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Abstract

In this paper, we give the new formulations of the laws of natural
statistical physics in Chapter 2.
These are the following three cases:
(1) The case where the Schrodinger operator has only the discrete
spectrum.
(2) The case where the Schrédinger operator has only the continuous
spectrum.
(3) The case where the physical system is composed of particles mov-
ing periodically.
In Chapter 1, we study the new formulations of the concepts of natu-
ral probability and natural random variable which are necessary for the
study of Chapter 2.

2000 Mathematics Subject Classification. Primary 81P99.

Introduction

In Chapter 1, as the preparations for these new formulations, we study the
concepts of natural probability and natural random variables.

For a given normalized L2-function ¢ on R", (n > 1), we define the orthog-
onal probability measure 14 = y 4% on the probability space (R", My, u)
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to be a natural probability measure. Here M,, is the o-additive family of all
Lebesgue measurable sets on R and p is the o-additive measure:

w(A) = /4 [(r))2dr, (A€ M,).

We define the vector-valued natural random variable r» = 7(w) on a certain
probability space Q(B, P) whose probability distribution law is defined by the
L?-density 1 so that the fundamental relation

P ({pe r(p) € A} )= pu(A)

holds. Further we study the fundamental properties of these concepts.

Further we study two other cases of these concepts.

In this paper, remaking the old formulations in Ito [41], we succeeded in
obtaining the essential expressions for the laws of natural statistical physics.
Thereby, in the theory of natural statistical physics, we can understand in
the unified manner the natural probability distributions of position variables
and momentum variables of the physical system by using the concepts of the
orthogonal probability measure or the local orthogonal probability measure.

Then these laws of natural probability distributions of position variables
and momentum variables characterize the natural statistical phenomena of the
physical system. Namely the main problem of the natural statistical physics
is to study the statistical properties of the physical quantities of the physical
system such as the expectation values of the energy, the momentum and the
angular momentum and etc. of this physical system.

Using the results of this paper, especially, we can study the Dirac measure
as the orthogonal probability measure in the case where the Fourier transform
1/3 of a L% -density ¢ is the Dirac measure. As for the references, we refer to
those in the last of this paper. Especially we refer to Ito [41].

Here we show my heartfelt gratitude to my wife Mutuko for her help of
typesetting of the TEX-file of this manuscript

1 Natural probability

In this chapter, at first, we remember the notions of the measure-theoretical
probability and the probability space.

1.1 Definition of probability and random variable

In this section, we remember the definitions of probability and random
variable.
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Definition 1.1.1  Assume that Q is an arbitrary space and B is a o-
algebra of the family of subsets of {2 and P is a o-additive measure.

Then we say that the composite concept Q& = Q(B, P) = (Q, B, P)is a
probability space when it satisfies the following conditions (I)~(III):

(I) € is a non-empty set.

(I1) B is a o-algebra of the family of subsets of 2. Namely, it satisfies the
following conditions (i)~(iii):

(i) € B holds.

(i) If A € B holds, we have A° € B. Here A® is the complementary
event of A.

(i) If we have A, € B, (n=1, 2, ---), we have UA,, € B.

n

(IIT)  The real-valued set function P(A) is a o- additive probability mea-
sure on the measurable space 2(B). Namely, it satisfies the following
conditions (i)~(iii):

(i) If A € Bholds, we have 0 < P(4) < 1.

(i)  If every pair of sets A, € B, (n =1, 2, 3, ---) are mutually
disjoint, we have

P(A) =) P(4n)

for the event

A:ZA,,I €B.

(iii)  We have P(2) = 1.

In Definition 1.1.1, (III), the measurable space (B) is the composite
concept of 2 and o-algebra B composed of subsets of Q.

We say that an element w of € is an elementary event and an element A of
B is a probability event. A probability event is simply said to be an event.

Let Q = Q(B, P) be a probability space. Then we say that a function X =
X (w) of w is a random variable if, for an arbitrary real z, {w; X(w) < z}
always belongs to B.

