Pell Equations and Pythagorean Triples with Constant Difference of Two Legs

By

Toru Ishihara

Professor Emeritus, The University of Tokushima

e-mail address : tostfeld@mb.pikara.ne.jp (Received October 6, 2015. Revised October 8, 2015)

Abstract

A Pythagorean triple is composed of a pair of legs a, b and a hypotenuse c, where a, b, c are positive integers. For a given positive integer q, the group of Pythagorean triples whose legs have difference q is called the d_q group by H. Hosoya [3]. In the present paper, using some results about Pell equation, we investigate extensively the structure of d_q group.

2000 Mathematics Subject Classification. Primary 11D09; Secondary 11R11.

1 Pythgorean triples

If the lengths of the legs and hypotenuse of a rectangular triangle are respectively a, b, c, then $a^2 + b^2 = c^2$. When a, b, c are integers, we say (a, b, c)is a Pythagorean triple(briefly, Py-triple). If a, b, c have no common factor, (a, b, c) is called a primitive Py-triple(briefly, pPy-triple). In this paper, we mainly treat pPy-triples. A triple (a, b, c) is a pPy-triple if and only if there are positive integers m, n such that $a = m^2 - n^2$, b = 2mn, $c = m^2 + n^2$, $m - n(= \ell)$ is a positive odd integer and m, n have no common factor. We consider (ℓ, n) as a code of (a, b, c).

For a given pPy-triples (a, b, c), the difference of tow legs is $|a - b| = |m^2 - n^2 - 2mn| = |\ell^2 - 2n^2|$. Put q = |a - b|, we have

(1.1)
$$\ell^2 - 2n^2 = \pm q$$

pPy-triples whose two legs have difference q form a family, which is called d_q group by H. Hosoya [3].

F. Barning [1] and A. Hall [2] introduced three matrices generating pPytriples. One of them is the following

(1.2)
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 3 & 3 \end{pmatrix}.$$

Let (a_0, b_0, c_0) be a pPy-triple and set $q_0 = a_0 - b_0$. By operating A on the column vector $(a_0, b_0, c_0)^T$, we get $(a_1, b_1, c_1)^T = A(a_0, b_0, c_0)^T$. Then, (a_1, b_1, c_1) is also a pPy-triple and $q_1 = a_1 - b_1 = -q_0$. In general, put $(a_k, b_k, c_k)^T = A^k(a_0, b_0, c_0)^T$ and $q_k = a_k - b_k$ for each integer $k(\geq 0)$). Then, (a_k, b_k, c_k) is a pPy-triple and $q_k = -q_{k-1} = (-1)^k q_0$. Hence, each (a_k, b_k, c_k) belongs to $d_{|q_0|}$ group. Moreover, we have

(1.3)
$$\begin{pmatrix} \ell_k \\ n_k \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}^k \begin{pmatrix} \ell_0 \\ n_0 \end{pmatrix}.$$

2 Pell equations

Since the expression (1.1) can be regarded as a Pell equation $x^2 - 2y^2 = \pm q$, we need some facts about this equation. Firstly, we begin with a general Pell equation

(2.1)
$$x^2 - ay^2 = \pm q,$$

where a is a positive integer, not a square and q is a positive integer. We deal with numbers of the form $x + y\sqrt{a}$, where x, y are integers. The set of these numbers is denoted as $Z[\sqrt{a}]$. The conjugate of number $z = x + y\sqrt{a}$ is defined as $\bar{z} = x - y\sqrt{a}$, and its norm as $N(z) = z\bar{z} = x^2 - ay^2$. In terms of these concepts, the equation (2.1) can be rewritten

