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Abstract

A Pythagorean triple is composed of a pair of legs a, b and a hy-
potenuse ¢, where a, b, ¢ are positive integers. For a given positive
integer ¢, the group of Pythagorean triples whose legs have differ-
ence ¢ is called the d, group by H. Hosoya [3]. In the present paper,
using some results about Pell equation, we investigate extensively
the structure of d, group.

2000 Mathematics Subject Classification. Primary 11D09; Sec-
ondary 11R11.

1 Pythgorean triples

If the lengths of the legs and hypotenuse of a rectangular triangle are re-
spectively a,b, ¢, then a? + b?> = c2. When a, b, c are integers, we say (a, b, c)
is a Pythagorean triple(briefly, Py-triple). If a,b,c¢ have no common factor,
(a,b,c) is called a primitive Py-triple(briefly, pPy-triple). In this paper, we
mainly treat pPy-triples. A triple (a,b,c) is a pPy-triple if and only if there
are positive integers m,n such that a = m? —n2, b = 2mn, ¢ = m? + n?,
m — n(= £) is a positive odd integer and m,n have no common factor. We
consider (¢,n) as a code of (a,b,c).

For a given pPy-triples (a, b, ), the difference of tow legs is |a — b| = |m? —
n? — 2mn| = | — 2n?|. Put ¢ = |a — b|, we have
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(1.1) 2 —2n? = +q.

pPy-triples whose two legs have difference g form a family, which is called
d, group by H. Hosoya [3].

F. Barning [1] and A. Hall [2] introduced three matrices generating pPy-
triples. One of them is the following

12 2
(1.2) A= 21 2
2 3 3

Let (ag,bo,co) be a pPy-triple and set ¢y = ap — bp. By operating A on
the column vector (ag,bo,co)?, we get (ay,b1,c1)? = A(ag,bo,co)?. Then,
(a1,b1,c1) is also a pPy-triple and ¢; = a3 — by = —qp. In general, put
(ag,br,cx)’ = A¥(ag, bo, co)T and g = ay, — by, for each integer k(> 0)). Then,
(ag, b, cr) is a pPy-triple and gz = —qx_1 = (—1)*qo. Hence, each (ay, bx, c)
belongs to d|,,| group. Moreover, we have

s ()0

2  Pell equations

Since the expression (1.1) can be regarded as a Pell equation 2% —2y? = +¢,
we need some facts about this equation. Firstly, we begin with a general Pell
equation

(2.1) 2 — ay® = +q,

where a is a positive integer, not a square and ¢ is a positive integer. We deal
with numbers of the form x + y+/a, where z,y are integers. The set of these
numbers is denoted as Z[\/a]. The conjugate of number z = x +y+/a is defined
as Z = x — yy/a, and its norm as N(z) = 2z = 22 — ay®>.  In terms of these
concepts, the equation (2.1) can be rewritten

N(z) = +q, z=1z+yVa € Z[\a).

We use often this expression and z is considered as a solution of the equation.
If | for a solution z = x+y+/a of Pell equation, x,y have no common factor, the
solution is called primitive. If x > 0,y > 0, 2 = +y+/a is called positive.The
Pell equation N(z) = 1 has always solutions and the trivial solution is z = 1.
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The minimum solution z; = 7 + y14/a with 3 > 0,41 > 0 is said to be
its fundamental solution. Any solution of N(z) = 1 is expressed as +zF or
+2zF. As the equation N(z) = —1 do not always have solutions, in the sequel,
we always consider the case when N(z) = —1 has solutions. The minimum
solution zg = g + yov/a with 29 > 0,yg > 0 of N(2) = —1 is also called as its
fundamental solution. It is known that 23 = 2;. When a = 2, N(z) = —1 has
solutions, and zo = 1 ++/a, 21 = 2§ = 3+ 2y/a. Any solution of N(z) = —1is
expressed as +z§ or £2§.

Moreover, we assume that the equation (2.1) has solutions. If z is a solution
of (2.1), for any integer k, ZZ(’)C is also its solution. We introduce a equivalent
relation on all of solutions of (2.1) as follows. When «, § are solutions of (2.1),
a is equivalent with 8 if and only if o = 8z for some solution z of N(z) = —1.
All solutions of (2.1) are divided into classes under this equivalent relation. We
call these classes zp—classes. Similarly, another equivalent relation is defined
by a = [z for some solution z of N(z) = 1, and this relation gives equivalent
classes, witch are called z1 —classes. A zg—class S is divided into two z; —classes,
a set S; of solutions of N(z) = ¢ and a set S_ of solutions of N(z) = —¢. Each
2p0—class contains a solution a = x, + ya+/a with least possible y, > 0 in the
class. We call it minimal in the class. Each z; class has a solution with similar
property, which we call z;—minimal in the class. The minimal solution of a
zg—class S is the smaller z; —minimal solution of two z;—classes S;,S_. Let
B = x5 + ygv/a be a solution in a zp—class with xg > 0 and least possible
yg > 0. We call 3 the fundamental solution of the class. The following is well
known(for example, [5] p299-300).

