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Abstract

A Pythagorean triple is composed of a pair of legs a, b and a hy-
potenuse c, where a, b, c are positive integers. For a given positive
integer q, the group of Pythagorean triples whose legs have differ-
ence q is called the dq group by H. Hosoya [3]. In the present paper,
using some results about Pell equation, we investigate extensively
the structure of dq group.

2000 Mathematics Subject Classification. Primary 11D09; Sec-
ondary 11R11.

1 Pythgorean triples

If the lengths of the legs and hypotenuse of a rectangular triangle are re-
spectively a, b, c, then a2 + b2 = c2. When a, b, c are integers, we say (a, b, c)
is a Pythagorean triple(briefly, Py-triple). If a, b, c have no common factor,
(a, b, c) is called a primitive Py-triple(briefly, pPy-triple). In this paper, we
mainly treat pPy-triples. A triple (a, b, c) is a pPy-triple if and only if there
are positive integers m,n such that a = m2 − n2, b = 2mn, c = m2 + n2,
m − n(= ℓ) is a positive odd integer and m,n have no common factor. We
consider (ℓ, n) as a code of (a, b, c).

For a given pPy-triples (a, b, c), the difference of tow legs is |a− b| = |m2 −
n2 − 2mn| = |ℓ2 − 2n2|. Put q = |a− b|, we have
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(1.1) ℓ2 − 2n2 = ±q.

pPy-triples whose two legs have difference q form a family, which is called
dq group by H. Hosoya [3].

F. Barning [1] and A. Hall [2] introduced three matrices generating pPy-
triples. One of them is the following

(1.2) A =




1 2 2
2 1 2
2 3 3


 .

Let (a0, b0, c0) be a pPy-triple and set q0 = a0 − b0. By operating A on
the column vector (a0, b0, c0)

T , we get (a1, b1, c1)
T = A(a0, b0, c0)

T . Then,
(a1, b1, c1) is also a pPy-triple and q1 = a1 − b1 = −q0. In general, put
(ak, bk, ck)

T = Ak(a0, b0, c0)
T and qk = ak − bk for each integer k(≥ 0)). Then,

(ak, bk, ck) is a pPy-triple and qk = −qk−1 = (−1)kq0. Hence, each (ak, bk, ck)
belongs to d|q0| group. Moreover, we have

(1.3)

(
ℓk
nk

)
=

(
1 2
1 1

)k (
ℓ0
n0

)
.

2 Pell equations

Since the expression (1.1) can be regarded as a Pell equation x2−2y2 = ±q,
we need some facts about this equation. Firstly, we begin with a general Pell
equation

(2.1) x2 − ay2 = ±q,

where a is a positive integer, not a square and q is a positive integer. We deal
with numbers of the form x + y

√
a, where x, y are integers. The set of these

numbers is denoted as Z[
√
a]. The conjugate of number z = x+y

√
a is defined

as z̄ = x − y
√
a, and its norm as N(z) = zz̄ = x2 − ay2. In terms of these

concepts, the equation (2.1) can be rewritten

N(z) = ±q, z = x+ y
√
a ∈ Z[

√
a].

We use often this expression and z is considered as a solution of the equation.
If , for a solution z = x+y

√
a of Pell equation, x, y have no common factor, the

solution is called primitive. If x > 0, y > 0, z = x+y
√
a is called positive.The

Pell equation N(z) = 1 has always solutions and the trivial solution is z = 1.

The minimum solution z1 = x1 + y1
√
a with x1 > 0, y1 > 0 is said to be

its fundamental solution. Any solution of N(z) = 1 is expressed as ±zk1 or
±z̄k1 . As the equation N(z) = −1 do not always have solutions, in the sequel,
we always consider the case when N(z) = −1 has solutions. The minimum
solution z0 = x0 + y0

√
a with x0 > 0, y0 > 0 of N(z) = −1 is also called as its

fundamental solution. It is known that z20 = z1. When a = 2, N(z) = −1 has
solutions, and z0 = 1+

