution by similar procedure.

Lemma 2.7 (8, Lemma 3.7). Suppose that a(x) is a given uniformly continuous
function on RN (in short a(x) ∈ UC(RN )). For all ε > 0 with 0 < ε < 1,
there exist A(ε) > 0 and B(ε) > 0 such that for each ξ ∈ RN

(2.3) u+,ξ(0, x; ε) ≥ a(x) for all x ∈ RN

and

(2.4) inf
ξ∈RN

u+,ξ(0, x; ε) ≤ a(x) + ε for all x ∈ RN .
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Proof. It is easy to show (2.4). We put ξ = x in the left side of (2.4) and
observe that

inf
ξ∈RN

u+,ξ(0, x; ε) ≤ a(x) + ε.

To prove the inequality (2.3) we have to show the existence of A(ε) such that

(2.5) |a(x)− a(ξ)| ≤ A(ε)g(|x− ξ|) + ε.

Since a(x) ∈ UC(RN ), there exist a concave modulus functionm (i.e.,m[0,∞)→
[0,∞) is continuous, nondecreasing and m(0) = 0) such that

|a(x)− a(y)| ≤ m(|x− y|) for all x, y ∈ RN .

Since m is concave, for each ε > 0 there exists a constant M(ε) > 0 such that

m(r) ≤ M(ε)r + ε/2 for all r ∈ [0,∞).

Then we take A(ε) so that

M(ε)r + ε/2 ≤ A(ε)g(r) + ε for all r ∈ [0,∞).

Thus we obtain (2.5) which yields the inequality (2.3).
We can prove the following by a similar argument.

Lemma 2.8 (8, Lemma 3.8). Suppose that a(x) is a given uniformly continuous
function on RN (in short a(x) ∈ UC(RN )). For all ε > 0 with 0 < ε < 1,
there exist A(ε) > 0 and B(ε) > 0 such that for each ξ ∈ RN

(2.6) u−,ξ(0, x; ε) ≤ a(x) for all x ∈ RN

and

(2.7) sup
ξ∈RN

u−,ξ(0, x; ε) ≥ a(x)− ε for all x ∈ RN .

Now by Proposition 2.1 we conclude

Lemma 2.9 (9, Lemma 4.7). Assume that F satisfies (F1), (F2) and (F5).
Suppose that a(x) ∈ UC(RN ). Then for all T > 0, there exist U+, U− : [0, T ]×
Rn → R such that U+ is a supersolution of (1)-(2), U− is a subsolution of
(1)-(2) and (U+)∗(0, x) = (U−)

∗(0, x) = a(x). Moreover, U+(t, x) ≥ U−(t, x)
in QT .

Sketch of proof. By Proposition 2.1

(2.8) U+(t, x) := inf{u+,ξ(t, x; ε); 0 < ε < 1, ξ ∈ RN}

is also a supersolution of (1). Applying Lemma 2.7 we observe that U+(0, x) =
a(x) for all x ∈ RN . Moreover, since a(x) ≤ (U+)∗(0, x) ≤ U+(0, x) = a(x),
we see (U+)∗(0, x) = a(x). For a subsolution we set

(2.9) U−(t, x) := sup{u−,ξ(t, x; ε); 0 < ε < 1, ξ ∈ RN}.

By the definition of U+ and U−, we see U+(t, x) ≥ U+(0, x) = a(x) =
U−(0, x) ≥ U−(t, x) in QT .
Thus we constructed a supersolution and a subsolution of (1)-(2), respec-

tively.
(d) To construct a solution of (1)-(2) we have to check that the supersolution
U+ and the subsolution U−, respectively, fulfills the hypotheses of Proposition
2.2.

Lemma 2.10 (cf. 9, Lemma 4.8). Assume that F satisfies (F1), (F2) and
(F5). Suppose that a(x) ∈ UC(RN ). Let U+ and U− be as in Lemma 2.9.
Then there is a modulus function such that

(2.10) U+(t, x)− U−(0, y) ≤ ω(|x− y|+ t) for all t ∈ [0, T ], x, y ∈ RN

and

(2.11) U+(0, x)− U−(s, y) ≤ ω(|x− y|+ s) for all s ∈ [0, T ], x, y ∈ RN .

Moreover, U+ is locally bounded from above and U− is locally bounded from
below in QT .

Note that the inequality (2.10) and (2.11) imply that U+ and U− fulfills
(A1), (A2) and (A3).
(e) Finally, by Proposition 2.2 we can construct a solution of (1)-(2).
The uniqueness of solutions of (1)-(2) comes from the Comparison theorem.

So we only have to check conditions (A1)-(A3) to U+ and U− in Lemma 2.9.
Now, we conclude

Theorem 2.11. Suppose that F satisfies (F1), (F2), (F3), (F4) and (F5).
Assume that a(x) ∈ UC(RN ). Then there exists a (unique) viscosity solution
u ∈ UC([0, T )×RN ) of (1)-(2).

In particular, we obtain a corollary;

Corollary 2.12. Assume that a(x) ∈ UC(RN ). Then there exists a (unique)
viscosity solution u ∈ UC([0, T )×RN ) of (5)-(2) with p′ ≥ 1 and p ≥ 2.
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Proof. It is easy to show (2.4). We put ξ = x in the left side of (2.4) and
observe that

inf
ξ∈RN

u+,ξ(0, x; ε) ≤ a(x) + ε.

To prove the inequality (2.3) we have to show the existence of A(ε) such that

(2.5) |a(x)− a(ξ)| ≤ A(ε)g(|x− ξ|) + ε.