Theorem A. Let @ = x, +yq+/a be the z; —minimal solution of a z; —class.

We have
[(z1 +1)q q
< « < 9 O S « S b
VI < zal < 5 Yo <Y1 o+ 1)

if N(a) = ¢, and

[(z1—1)g [q q
0<|zo| <\ —F5—, = < Ya < YT
< leal < 2 o == 90m, -1

if N(a) = —q, where z; = 21 + y1+/a is the fundamental solution of N(z) = 1.
Firstly, we show

Lemma 1. Let S be a 29—class with S = S US_ such that a = z,+ya\/a
with 24 > 0,yq > 0is z;—minimal in S;. Put 8 = 23 + ygv/a = 2@, where
2o is the fundamental solution of N(z) = —1. Then, 25 > 0, yz > 0 and —f3
is z;—minimal in S_. If @ and @ belong the same class, the class is called
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ambiguous. 1f S is not ambiguous, there is another zp—class S =8, US_ such
that —& is z;—minimal in Sy and [ is z;—minimal in S_.
Yo and yg satisfy

q
(2.2) YaS¥p € 0<ya<yoy/5 -
\ 20

Conversely, let S be a zp—class with S = S US_ such that = 25 +yg/a
with 23 > 0,y3 > 0 is z;—minimal in S_. Put o = 2 + yav/a = —2p/3. Then,
Zo >0, yg > 0 and —a is z;—minimal in S;. If the class is not ambiguous,
there is another zp—class S = S, U S_ such that a is z; —minimal in Sy and
—f3 is z;—minimal in S_.

Proof. Firstly, we show yg = yoza — Zoya > 0. As

yord = ayya + ayg > yalayg — 1) = x3ya

we get YoTo — ToYo > 0. Next, we show xg = xozq — ayoye > 0. From

0< g < ToYo~/q

o = )

3+ 1
it follows
y2 < m%y%q
@ = :c% +1°

Hence, we get

xoa?, = (ayg — 1)(ay? + q)

2,2
ZToYod
> a20202 av? — a0
= 0 Yol T qaYyy 2 +1

2
— @212 + g2 — 1) = a®y2e?,
Ty + 1

which shows x5 = zgzq — ayoya > 0.

Next, we show —f3 is z; —minimal in S_. If this is true, /3 is also z; —minimal
in S_, when S is not ambiguous. Assume —f is not z; —minimal. Then, there
is a solution v = z, + y,+/a with 0 < y, < ys such that v = +22%(—f) or
v = +22¥(—3) for some k > 1, where & means + or —. When v = +22*(—5),
as 20(—f) = a, we have v = +22¥"22020(—f) = £225"?20a. In this case, +
must be +, and we get y, > YoTa + ToYa = YoTa — ToYa = Yg, & contradiction.
Hence, it holds v = £z2¥(—f3). Put 23¥ = X — Y\/a. Then. we have v =
H(X — Y /a)(—2p + ysy/a) = H(—(XTa + aVya) + (Ve + Xya)y/a). This
means + = +, and we get y, = Yz + Xyg > yg, a contradiction.

We get (2.2) from the following
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Yo S Y3 = YoZa — ToYa

& (14 20)¥%a < YoTa

& (zo+1)%y2 < ygal = y3(ayl +q)
& (xg+ D%2 < (25 + Dy2 + wa
& 2zo0yl < yig-

Now, we prove the converse statement. From

a*ygys = (x5 + 1) (x5 + q) > x573

if follows z = ayoys — z1z128 > 0. We know, from Theorem A

[ 4
< = .
Ys YN 50T Yov/q

The following calculation

2oyE — vous = (ayg — 1)y — voa
20,2 2 2
=yolays — 23) — Y3
=y5q—y5 >0
implies yo = oy — Yoxrz > 0.

Next, we show —a& is z; —minimal in S . If this is true, « is also z; —minimal
in S;, when S is not ambiguous. Assume —a& is not z; —minimal. Then, there
is a solution v = x, + y,\/a with 0 < y, < y, such that v = £23%(—a) or
v = £z3¥(—a) for some k > 1. If v = +£22%¥(—a), as zp(a) = B, we have
v = +22""220(—B). In this case, + must be —, and we get ¥, > yors + Toys >
ToYs — YoTs = Ya, a contradiction. Hence, it holds v = +z2¥(—a). But, as
before, This also leads to a contradiction.

From Lemma 1, we obtain

Theorem 1. Let S be a zp— class with § = S; U S_ such that o =
Tat+Yav/a with zo, > 0,y > 01 2z —minimal in S;. Put 8 = 23+ygv/a = zoa.

(1) If yo = 0, then, @ = & and S is ambiguous. a = ,/g is minimal in S
and 8 = \/qro + \/qyo+/a is the fundamental solution of S. If ¢ > 1, 8 in not
primitive.