√
a, z1 = z20 = 3+ 2

√
a. Any solution of N(z) = −1 is

expressed as ±zk0 or ±z̄k0 .
Moreover, we assume that the equation (2.1) has solutions. If z is a solution

of (2.1), for any integer k, zzk0 is also its solution. We introduce a equivalent
relation on all of solutions of (2.1) as follows. When α, β are solutions of (2.1),
α is equivalent with β if and only if α = βz for some solution z of N(z) = −1.
All solutions of (2.1) are divided into classes under this equivalent relation. We
call these classes z0−classes. Similarly, another equivalent relation is defined
by α = βz for some solution z of N(z) = 1, and this relation gives equivalent
classes, witch are called z1−classes. A z0−class S is divided into two z1−classes,
a set S+ of solutions of N(z) = q and a set S− of solutions of N(z) = −q. Each
z0−class contains a solution α = xα + yα

√
a with least possible yα ≥ 0 in the

class. We call it minimal in the class. Each z1 class has a solution with similar
property, which we call z1−minimal in the class. The minimal solution of a
z0−class S is the smaller z1−minimal solution of two z1−classes S+, S−. Let
β = xβ + yβ

√
a be a solution in a z0−class with xβ > 0 and least possible

yβ > 0. We call β the fundamental solution of the class. The following is well
known(for example, [5] p299-300).

Theorem A. Let α = xα+yα
√
a be the z1−minimal solution of a z1−class.

We have

√
q ≤ |xα| ≤

√
(x1 + 1)q

2
, 0 ≤ yα ≤ y1

√
q

2(x1 + 1)
,

if N(α) = q, and

0 ≤ |xα| ≤
√

(x1 − 1)q

2
,

√
q

a
≤ yα ≤ y1

√
q

2(x1 − 1)
,

if N(α) = −q, where z1 = x1 + y1
√
a is the fundamental solution of N(z) = 1.

Firstly, we show

Lemma 1. Let S be a z0−class with S = S+∪S− such that α = xα+yα
√
a

with xα > 0, yα ≥ 0 is z1−minimal in S+. Put β = xβ + yβ
√
a = z0ᾱ, where

z0 is the fundamental solution of N(z) = −1. Then, xβ ≥ 0, yβ > 0 and −β̄
is z1−minimal in S−. If α and ᾱ belong the same class, the class is called
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ambiguous. If S is not ambiguous, there is another z0−class S̄ = S̄+ ∪ S̄− such
that −ᾱ is z1−minimal in S̄+ and β is z1−minimal in S̄−.

yα and yβ satisfy

(2.2) yα ≤ yβ ⇔ 0 ≤ yα ≤ y0

√
q

2x0

Conversely, let S be a z0−class with S = S+∪S− such that β = xβ +yβ
√
a

with xβ ≥ 0, yβ > 0 is z1−minimal in S−. Put α = xα + yα
√
a = −z0β̄. Then,

xα > 0, yβ ≥ 0 and −ᾱ is z1−minimal in S+. If the class is not ambiguous,
there is another z0−class S̄ = S̄+ ∪ S̄− such that α is z1−minimal in S̄+ and
−β̄ is z1−minimal in S̄−.

Proof. Firstly, we show yβ = y0xα − x0yα > 0. As

y20x
2
α = ay20y

2
α + qy20 > y2α(ay

2
0 − 1) = x2

0y
2
α

we get y0xα − x0yα > 0. Next, we show xβ = x0xα − ay0yα ≥ 0. From

0 ≤ yα ≤
x0y0

√
q√

x2
0 + 1

,

it follows

y2α ≤ x2
0y

2
0q

x2
0 + 1

.