For a random variable X = X (w), we say that the function

F(z) =P ({w; X(w) <z} ), (o0 <z < 0)

of a real number z is the distribution function of X.
We obtain all informations concerning the distribution state of the values
of this random variable varying randomly by using this distribution function.
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Let M be a o-algebra of the family which includes the family of Borel sets
in R and assume that, for A € M, we have {w; X(w) € A} € B and

u(A) = P ({w; X(w) € A})

is a o-additive measure on M. Then the measure space (R, M, p) is a
probability space. We call this the probability distribution of the random
variable X = X(w).

Now we assume that R” is the n-dimensional Euclidean space. Here assume
n > 1. Let (R", M,,, A) be the Lebesgue measure space on R". Namely, M,
denotes the o-algebra of the family of all Lebesgue measurable sets on R™ and
A denotes the Lebesgue measure on R".

In the sequel, we say simply that the n-dimensional Euclidean space is the
n-dimensional space. We denote the dual space of R" as R,. Then R”
and R, are isomorphic. Therefore, in the sequel, identifying R, with R", we
denote the n-dimensional space and its dual space as the same symbol R".

In the sequel, when we consider the n-dimensional space, we always consider
that a certain orthogonal coordinate system is selected properly and fixed.

Then we define a R"-valued function r = r(w) on Q to be a vector-valued
random variable if {w; r(w) € A} always belongs to B for an arbitrary
A€ M,,. Then. if we put

u(A) =P ({w; m(w) € A})

for Ae M, (R", M, u)is a probability space. We say that this probability
space is the probability distribution of the vector-valued random variable r =
r(w).

Theorem 1.1.1  We assume that 2 = Q(B, P) is a probability space,
r = r(w) is a R"-valued random variable and (R", M,, u) is the probability
distribution of this vector-valued random variable r = r(w). If u is absolutely
continuous with respect to the Lebesque measure A, there exists a certain non-
negative Lebesgque integrable function p(r) such that the equality

u(4) = P ({wi @) € A))= [ plriar

/p(r)dr =1.

In Theorem 1.1.1, when the integration domain of the integral is not ex-
pressed explicitly, we mean that this is the integral on R". In the sequel of
this paper, we keep this rule.

holds for A € M,,.
Then we have
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In this case, we say that the real function p(r) is a probability density
function of the vector-valued random variable r = r(w). We temporally say
the probability density function as the probability density shortly. This is
the general property for the classical random variable.

In this sense, the probability density is a L!-density in the classical meaning.

For a vector-valued random variable 7 = r(w), the probability distribution
(R", M,, p) or the probability density p(r) gives the information concerning
the distribution state of the vector-valued random variable r = r(w).

Now we give the definition of the expectation value.

Definition 1.1.2  We assume that a function ®(r) of a vector r is a
Lebesgue measurable function on R”. Then we define the expectation value
E[®(r(w))] of the random variable ®(r(w)) by the relation

E@mwnzﬁéwwwmm

This definition has the meaning when the integral on the right hand side con-
verges absolutely.

Then we have the following theorem.

Theorem 1.1.2  Assume that Q and r = r(w) satisfy the conditions in
Theorem 1.1.1. Then, for the expectation value of the random variable ®(r(w)),
we have the relation

E@&W»%j/¢&mvmr

Here, this relation has the meaning when the integral on the right hand side
converges absolutely.

Here we show the outline of the proof of the relation in Theorem 1.1.2.

At first, we prove the relation in Theorem 1.1.2 when ®(r) is a simple
function. Next, we prove this relation when ®(r) is a measurable function
which is the limit of a certain sequence of simple functions in the sense of
pointwise convergence.

Then we have the following theorem.

Theorem 1.1.3  Let r = r(w) be a R"-valued random variable on §. Let
®(r) and V(r) be two Lebesque measurable functions of r. Then we have the
following relations (1) and (2): :

(1) B@(rw) + ¥(r(w))] = E[2(r(w))] + E[¥(rw))]-
(2)  Ela®(r(w)) + 8] = aE[®(r(w))] + 8.
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Here a and 8 are two real constants.