$$N(z) = \pm q, \ z = x + y\sqrt{a} \in \mathbb{Z}[\sqrt{a}],$$

We use often this expression and z is considered as a solution of the equation. If, for a solution $z = x + y\sqrt{a}$ of Pell equation, x, y have no common factor, the solution is called *primitive*. If $x > 0, y > 0, z = x + y\sqrt{a}$ is called **positive**. The Pell equation N(z) = 1 has always solutions and the trivial solution is z = 1. The minimum solution $z_1 = x_1 + y_1\sqrt{a}$ with $x_1 > 0, y_1 > 0$ is said to be its fundamental solution. Any solution of N(z) = 1 is expressed as $\pm z_1^k$ or $\pm \bar{z}_1^k$. As the equation N(z) = -1 do not always have solutions, in the sequel, we always consider the case when N(z) = -1 has solutions. The minimum solution $z_0 = x_0 + y_0\sqrt{a}$ with $x_0 > 0, y_0 > 0$ of N(z) = -1 is also called as its fundamental solution. It is known that $z_0^2 = z_1$. When a = 2, N(z) = -1 has solutions, and $z_0 = 1 + \sqrt{a}, \ z_1 = z_0^2 = 3 + 2\sqrt{a}$. Any solution of N(z) = -1 is expressed as $\pm z_0^k$ or $\pm \bar{z}_0^k$.

Moreover, we assume that the equation (2.1) has solutions. If z is a solution of (2.1), for any integer k, zz_0^k is also its solution. We introduce a equivalent relation on all of solutions of (2.1) as follows. When α, β are solutions of (2.1), α is equivalent with β if and only if $\alpha = \beta z$ for some solution z of N(z) = -1. All solutions of (2.1) are divided into classes under this equivalent relation. We call these classes z_0 -classes. Similarly, another equivalent relation is defined by $\alpha = \beta z$ for some solution z of N(z) = 1, and this relation gives equivalent classes, witch are called z_1 -classes. A z_0 -class S is divided into two z_1 -classes, a set S_+ of solutions of N(z) = q and a set S_- of solutions of N(z) = -q. Each z_0 -class contains a solution $\alpha = x_\alpha + y_\alpha \sqrt{a}$ with least possible $y_\alpha \ge 0$ in the class. We call it *minimal* in the class. Each z_1 class has a solution with similar property, which we call z_1 -minimal in the class. The minimal solution of a z_0 -class S is the smaller z_1 -minimal solution of two z_1 -classes S_+, S_- . Let $\beta = x_{\beta} + y_{\beta}\sqrt{a}$ be a solution in a z_0 -class with $x_{\beta} > 0$ and least possible $y_{\beta} > 0$. We call β the fundamental solution of the class. The following is well known(for example, [5] p299-300).

Theorem A. Let $\alpha = x_{\alpha} + y_{\alpha}\sqrt{a}$ be the z_1 -minimal solution of a z_1 -class. We have

$$\sqrt{q} \le |x_{\alpha}| \le \sqrt{\frac{(x_1+1)q}{2}}, \ 0 \le y_{\alpha} \le y_1 \sqrt{\frac{q}{2(x_1+1)}},$$

if $N(\alpha) = q$, and

$$0 \le |x_{\alpha}| \le \sqrt{\frac{(x_1-1)q}{2}}, \ \sqrt{\frac{q}{a}} \le y_{\alpha} \le y_1 \sqrt{\frac{q}{2(x_1-1)}},$$

if $N(\alpha) = -q$, where $z_1 = x_1 + y_1\sqrt{a}$ is the fundamental solution of N(z) = 1.

Firstly, we show

Lemma 1. Let S be a z_0 -class with $S = S_+ \cup S_-$ such that $\alpha = x_\alpha + y_\alpha \sqrt{a}$ with $x_\alpha > 0, y_\alpha \ge 0$ is z_1 -minimal in S_+ . Put $\beta = x_\beta + y_\beta \sqrt{a} = z_0 \bar{\alpha}$, where z_0 is the fundamental solution of N(z) = -1. Then, $x_\beta \ge 0, y_\beta > 0$ and $-\bar{\beta}$ is z_1 -minimal in S_- . If α and $\bar{\alpha}$ belong the same class, the class is called

ambiguous. If S is not ambiguous, there is another z_0 -class $\bar{S} = \bar{S}_+ \cup \bar{S}_-$ such that $-\bar{\alpha}$ is z_1 -minimal in \bar{S}_+ and β is z_1 -minimal in \bar{S}_- .