Since a(x) ∈ UC(RN ), there exist a concave modulus functionm (i.e.,m[0,∞)→
[0,∞) is continuous, nondecreasing and m(0) = 0) such that

|a(x)− a(y)| ≤ m(|x− y|) for all x, y ∈ RN .

Since m is concave, for each ε > 0 there exists a constant M(ε) > 0 such that

m(r) ≤ M(ε)r + ε/2 for all r ∈ [0,∞).

Then we take A(ε) so that

M(ε)r + ε/2 ≤ A(ε)g(r) + ε for all r ∈ [0,∞).

Thus we obtain (2.5) which yields the inequality (2.3).
We can prove the following by a similar argument.

Lemma 2.8 (8, Lemma 3.8). Suppose that a(x) is a given uniformly continuous
function on RN (in short a(x) ∈ UC(RN )). For all ε > 0 with 0 < ε < 1,
there exist A(ε) > 0 and B(ε) > 0 such that for each ξ ∈ RN

(2.6) u−,ξ(0, x; ε) ≤ a(x) for all x ∈ RN

and

(2.7) sup
ξ∈RN

u−,ξ(0, x; ε) ≥ a(x)− ε for all x ∈ RN .

Now by Proposition 2.1 we conclude

Lemma 2.9 (9, Lemma 4.7). Assume that F satisfies (F1), (F2) and (F5).
Suppose that a(x) ∈ UC(RN ). Then for all T > 0, there exist U+, U− : [0, T ]×
Rn → R such that U+ is a supersolution of (1)-(2), U− is a subsolution of
(1)-(2) and (U+)∗(0, x) = (U−)

∗(0, x) = a(x). Moreover, U+(t, x) ≥ U−(t, x)
in QT .

Sketch of proof. By Proposition 2.1

(2.8) U+(t, x) := inf{u+,ξ(t, x; ε); 0 < ε < 1, ξ ∈ RN}

is also a supersolution of (1). Applying Lemma 2.7 we observe that U+(0, x) =
a(x) for all x ∈ RN . Moreover, since a(x) ≤ (U+)∗(0, x) ≤ U+(0, x) = a(x),
we see (U+)∗(0, x) = a(x). For a subsolution we set

(2.9) U−(t, x) := sup{u−,ξ(t, x; ε); 0 < ε < 1, ξ ∈ RN}.

By the definition of U+ and U−, we see U+(t, x) ≥ U+(0, x) = a(x) =
U−(0, x) ≥ U−(t, x) in QT .
Thus we constructed a supersolution and a subsolution of (1)-(2), respec-

tively.
(d) To construct a solution of (1)-(2) we have to check that the supersolution
U+ and the subsolution U−, respectively, fulfills the hypotheses of Proposition
2.2.

Lemma 2.10 (cf. 9, Lemma 4.8). Assume that F satisfies (F1), (F2) and
(F5). Suppose that a(x) ∈ UC(RN ). Let U+ and U− be as in Lemma 2.9.
Then there is a modulus function such that

(2.10) U+(t, x)− U−(0, y) ≤ ω(|x− y|+ t) for all t ∈ [0, T ], x, y ∈ RN

and

(2.11) U+(0, x)− U−(s, y) ≤ ω(|x− y|+ s) for all s ∈ [0, T ], x, y ∈ RN .

Moreover, U+ is locally bounded from above and U− is locally bounded from
below in QT .

Note that the inequality (2.10) and (2.11) imply that U+ and U− fulfills
(A1), (A2) and (A3).
(e) Finally, by Proposition 2.2 we can construct a solution of (1)-(2).
The uniqueness of solutions of (1)-(2) comes from the Comparison theorem.

So we only have to check conditions (A1)-(A3) to U+ and U− in Lemma 2.9.
Now, we conclude

Theorem 2.11. Suppose that F satisfies (F1), (F2), (F3), (F4) and (F5).
Assume that a(x) ∈ UC(RN ). Then there exists a (unique) viscosity solution
u ∈ UC([0, T )×RN ) of (1)-(2).

In particular, we obtain a corollary;

Corollary 2.12. Assume that a(x) ∈ UC(RN ). Then there exists a (unique)
viscosity solution u ∈ UC([0, T )×RN ) of (5)-(2) with p′ ≥ 1 and p ≥ 2.
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Abstract

Consider the initial-boundary value problem for the coupled de-
generate strongly damped hyperbolic system of Kirchhoff type with
a homogeneous Dirichlet boundary condition. We give the polyno-
mially decay estimates of the solutions and their derivatives. More-
over, when either the wave coefficient or the initial data are appro-
priately small, we derive a lower decay rate for the solutions.
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1 Introduction

In this paper we consider the initial-boundary value problem for the coupled
degenerate hyperbolic system with strong damping of Kirchhoff type :

ρutt −
(
∥∇u(t)∥2 + ∥∇v(t)∥2

)γ
∆u−∆ut = 0 in Ω× (0,∞) , (1.1)

ρvtt −
(
∥∇u(t)∥2 + ∥∇v(t)∥2

)γ
∆v −∆vt = 0 in Ω× (0,∞) , (1.2)

with

u(x, 0) = u0(x) , ut(x, 0) = u1(x) , v(x, 0) = v0(x) , vt(x, 0) = v1(x) , (1.3)

u(x, t) = v(x, t) = 0 on ∂Ω× (0,∞) , (1.4)

where u = u(x, t) and v = v(x, t) are unknown real value functions, Ω is an open
boundary domain inN -dimensional Euclidean space RN with smooth boundary
∂Ω, ∆ = ∇·∇ =

∑N
j=1 ∂2/∂x2

j is the Laplacian, ∥·∥ = ∥·∥L2 is the usual norm

of L2(Ω), and ρ and γ are positive constants. The coupled hyperbolic system

1