Corollary 1.1.1  Letr = r(w) be a R"-valued random variable on Q). Let

O (r), Du(r), -+, D,(7r) be the Lebesque measurable functions of the vector
r. Further, let ag, oy, -+, o be certain real constants. Then we have the
equality:

Eloag + 0@ (r(w)) + a2 ®a(r(w)) + -+ + 0 P (r(w))]
=+ a1 E; [q)l('r'(w))] + O‘QE‘Z[@Z(""(W))] +oot O‘mEm{@m('r(w))]-

1.2 Concept of natural probability and its fundamental
properties

In this section, we study the concept of natural probability and its funda-
mental properties. As for their details, we refer to Ito [1], [9]. [10].

Let R™ be the n-dimensional space. Here assume that n > 1 holds. Let
C be the field of complex numbers. Let L? = L?(R") be the Hilbert space
composed of all complex-valued square integrable functions on R".

For ¢, 1 € L?, we define the inner product (p, ¥) by the relation

(o, ¥) = / 2P (r)dr.

Here o(r) denotes the complex conjugate of (7).
We define the norm |[¢|| of ¥» € L? by the relation

il = G 9 ={ [1werar}

We say that a L-function v is normalized when ||| = 1 holds.
Now we define the characteristic function ya(r) of a subset A of R™ by the

relation
L (rea,
XA(”’"{Q (r ¢ A).

Here we remember the concept of natural probability.

Theorem 1.2.1  Assume that the measure space (R", M,, \) is the

Lebesgue measure space on R"™. Assume that a function ¢ is a normalized
L?-function on R". Then, if we put

u(A) = / () 2dr
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for A € M, p is a probability measure on M,. Then the measure space
(R™, M, ) is a probability space.

We say that a normalized L2-function ¢ such as in Theorem 1.2.1 is a L?*-
density. The probability measure p is absolutely continuous with respect to
the Lebesgue measure.

Theorem 1.2.2  Assume that a function ¥ is a L?-density on R" and
the probability space (R, M, p) satisfies the condition in Theorem 1.2.1.
Now we put

Yalr) =y(4; r) = xa(r)y(r)

for A € M,,. Then, for the L*>-valued set function ¢ : A — 4 defined on
M.,,, we have the following (1) and (2):

(1) If every pair of sets Ay, Az, --- of M,, are mutually disjoint, we have

o0
Ya = Z Va,,
m=1

in the sense of L*-convergence for

oS

m=1
(2)  For arbitrary A, B € M,,, we have
(Ya, ¥8) = (AN B).

Namely, we have

[ oatienriar - /A Jutr)Pdr = w(AN B).

Especially, if the condition AN B = ¢ holds for A, B € M, we have
Ya L ¢¥s.

Definition 1.2.1  If the function v and the probability space (R", M, p)
satisfy the conditions of Theorem 1.2.2, we say that the L?-valued set function
14 = xa% on M, is an orthogonal probability measure on the probability
space (R", M, u). Then we say that the orthogonal probability measure ¥4
is a natural probability measure defined by the L?-density v. We also
say that this natural probability measure 14 is a natural probability defined
by the L?-density. Further, we also say that the L?-density v is a natural
probability density.
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Definition 1.2.2  We use the notation in Theorem 1.2.1 and Theorem
1.2.2. Assume that Q = Q(B, P) is a probability space. We say that a R"-
valued random variable r = r(w) on Q is a vector-valued natural random
variable, if there exists a L?-density 1’ on R" which determines the probability
distribution law of r such that the following conditions (1) and (2) hold:

(1)  The L?-valued set function ¥4 = xat%, (A € M,) is an orthogonal
probability measure on the probability space (R", M, p).

(2) For A € M, we have the relation
P ({peir(p) € A} )= u(A).

Then we say that the vector-valued random variable » is ruled by the law of
natural probability distribution which is determined by the L2-density .

We say that the probability space (R, M, p) is the probability distri-
bution of a vector-valued random variable r = r(w).

In Definition 1.2.2, the condition (2) means that the probability of the event
“r(w) belongs to A” is equal to p(A).