 y_{α} and y_{β} satisfy

(2.2)
$$y_{\alpha} \le y_{\beta} \iff 0 \le y_{\alpha} \le y_0 \sqrt{\frac{q}{2x_0}}$$

Conversely, let S be a z_0 -class with $S = S_+ \cup S_-$ such that $\beta = x_\beta + y_\beta \sqrt{a}$ with $x_\beta \ge 0, y_\beta > 0$ is z_1 -minimal in S_- . Put $\alpha = x_\alpha + y_\alpha \sqrt{a} = -z_0 \overline{\beta}$. Then, $x_\alpha > 0, \ y_\beta \ge 0$ and $-\overline{\alpha}$ is z_1 -minimal in S_+ . If the class is not ambiguous, there is another z_0 -class $\overline{S} = \overline{S}_+ \cup \overline{S}_-$ such that α is z_1 -minimal in \overline{S}_+ and $-\overline{\beta}$ is z_1 -minimal in \overline{S}_- .

Proof. Firstly, we show $y_{\beta} = y_0 x_{\alpha} - x_0 y_{\alpha} > 0$. As

$$y_0^2 x_\alpha^2 = a y_0^2 y_\alpha^2 + q y_0^2 > y_\alpha^2 (a y_0^2 - 1) = x_0^2 y_\alpha^2$$

we get $y_0 x_\alpha - x_0 y_\alpha > 0$. Next, we show $x_\beta = x_0 x_\alpha - a y_0 y_\alpha \ge 0$. From

$$0 \le y_{\alpha} \le \frac{x_0 y_0 \sqrt{q}}{\sqrt{x_0^2 + 1}},$$

it follows

$$y_{\alpha}^2 \le \frac{x_0^2 y_0^2 q}{x_0^2 + 1}.$$

Hence, we get

$$\begin{split} x_0^2 x_\alpha^2 &= (ay_0^2 - 1)(ay_\alpha^2 + q) \\ &\geq a^2 y_0^2 y_\alpha^2 + qay_0^2 - a\frac{x_0^2 y_0^2 q}{x_0^2 + 1} - q \\ &= a^2 y_0^2 y_\alpha^2 + q(\frac{ay_0^2}{x_0^2 + 1} - 1) = a^2 y_0^2 y_\alpha^2, \end{split}$$

which shows $x_{\beta} = x_0 x_{\alpha} - a y_0 y_{\alpha} \ge 0$.

Next, we show $-\bar{\beta}$ is z_1 -minimal in S_- . If this is true, β is also z_1 -minimal in \bar{S}_- , when S is not ambiguous. Assume $-\bar{\beta}$ is not z_1 -minimal. Then, there is a solution $\gamma = x_{\gamma} + y_{\gamma}\sqrt{a}$ with $0 < y_{\gamma} < y_{\beta}$ such that $\gamma = \pm z_0^{2k}(-\bar{\beta})$ or $\gamma = \pm \bar{z}_0^{2k}(-\bar{\beta})$ for some $k \ge 1$, where \pm means + or -. When $\gamma = \pm z_0^{2k}(-\bar{\beta})$, as $z_0(-\bar{\beta}) = \alpha$, we have $\gamma = \pm z_0^{2k-2}z_0z_0(-\bar{\beta}) = \pm z_0^{2k-2}z_0\alpha$. In this case, \pm must be +, and we get $y_{\gamma} \ge y_0x_{\alpha} + x_0y_{\alpha} \ge y_0x_{\alpha} - x_0y_{\alpha} = y_{\beta}$, a contradiction. Hence, it holds $\gamma = \pm \bar{z}_0^{2k}(-\bar{\beta})$. Put $\bar{z}_0^{2k} = X - Y\sqrt{a}$. Then, we have $\gamma = \pm (X - Y\sqrt{a})(-x_{\beta} + y_{\beta}\sqrt{a}) = \pm (-(Xx_{\alpha} + aYy_{\alpha}) + (Yx_{\alpha} + Xy_{\alpha})\sqrt{a}))$. This means $\pm = +$, and we get $y_{\gamma} = Yx_{\beta} + Xy_{\beta} > y_{\beta}$, a contradiction.