Hence, we get

x2
0x

2
α = (ay20 − 1)(ay2α + q)

≥ a2y20y
2
α + qay20 − a

x2
0y

2
0q

x2
0 + 1

− q

= a2y20y
2
α + q(

ay20
x2
0 + 1

− 1) = a2y20y
2
α,

which shows xβ = x0xα − ay0yα ≥ 0.
Next, we show −β̄ is z1−minimal in S−. If this is true, β is also z1−minimal

in S̄−, when S is not ambiguous. Assume −β̄ is not z1−minimal. Then, there
is a solution γ = xγ + yγ

√
a with 0 < yγ < yβ such that γ = ±z2k0 (−β̄) or

γ = ±z̄2k0 (−β̄) for some k ≥ 1, where ± means + or −. When γ = ±z2k0 (−β̄),
as z0(−β̄) = α, we have γ = ±z2k−2

0 z0z0(−β̄) = ±z2k−2
0 z0α. In this case, ±

must be +, and we get yγ ≥ y0xα +x0yα ≥ y0xα −x0yα = yβ , a contradiction.
Hence, it holds γ = ±z̄2k0 (−β̄). Put z̄2k0 = X − Y

√
a. Then. we have γ =

±(X − Y
√
a)(−xβ + yβ

√
a) = ±(−(Xxα + aY yα) + (Y xα +Xyα)

√
a)). This

means ± = +, and we get yγ = Y xβ +Xyβ > yβ , a contradiction.
We get (2.2) from the following

yα ≤ yβ = y0xα − x0yα

⇔ (1 + x0)yα ≤ y0xα

⇔ (x0 + 1)2y2α ≤ y20x
2
α = y20(ay

2
α + q)

⇔ (x2
0 + 1)2y2α ≤ (x2

0 + 1)y2α + y20q

⇔ 2x0y
2
α ≤ y20q.

Now, we prove the converse statement. From

a2y20y
2
β = (x2

0 + 1)(x2
β + q) > x2

0x
2
β

if follows xα = ay0yβ − x1x1xβ > 0. We know, from Theorem A

yβ ≤ y1

√
q

2(x1 − 1)
= y0

√
q.

The following calculation

x2
0y

2
β − y20x

2
β = (ay20 − 1)y2β − y20x

2
β

= y20(ay
2
β − x2

β)− y2β

= y20q − y2β ≥ 0

implies yα = x0yβ − y0xβ ≥ 0.
Next, we show −ᾱ is z1−minimal in S+. If this is true, α is also z1−minimal

in S̄+, when S is not ambiguous. Assume −ᾱ is not z1−minimal. Then, there
is a solution γ = xγ + yγ

√
a with 0 < yγ < yα such that γ = ±z2k0 (−ᾱ) or

γ = ±z̄2k0 (−ᾱ) for some k ≥ 1. If γ = ±z2k0 (−ᾱ), as z0(ᾱ) = β, we have
γ = ±z2k−2

0 z0(−β). In this case, ± must be −, and we get yγ ≥ y0xβ +x0yβ ≥
x0yβ − y0xβ = yα, a contradiction. Hence, it holds γ = ±z̄2k0 (−ᾱ). But, as
before, This also leads to a contradiction.

From Lemma 1, we obtain

Theorem 1. Let S be a z0− class with S = S+ ∪ S− such that α =
xα+yα

√
a with xα > 0, yα ≥ 0 is z1−minimal in S+. Put β = xβ+yβ

√
a = z0ᾱ.

(1) If yα = 0, then, α = ᾱ and S is ambiguous. α =
√
q is minimal in S

and β =
√
qx0 +

√
qy0

√
a is the fundamental solution of S. If q > 1, β in not

primitive.

(2) If 0 < yα ≤ y0

√
q

2x0
, α is minimal in S and also its fundamental

solution. If S is not ambiguous, −ᾱ is minimal in S̄ and β is its fundamental
solution.
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before, This also leads to a contradiction.

From Lemma 1, we obtain

Theorem 1. Let S be a z0− class with S = S+ ∪ S− such that α =
xα+yα

√
a with xα > 0, yα ≥ 0 is z1−minimal in S+. Put β = xβ+yβ

√
a = z0ᾱ.
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(3) If y0

√
q

2x0
< yα ≤ y1

√
q

2(x1 + 1)
=

x0y0
√
q

x2
0 + 1

, −β̄ is minimal in S and

α is its fundamental solution. If S is not ambiguous, β is minimal in S̄ and
also its fundamental solution.