Theorem 1.2.3  Assume that P, = {py, po, - - -} is a sequence of vectors
in R" and the function ¢ on P, satisfies the condition

> =1
peP,

Assume that F,, is a o-algebra of the family of all subsets of P, and the set
function v on F,, is defined by the condition

v(B) =) W)

peB

for B € F,. Further assume that the condition

vP)= 3 [P =1
peP,

holds. Thereby the measure space (P, Fn, V) 15 a probability space.

Theorem 1.2.4  Assume that the set P,,, the function Qﬁ and the proba-
bility space (P, Fn, V) are the same as in Theorem 1.2.3. If we put

Pap) = xa(p)¥(p)

for A € F,, the [?-valued set function 1,; . A — ¢4 defined on F, satisfies the
following conditions (1) and (2):
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(1) If every pair of sets Ay, Az, --- in F, are mutually disjoint, we have

o0
(e § VA,
m=1
in the sense of I*-convergence for

A= i Am.
m=1

(2)  For arbitrary A, B € F,,, we have
(¥4, ¥p) = v(ANB).

Namely, we have

" dalpusp) = > (@) =v(ANB).

ng PeANB

Especially, if we have ANB = ¢ for A, B € Fy, 1£'A il 1/33 holds in 2.

Definition 1.2.3  Assume that the set P, the function 'z/} and the proba-
bility space (P,,, F,, v) are the same as in Theorem 1.2.4. Then we say that a
I2-valued set function P4 = y Alﬁ on JF, is a discrete orthogonal probability
measure on the discrete probability space (P, F,, v) . We say that the

discrete orthogonal probability measure v is the discrete natural probability
measure determined by the [%-density ).

Definition 1.2.4  Assume that the set P,,, the function 1[1 and the prob-
ability space (P,, Fp, v) are the same as Definition 1.2.3. We say that a
vector-valued discrete random variable p = {p,, = p,(w); n=1, 2, 3, ---} on
the probability space Q = Q(B, P) is a discrete natural random variable
if there exists a [>-density 1[) on P,, such that it determines the law of discrete
probability distribution so that we have the following conditions (1) and (2):

(1) If F, is a o-algebra of the family of all subsets of P, the [?-valued
set function ¥4 = xa¥, (A € F,) is a discrete orthogonal probability
measure on the discrete probability space (P, Fn, V).

(2) For A € F,,, we have the condition
P ( {w e Q; plw) € A} ): v(A).

Then, we say that this vector-valued discrete random variable p = {p, (w)}
is ruled by the law of natural probability distribution determined by the [*-
density .
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1.3 Natural random variables and their expectation val-
ues

In this section, we define the expectation value of a natural random variable.

Now we assume that Q = Q(B, P) is a probability space. Assume that
(R", M,,, )\) is the Lebesgue measure space on R". Then, we assume that a
R"-valued function r = r(w) on § is a vector-valued natural random variable.

Then, if ®(r) is a Lebesgue measurable function of r, we can define the
expectation value E[®(r(w))] of the natural random variable ®(r(w)) as in
Definition 1.1.2. For this expectation value, the relation in Theorem 1.1.2
holds by using |[(7)|? instead of p(r).

Namely, we have the following theorem.

Theorem 1.3.1  We assume that r = r(w) is a R™-valued natural random
variable on 2. We assume that ®(r) is a Lebesque measurable function on R™.
Then, the relation

E[d(r(w))] = / &(r) [ (r)|2dr

holds for the expectation value of the random variable ®(r(w)). Here this rela-
tion has the meaning when the integral in the right hand side converges abso-
lutely.

In this sense, we can calculate the considered expectation value E[®(r(w))]
by the similar way as the expectation value of a classical random variable
except the difference of the form of the probability density. Similarly we have
the analogs of Theorem 1.1.3 and its Corollary 1.1.1. Namely we have the
following theorem.

Theorem 1.3.2  Assume that r = r(w) is o R"-valued natural random
variable on Q. Assume that ®(r) and VU(r) are two Lebesgue measurable func-
tions on R". Then we have the following relations (1) and (2):

(1) E[®(r(w)) + ¥(r(w))] = E[@(r(w))] + E[¥(r(w))).
(2)  Ela®(r(w)) + 8] = aE[®(r(w)) + 5].