We get (2.2) from the following

$$y_{\alpha} \leq y_{\beta} = y_0 x_{\alpha} - x_0 y_{\alpha}$$

$$\Leftrightarrow \quad (1+x_0) y_{\alpha} \leq y_0 x_{\alpha}$$

$$\Leftrightarrow \quad (x_0+1)^2 y_{\alpha}^2 \leq y_0^2 x_{\alpha}^2 = y_0^2 (a y_{\alpha}^2 + q)$$

$$\Leftrightarrow \quad (x_0^2+1)^2 y_{\alpha}^2 \leq (x_0^2+1) y_{\alpha}^2 + y_0^2 q$$

$$\Leftrightarrow \quad 2x_0 y_{\alpha}^2 \leq y_0^2 q.$$

Now, we prove the converse statement. From

$$a^2 y_0^2 y_\beta^2 = (x_0^2 + 1)(x_\beta^2 + q) > x_0^2 x_\beta^2$$

if follows $x_{\alpha} = ay_0y_{\beta} - x_1x_1x_{\beta} > 0$. We know, from Theorem A

$$y_{\beta} \le y_1 \sqrt{\frac{q}{2(x_1 - 1)}} = y_0 \sqrt{q}.$$

The following calculation

$$\begin{aligned} x_0^2 y_\beta^2 - y_0^2 x_\beta^2 &= (ay_0^2 - 1)y_\beta^2 - y_0^2 x_\beta^2 \\ &= y_0^2 (ay_\beta^2 - x_\beta^2) - y_\beta^2 \\ &= y_0^2 q - y_\beta^2 \ge 0 \end{aligned}$$

implies $y_{\alpha} = x_0 y_{\beta} - y_0 x_{\beta} \ge 0$.

Next, we show $-\bar{\alpha}$ is z_1 -minimal in S_+ . If this is true, α is also z_1 -minimal in \bar{S}_+ , when S is not ambiguous. Assume $-\bar{\alpha}$ is not z_1 -minimal. Then, there is a solution $\gamma = x_{\gamma} + y_{\gamma}\sqrt{a}$ with $0 < y_{\gamma} < y_{\alpha}$ such that $\gamma = \pm z_0^{2k}(-\bar{\alpha})$ or $\gamma = \pm \bar{z}_0^{2k}(-\bar{\alpha})$ for some $k \geq 1$. If $\gamma = \pm z_0^{2k}(-\bar{\alpha})$, as $z_0(\bar{\alpha}) = \beta$, we have $\gamma = \pm z_0^{2k-2}z_0(-\beta)$. In this case, \pm must be -, and we get $y_{\gamma} \geq y_0 x_{\beta} + x_0 y_{\beta} \geq x_0 y_{\beta} - y_0 x_{\beta} = y_{\alpha}$, a contradiction. Hence, it holds $\gamma = \pm \bar{z}_0^{2k}(-\bar{\alpha})$. But, as before, This also leads to a contradiction.

From Lemma 1, we obtain

Theorem 1. Let S be a z_0 - class with $S = S_+ \cup S_-$ such that $\alpha = x_\alpha + y_\alpha \sqrt{a}$ with $x_\alpha > 0, y_\alpha \ge 0$ is z_1 -minimal in S_+ . Put $\beta = x_\beta + y_\beta \sqrt{a} = z_0 \bar{\alpha}$. (1) If $y_\alpha = 0$, then, $\alpha = \bar{\alpha}$ and S is ambiguous. $\alpha = \sqrt{q}$ is minimal in S and $\beta = \sqrt{q}x_0 + \sqrt{q}y_0\sqrt{a}$ is the fundamental solution of S. If q > 1, β in not primitive.

(2) If $0 < y_{\alpha} \leq y_0 \sqrt{\frac{q}{2x_0}}$, α is minimal in S and also its fundamental solution. If S is not ambiguous, $-\bar{\alpha}$ is minimal in \bar{S} and β is its fundamental solution.