When a = 2, as we have z0 = 1 +
√
2, z1 = 3 + 2

√
2, it holds y0

√
q

2x0
=

√
q

2
= y1

√
q

2(x1 + 1)
. Hence, only the case (2) in Theorem 1 occurs. Thus,

we get

Corollary. Let S be a z0−class of the solutions of Pell equation x2−2y2 =
±q. Let α = xα + yα

√
2 be minimal in S. Then we have

√
q ≤ |xα| ≤

√
2q, 0 ≤ yα ≤

√
q

2
.

If xα > 0, α is also the fundamental solution of S. If xα < 0, the funda-
mental solution of S is −xα + yα

√
2 or xα − 2yα + (xα − yα)

√
2 according as

S is ambiguous or not.

It is well known that a prime p completely decomposes in Q(
√
2) if and only

if p ≡ ±1(mod 8). Since the class number of Q(
√
2) is one, the ideal (p) of

Q(
√
2) decomposes into (p) = ℘℘̄, where ℘ is a principal ideal ℘ = (a + b

√
2)

with some integer a and b. Since the norm function is multiplicative, the
following is well known.

Theorem B. There exist primitive x, y such that x2 − 2y2 = ±q if and
only if each prime factor p of q satisfies p ≡ ±1(mod 8)

Lemma 2. Let q satisfy the condition in Theorem B. A z0−class of the
solutions of x2 − 2y2 = ±q is ambiguous only when q is a square and α =

√
q

is contained in the class.
Proof. Let α = xα + yβ

√
2 be a solution in a z0−class S. Assume that ᾱ is

also contained in S. As it does not occur that ᾱ = ±zk0α, we have ᾱ = ±z̄k0α.
We can put k = 2m or k = 2m + 1. Set ±z̄m0 α = X + Y

√
2, which is also in

S. When k = 2m, we have ±(X + Y
√
2) = X − Y

√
2. Hence, we get X = 0 or

Y = 0. But as X ̸= 0, we obtain Y = 0, X = ±√
q. Thus, q must be a square

and
√
q + 0

√
2 is the minimal solution in S.

From now on, we consider only positive solutions of Pell equation x2−2y2 =
±q. Let S be a z0−class of positive solutions and α = xα + yα

√
2 is the

fundamental solution in S. Any solution in S can be represented as zk0α. Put
xk + yk

√
2 = zk0α. Then we have

(
xk

yk

)
=

(
1 2
1 1

)k (
xα

yα

)

This is the same relation as (1.3). Hence, if (xα, yα) is primitive, each (xk, yk)
is primitive.When (xk, yk) is primitive, xk must be a odd. From Theorem B,
Corollary and Lemma 2, we obtain

Theorem 2. There exists dq group if and only if q ≡ ±1(mod 8), where
any prime factor p of q satisfies p ≡ ±1(mod 8). Assume that q satisfies this
condition. Let (ℓi, ni), 1 ≤ i ≤ j be all pairs of positive integers such that

ℓ2i − 2n2
i = ±q,

√
q ≤ ℓi ≤

√
2q, 0 < ni ≤

√
q

2
,

and ℓi is a odd and ℓi and ni have no common factor. Let P (2i− 1), P (2i) be
the column vectors of the Pythagorean triples corresponding to (ℓi, ni), (ℓi −
2ni, ℓi − ni) respectively. Then, we have

dq = {AkP (i); 1 ≤ i ≤ 2j, 0 ≤ k},

where A is the matrix of Barning and Hall given in (1.2).

Remark. We note this theorem covers the case q = 1, because there exists
no prime factor p for this case. For q = 1, as

√
1 ≤ ℓ ≤

√
2, 0 < n ≤

√
2/2, we

have ℓ = 1, n = 1. Hence, we get the Pythagorean triple (5, 4, 3) corresponding
to the pair (1, 1).

Examples. We give some simple examples,
For q = 7, as

√
7 ≤ ℓ ≤

√
14, 0 < n ≤

√
14/2, we have ℓ = 3, n = 1.