Here, o and 8 are some real constants.

Corollary 1.3.1  Assume that r = 7(w) is the same as in Theorem 1.3.2.
Assume that ®1(r), ®o(r), , @, () are Lebesque measurable functions on R"
and op, o1, -+, Oy, are some real constants. Then we have the following
relation:

Elag + a1®P1(r(w)) + ae®o(r(w)) + - + am Py (r(w))]
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= ap + a1 B[Py (r(w))] + 02 E[®a(r(w))] + - -+ + aim B[@rn (7(w))]-

Now we assume that p is a positive natural number and L7, is the space of all
complex-valued p-th integrable functions on the probability space (R, My, ).
This space is equal to

2= (s [ mPdutr) = [15@Pive P <

Then we say that an element in L7 is a L} -natural random variable.

In this paper, we have only to consider the special cases p = 1, 2. When
a L?-valued set function 1’4 = x 4% is a natural probability on the probability
space (R, My, 1), we define the natural expectation value of y- measurable
function f belonging to L = LP(R,, My, i) with respect to 14 in the
following.

Definition 1.8.1 Assume that p > 1. Then we define the natural expec-
tation values by the following conditions (1) and (2):

(1)  When a function f(r) is a L}-simple function, namely, when we have

fr) =" amxa,(r), (am € C, m > 1),
m=1

R" = A; + Ay + -+, (direct sum),

we define the natural expectation value of the function f(r) by the rela-
tion

[ 1@t 1) = 3 anmbans 7).
m=1

Its norm is equal to
n / F(@)d(dg; )P = gjlmmip /A ) = / ()Pl (r) Pdr.

(2)  When a function f is a general Lf-function, there exists a sequence
of Lb-simple functions {f,,} such that we have f; — f in L}. Then
we define the natural expectation value of the function f(r) by the
relation

[ @utdg v = tim_ [ fatavtda; v)

Its norm is equal to

] / Flayldg; v = / £ Phor) B
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Theorem 1.3.3  Assume that P,, = {p,, py, -} is a sequence of vectors
in R". Assume that Q = Q(B, P) is a probability space and p = p(w) = {p,, =
p, (W) n=1, 2,3, ---} is a P,-valued discrete natural random variable on
Q. Assume that there exists a |%-density 1[1 on P,. Then we define a discrete
orthogonal probability measure ¥4 = ya1, (A € Fp) on (P, Fn. v) in the
similar way as Definition 1.2.4.

Now, we assume ®(p) is a function on P,. Then, for the expectation value
of the random variable ®(p(w)), we have the relation

G

E@(Pw))] =Y ®(p,)lbp,)]*

n=1
Here this relation has the meaning when the series in the right hand side con-

verges absolutely.

We remark that, for the expectation value considered in Theorem 1.3.3, we
have the similar results as Theorem 1.3.2, Corollary 1.3.1 and Definition 1.3.2.

1.4 Concepts of local natural probability and definition of
expectation value of local natural random variables

In this section, we study the local natural probability and the expectation
value of local natural random variable. This is a very new result.

Theorem 1.4.1  Assume that a function v is a L2 _-density on R".

loc

Further, let S be a family of all compact subsets in R" such that the condition

/ lz’u(r)[?dr >0
g

is satisfied. Now, for an arbitrary compact set S in S, Ys(r) = xs(r)¥(r)
denotes the section of ¥ over S. Then, if we define

ys(r)|dr

ps(A) =
L () dr

for a Lebesgue measurable set A in R", s is a probability measure on R" N S.
Then, the measure space (R" NS, M, NS, ug) is a relative probability
space.

Theorem 1.4.2  Assume the function ¥ and the relative probability space
(R"NS, M,,NS, ug) are the same as in Theorem 1.4.1.
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Now, if we define
Vs, a(r) = xa(r)s(r)
for A € M, NS, the L*(S)-valued set function g : A — s, 4 on MsNS
satisfies the following conditions (1) and (2): ’

(1)  If every pair of sets Ay, Ag, --- in Ms NS are mutually disjoint, we
have the equality
Ys.a= Y Vs A,
m=1

in the sense of L*(S)-convergence for

A:iAm.

m=1
(2)  For arbitrary A, B € M, NS, we have the relation

(¥s, 4, ¥s, B) = us(AN B).