(2) 0 < ya < Yoy /2i, « is minimal in S and also its fundamental
Zo

solution. If S is not ambiguous, —& is minimal in S and 3 is its fundamental
solution.



6 Toru Ishihara

q q ToYoq .o
3) If — < yYq < = , —F is minimal in S and
3) Y\ 2ay <Y SN oG 1) T el P

a is its fundamental solution. If S is not ambiguous, B is minimal in S and
also its fundamental solution.

When a = 2, as we have zg = 1 + /2, 2z, = 3+ 2V/2, it holds 2i =
Lo
\/g =1 /2(#21). Hence, only the case (2) in Theorem 1 occurs. Thus,
we get
Corollary. Let S be a zy—class of the solutions of Pell equation z? —2y? =

+q. Let a = x4 + yov/2 be minimal in S. Then we have

VA lral S V3 05305 %

If z, > 0, « is also the fundamental solution of S. If z, < 0, the funda-
mental solution of S is —y + Yo V2 OF Ty — 20 + (o — ya)\/§ according as
S is ambiguous or not.

It is well known that a prime p completely decomposes in Q(1/2) if and only
if p = +1(mod 8). Since the class number of Q(1/2) is one, the ideal (p) of
Q(v/2) decomposes into (p) = p@, where @ is a principal ideal p = (a + bv/2)
with some integer a and b. Since the norm function is multiplicative, the
following is well known.

Theorem B. There exist primitive z, y such that 22 — 2y? = +¢ if and
only if each prime factor p of ¢ satisfies p = £1(mod 8)

Lemma 2. Let ¢ satisfy the condition in Theorem B. A zg—class of the
solutions of 22 — 2y? = 4¢q is ambiguous only when ¢ is a square and a = Va
is contained in the class.

Proof. Let oo = z, + yg\@ be a solution in a zg—class S. Assume that & is
also contained in S. As it does not occur that & = £z§a, we have a = +zfa.
We can put k = 2m or k = 2m + 1. Set +z'a = X + Y+/2, which is also in
S. When k = 2m, we have +(X +Y1/2) = X — Y'v/2. Hence, we get X =0 or
Y =0. But as X # 0, we obtain Y = 0, X = 4,/q. Thus, ¢ must be a square
and V4 -+ 0+/2 is the minimal solution in S.

From now on, we consider only positive solutions of Pell equation 2% —2y? =
+q. Let S be a zg—class of positive solutions and o = x4 + yaVv/2 is the
fundamental solution in S. Any solution in S can be represented as zfa. Put
T + ykﬂ = z(’)“a. Then we have
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()= t) (o)

This is the same relation as (1.3). Hence, if (24, ¥yq) is primitive, each (zx, yi)
is primitive.When (zy,yx) is primitive, zx must be a odd. From Theorem B,
Corollary and Lemma 2, we obtain

Theorem 2. There exists d, group if and only if ¢ = £1(mod 8), where
any prime factor p of ¢ satisfies p = £1(mod 8). Assume that ¢ satisfies this
condition. Let (¢;,n;), 1 <i < j be all pairs of positive integers such that

=2} =q, G U< /2, 0<m§£’

and ¢; is a odd and ¢; and n; have no common factor. Let P(2i — 1), P(2i) be
the column vectors of the Pythagorean triples corresponding to (¢;,n;), (£; —
2n;,¢; — n;) respectively. Then, we have

d, = {A*P(i); 1<i<2j, 0<k},
where A is the matrix of Barning and Hall given in (1.2).

Remark. We note this theorem covers the case ¢ = 1, because there exists
no prime factor p for this case. For ¢ = 1, as Vi<ei< \/?, 0<n<4/2/2, we
have £ = 1,n = 1. Hence, we get the Pythagorean triple (5,4, 3) corresponding
to the pair (1,1).

Examples. We give some simple examples,

For ¢ = 7, as V7 < £ < V14, 0 < n < V14/2, we have £ = 3,n = 1.
Hence, we get Pythagorean triples (15,8,17), (5,12, 13) corresponding to pairs
(3,1), (1,2) respectively.

For ¢ = 17, as V17 < ¢ < /34, 0<n§\/3>4/2,wehave€:5,n:2.
Hence, we get (45,28, 53), (7,24, 25) corresponding to pairs (5,2), (1, 3) respec-
tively.

For ¢ = 7x 17 = 119, as v/119 < £ < /238, 0 < n < v/238/2, we have {; =
11,71 = 1 and ¢5 = 13,no = 5.. Hence, we get (143,24, 145), (261, 380, 461),
(299, 180, 349), (57,176, 185) corresponding to pairs (11, 1), (9, 10), (13,5), (3, 8)
respectively.

For ¢ = 161, as V161 < £ < /322, 0 < n < /322/2, we have £, = 13,n; =
2 and ¢5 = 17,1y = 8. Hence, we get (221, 60, 229), (279, 440, 521), (561, 400, 689),
(19,180, 181) corresponding to pairs (13,2),(9,11), (17,8), (1,9) respectively.
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