Hence, we get Pythagorean triples (15, 8, 17), (5, 12, 13) corresponding to pairs
(3, 1), (1, 2) respectively.

For q = 17, as
√
17 ≤ ℓ ≤

√
34, 0 < n ≤

√
34/2, we have ℓ = 5, n = 2.

Hence, we get (45, 28, 53), (7, 24, 25) corresponding to pairs (5, 2), (1, 3) respec-
tively.

For q = 7×17 = 119, as
√
119 ≤ ℓ ≤

√
238, 0 < n ≤

√
238/2, we have ℓ1 =

11, n1 = 1 and ℓ2 = 13, n2 = 5.. Hence, we get (143, 24, 145), (261, 380, 461),
(299, 180, 349), (57, 176, 185) corresponding to pairs (11, 1), (9, 10), (13, 5), (3, 8)
respectively.

For q = 161, as
√
161 ≤ ℓ ≤

√
322, 0 < n ≤

√
322/2, we have ℓ1 = 13, n1 =

2 and ℓ2 = 17, n2 = 8. Hence, we get (221, 60, 229), (279, 440, 521), (561, 400, 689),
(19, 180, 181) corresponding to pairs (13, 2), (9, 11), (17, 8), (1, 9) respectively.
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(3) If y0

√
q

2x0
< yα ≤ y1

√
q

2(x1 + 1)
=

x0y0
√
q

x2
0 + 1

, −β̄ is minimal in S and

α is its fundamental solution. If S is not ambiguous, β is minimal in S̄ and
also its fundamental solution.

When a = 2, as we have z0 = 1 +
√
2, z1 = 3 + 2

√
2, it holds y0

√
q

2x0
=

√
q

2
= y1

√
q

2(x1 + 1)
. Hence, only the case (2) in Theorem 1 occurs. Thus,

we get

Corollary. Let S be a z0−class of the solutions of Pell equation x2−2y2 =
±q. Let α = xα + yα

√
2 be minimal in S. Then we have

√
q ≤ |xα| ≤

√
2q, 0 ≤ yα ≤

√
q

2
.

If xα > 0, α is also the fundamental solution of S. If xα < 0, the funda-
mental solution of S is −xα + yα

√
2 or xα − 2yα + (xα − yα)

√
2 according as

S is ambiguous or not.

It is well known that a prime p completely decomposes in Q(
√
2) if and only

if p ≡ ±1(mod 8). Since the class number of Q(
√
2) is one, the ideal (p) of

Q(
√
2) decomposes into (p) = ℘℘̄, where ℘ is a principal ideal ℘ = (a + b

√
2)

with some integer a and b. Since the norm function is multiplicative, the
following is well known.
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Abstract

In this short note, we shall give a result similar to Y. Zhang and T.
Cai [5] which states the diophantine equation

(x− b)x(x+ b)(y − b)y(y + b) = z2

has infinitely many nontrivial positive integer solutions (x, y, z) when
b(≥ 2) is even. We shall show this diophantine equation also has infinitely
many nontrivial positive integer solutions when integers b is divisible by
a prime p(≡ ±1 mod 8).

2010 Mathematics Subject Classification. 11D09, 11R11.

Introduction

Recently in their paper [5] (2015) , Y. Zhang and T. Cai proved there exists
infinitely nontrivial positive integer solutions of the diophantine equation

(x− b)x(x+ b)(y − b)y(y + b) = z2

for even number b ≥ 2. Here the integer solutions (x, y, z) are called nontrivial
when b̸ |x or b̸ | y and 0 < x− b < x < x+ b < y− b < y < y+ b. We note that,
for the case b = 1, K. R. S. Sastry showd the above diophantine equation has
infinitely many positive integer solutions (x, y, z) (see for example [3] or [5]).
The proof of [5] depends on Sastry’s idea when y = 2x− 1 the product of the
left-hand side of the above diophantine equation is square if (x+1)(2x−1) = m2

for some integer m. Here we shall use the fact that any prime p ≡ ±1 mod 8
completely decomposes in Q(

√
2). Let p ≡ ±1 mod 8 and suppose p|b. In