(3) If $y_0 \sqrt{\frac{q}{2x_0}} < y_\alpha \leq y_1 \sqrt{\frac{q}{2(x_1+1)}} = \frac{x_0 y_0 \sqrt{q}}{x_0^2+1}$, $-\bar{\beta}$ is minimal in S and α is its fundamental solution. If S is not ambiguous, β is minimal in \bar{S} and also its fundamental solution.

When a = 2, as we have $z_0 = 1 + \sqrt{2}$, $z_1 = 3 + 2\sqrt{2}$, it holds $y_0 \sqrt{\frac{q}{2x_0}} = \sqrt{\frac{q}{2}} = y_1 \sqrt{\frac{q}{2(x_1+1)}}$. Hence, only the case (2) in Theorem 1 occurs. Thus, we get

Corollary. Let S be a z_0 -class of the solutions of Pell equation $x^2 - 2y^2 = \pm q$. Let $\alpha = x_{\alpha} + y_{\alpha}\sqrt{2}$ be minimal in S. Then we have

$$\sqrt{q} \le |x_{\alpha}| \le \sqrt{2q}, \ 0 \le y_{\alpha} \le \sqrt{\frac{q}{2}}.$$

If $x_{\alpha} > 0$, α is also the fundamental solution of S. If $x_{\alpha} < 0$, the fundamental solution of S is $-x_{\alpha} + y_{\alpha}\sqrt{2}$ or $x_{\alpha} - 2y_{\alpha} + (x_{\alpha} - y_{\alpha})\sqrt{2}$ according as S is ambiguous or not.

It is well known that a prime p completely decomposes in $\mathbb{Q}(\sqrt{2})$ if and only if $p \equiv \pm 1 \pmod{8}$. Since the class number of $\mathbb{Q}(\sqrt{2})$ is one, the ideal (p) of $\mathbb{Q}(\sqrt{2})$ decomposes into $(p) = \wp \overline{\wp}$, where \wp is a principal ideal $\wp = (a + b\sqrt{2})$ with some integer a and b. Since the norm function is multiplicative, the following is well known.

Theorem B. There exist primitive x, y such that $x^2 - 2y^2 = \pm q$ if and only if each prime factor p of q satisfies $p \equiv \pm 1 \pmod{8}$

Lemma 2. Let q satisfy the condition in Theorem B. A z_0 -class of the solutions of $x^2 - 2y^2 = \pm q$ is ambiguous only when q is a square and $\alpha = \sqrt{q}$ is contained in the class.

Proof. Let $\alpha = x_{\alpha} + y_{\beta}\sqrt{2}$ be a solution in a z_0 -class S. Assume that $\bar{\alpha}$ is also contained in S. As it does not occur that $\bar{\alpha} = \pm z_0^k \alpha$, we have $\bar{\alpha} = \pm \bar{z}_0^k \alpha$. We can put k = 2m or k = 2m + 1. Set $\pm \bar{z}_0^m \alpha = X + Y\sqrt{2}$, which is also in S. When k = 2m, we have $\pm (X + Y\sqrt{2}) = X - Y\sqrt{2}$. Hence, we get X = 0 or Y = 0. But as $X \neq 0$, we obtain $Y = 0, X = \pm \sqrt{q}$. Thus, q must be a square and $\sqrt{q} + 0\sqrt{2}$ is the minimal solution in S.

From now on, we consider only positive solutions of Pell equation $x^2 - 2y^2 = \pm q$. Let S be a z_0 -class of positive solutions and $\alpha = x_{\alpha} + y_{\alpha}\sqrt{2}$ is the fundamental solution in S. Any solution in S can be represented as $z_0^k \alpha$. Put $x_k + y_k \sqrt{2} = z_0^k \alpha$. Then we have

$$\left(\begin{array}{c} x_k \\ y_k \end{array}\right) = \left(\begin{array}{c} 1 & 2 \\ 1 & 1 \end{array}\right)^k \left(\begin{array}{c} x_\alpha \\ y_\alpha \end{array}\right)$$