Namely, we have the relation

[ s aiis, wrydr = [ ppte)far = ps(an B)

Especially, if ANB = ¢ holds for A, B € M,NS, we haveYs, o L ¥s B
in L*(S).

Theorem 1.4.3  Assume that a function ¢ is a L _-density on R", S is
the family of all compact sets S in R"™ such that the condition

/ () 2dr > 0
S

is satisfied. Assume that the relative probability space (RN S, M, NS, us) is
the same as in Theorem 1.4.1. Then we define u(A) by the relation

p(A) = lim ps (A)
for A€ M, as a Moore-Smith limit. Then we have
p(R") = 1.

Therefore, this measure space (R", M,, u) is a probability space.
Then we say that this probability space (R", M,, u) is the probability
distribution of the vector-valued random variable r = r(w).
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Theorem 1.4.4  Assume that ®(r) is a Lebesque measurable function of
r. Assume that the probability space (R, M, ) is the same as in Theorem
1.4.3. Then we define the expectation value of ®(r(w)) by the relation

/ B (r) ()2
/[u/ )|dr

as a Moore-Smith limit. This has the meaning only when this limit exists. Here
we define the local expectation value of ®(r(w)) by the relation

[ aivpar
[ ot '

Then, we have the properties of the expectation values as the same as in
Theorem 1.3.1, Theorem 1.3.2 and Corollary 1.3.1.

El®(r(w))] = lign Esl@(r(w))] = hm

Bo(@(r(w))] = [ Br)dus(r) =

1.5 Dirac measure

In this section, we study the Dirac measure § as an example of a natural
probability. As for the details concerning the Dirac measure, we refer to Ito
[9].

When a certain eigenfunction ¢ of a certain Schrédinger operator has its
Fourier transform 1/3 = ¢, how can we understand the natural probability distri-
bution of the momentum variable p which is determined by the Dirac measure
V=37

In order to answer this question, we study the new characterization of the
Dirac measure 9.

We define the space K = Cy(R) as the space of all continuous functions
with compact support in one dimensional space R. Then § is the continuous
linear functional on K. Then we say that § is a Radon measure.

In the sequel, we prove that the Dirac measure § is an orthogonal probability
Radon measure. Therefore, we try to characterize it as a natural probability.
Thereby, we can understand that the Dirac measure § determines the law of
natural probability distribution of the momentum variable p. Then, it is im-
portant to notice the fact that the Dirac measure is not only a Radon measure
but also a probability measure as a set theoretical measure.

The Dirac measure d, is the measure with the unit mass at the point p
which is defined by the relation

6p(q) = 6(q — p).
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This is a continuous linear functional on K defined by the relation

5p(p) =< (g —p), ©(q) >=<0(q), v(g+p) >= o(p)

for p € K.

We assume that (R, M, )) is one dimensional Lebesgue measure space.

Since K is dense in L? = L?(R), we can extend 8, € K’ to the continuous
linear functional on L2

Therefore, because 6,(f) is defined for f € L?, especially we can define the
set function 0,(A4) on M by using the relation

Op(A) = bp(xa)

when y4 € L? holds for A € M.
This set function 6,(A) satisfies the conditions

5 (A — 1, (peA),
P4 = 0, (pgA)

for A € M such as x4 € L?. Then we prove that the set function 6,(A) is
an orthogonal probability measure on the probability space (R, M, 6,) in the
following.

At first we prove the following Proposition 1.5.1 as a preparation.

Proposition 1.5.1  Assume that (R, M, X) is the Lebesque measure
space. Then we put L? = L*(R). We define the inner product in C by the
relation (o, B) = af.

Further, we define the norm of a € C by the relation |of = /(a, ).
Then C is one dimensional Hilbert space and C is embedded in L* as one
dimensional subspace.