This is the same relation as (1.3). Hence, if (x_{α}, y_{α}) is primitive, each (x_k, y_k) is primitive. When (x_k, y_k) is primitive, x_k must be a odd. From Theorem B, Corollary and Lemma 2, we obtain

Theorem 2. There exists d_q group if and only if $q \equiv \pm 1 \pmod{8}$, where any prime factor p of q satisfies $p \equiv \pm 1 \pmod{8}$. Assume that q satisfies this condition. Let (ℓ_i, n_i) , $1 \le i \le j$ be all pairs of positive integers such that

$$\ell_i^2 - 2n_i^2 = \pm q, \ \sqrt{q} \le \ell_i \le \sqrt{2q}, \ 0 < n_i \le \sqrt{\frac{q}{2}},$$

and ℓ_i is a odd and ℓ_i and n_i have no common factor. Let P(2i-1), P(2i) be the column vectors of the Pythagorean triples corresponding to (ℓ_i, n_i) , $(\ell_i - 2n_i, \ell_i - n_i)$ respectively. Then, we have

$$d_q = \{A^k P(i); 1 \le i \le 2j, 0 \le k\},\$$

where A is the matrix of Barning and Hall given in (1.2).

Remark. We note this theorem covers the case q = 1, because there exists no prime factor p for this case. For q = 1, as $\sqrt{1} \le \ell \le \sqrt{2}$, $0 < n \le \sqrt{2/2}$, we have $\ell = 1, n = 1$. Hence, we get the Pythagorean triple (5, 4, 3) corresponding to the pair (1, 1).

Examples. We give some simple examples,

For q = 7, as $\sqrt{7} \le \ell \le \sqrt{14}$, $0 < n \le \sqrt{14}/2$, we have $\ell = 3, n = 1$. Hence, we get Pythagorean triples (15, 8, 17), (5, 12, 13) corresponding to pairs (3, 1), (1, 2) respectively.

For q = 17, as $\sqrt{17} \le \ell \le \sqrt{34}$, $0 < n \le \sqrt{34}/2$, we have $\ell = 5, n = 2$. Hence, we get (45, 28, 53), (7, 24, 25) corresponding to pairs (5, 2), (1, 3) respectively.

For $q = 7 \times 17 = 119$, as $\sqrt{119} \le \ell \le \sqrt{238}$, $0 < n \le \sqrt{238}/2$, we have $\ell_1 = 11, n_1 = 1$ and $\ell_2 = 13, n_2 = 5$. Hence, we get (143, 24, 145), (261, 380, 461), (299, 180, 349), (57, 176, 185) corresponding to pairs (11, 1), (9, 10), (13, 5), (3, 8) respectively.

For q = 161, as $\sqrt{161} \le \ell \le \sqrt{322}$, $0 < n \le \sqrt{322}/2$, we have $\ell_1 = 13, n_1 = 2$ and $\ell_2 = 17, n_2 = 8$. Hence, we get (221, 60, 229), (279, 440, 521), (561, 400, 689), (19, 180, 181) corresponding to pairs (13, 2), (9, 11), (17, 8), (1, 9) respectively.

References

- F. G. M. Barning, On Pythagorean and quasi-Pythagorean triangles and a generating process with the help of unimodular matrices(Dutch), Math. Centrum Amsterdam Afd. Zuivere Wisk, ZW-011(1963), 37pp.
- [2] A. Hall, Genealogy of Pythagorean triads, Math. Gazette, 54 (1970), 377–379.
- [3] H. Hosoya, Pythagorean triples, I, Classification and systematization, Natural Science Report of Ochanomizu University, **59(2)** (2009), 1–14.
- [4] W. J. LeVeque, Topics in Number Theory Vol.1, Dover Publications, INC 1984
- [5] R. A. Mollin, Fundamental Number Theory with Applications, CRC-Press 1998.
- [6] D. P. Wegener, Primitive Pythagorean triples with sum or difference of legs equal to a prime, *Fibonacci Quart.*, 13 (1975), 263–277.