Proof We fix one g, in L? as a unit vector . Then we consider the map
T: aeC’-—>as00€L2.
Then we have the equality
@B = (o, B) = (apo, Beo)r2.
Namely we have the equality
(Ta, T2 = (@ B)c-

Therefore T is an isometry from C into L?. Thereby, C can be embedded in
L? as one dimensional subspace. //
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Proposition 1.5.2  We assume that (R, M, d,) is the probability space
defined by the Dirac measure o, which has the unit mass at the point p in R.
Here we assume that M is the o-algebra of the family of all Lebesgque measurable
sets in R. Here we define the C-valued set function §,(A) for A € M such as
x4 € L? by the following relation:

] L (e,
%(A)—{ 0. (b A).

Here the set function §,(A), (A € M) on R is an orthogonal probability
measure on the probability space (R, M, ¢,). Namely we have the following

(1)~(3):

(1) If every pair of sets Ay, Ao, --- in M is mutually disjoint, we have the
equality

51}(14) = Z 6p(Arz)

n=1

for the set

(2) If AN B = ¢ holds for A, B € M, we have the relation
5}J(A)5P(B) =0.

Namely we have
dp(A) L 5,(B).

(3) For A€ M such as xa € L?, we have the relation
“51)(14)”2 = 51»(‘4)'

There is a case where the Fourier transform ¢ of a L{ -solution 1 of a

certain Schrodinger equation is the Dirac measure 4.

It is the case when a Lizoc-density 1 determines the natural probability
distribution of the position variable of a generalized proper state of a system
of free particles.

Now we assume that K = Cy(R) is the space of all continuous functions
with compact support in one dimensional space R. Then 0,, is an element
of K'. Namely 6, is a continuous linear functional on K. Then §,, is an
orthogonal Radon measure.

We assume that A4 is a Lebesgue measurable set in R and x 4 is the definition
function of A. Then the domain of the orthogonal Radon probability measure
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)

», can be enlarged in order to include x 4. Here we assume x4 € L?. Then if
we define the set function d,,(A4) by the relation

61)0 (A) = 5110 (XA)a

5, (A) = 1, (po€A),
Po < - 07 (pUQA)

we have the relation

Therefore we have the relations

(61)[)({p()}), 5P()({p()}>) = 5P0({p0}) =1,
(6PU(A)7 51’0<A)) = (57)0(14) =0, (p() g A)

Hence, the set function d,, (A} is an orthogonal probability measure in Propo-
sition 1.5.2. Therefore d,,(A) is an example of natural probability.

Thereby, when the Fourier transform of a Li -density ¢ which determines
the state of natural probability distribution of the position variable of a certain
physical system is 1/: = 0,,. the state of natural probability distribution of the
momentum variable p is ruled by the Dirac measure d,,. This means that the
state of natural probability distribution of p determined by 4, is the state
of distribution such that the momentum value p takes the constant value pg
with probability 1. Thereby, when the Fourier transform of a Lf -density ¢
is 'q/ = 6,,, we see that the state of natural probability distribution of the
momentum variable p is determined by 1 = Opo-

In this case, the state of natural distribution of position variable z is ruled
by the L7 -density 1. Thus the natural probability distribution of z is the
uniform distribution on R.

2 Laws of natural statistical physics

The theory of natural statistical physics is the theory for investigating the
natural statistical phenomena arising for the system of electrons, atoms or
molecules. In this chapter, we present the laws of natural statistical physics
which rule the phenomena of these physical systems composed of electrons,
atoms or molecules. Corresponding to the phases of the physical systems, we
have some different respresentations of the laws of natural statistical physics.

In sections 2.2~2.4, we give the laws of natural statistical physics for the
three types of the physical systems.

In this chapter, we give the laws of natural statistical physics in the follow-
ing.

When we study the natural statistical phenomena by using the theory of
natural statistical physics, we postulate the three concepts in the following:
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(1)  The physical system.
(2)  The state of the physical system.
(3)  The motion of the physical system.

We say that these postulates are the laws of natural statistical physics.
These laws are the natural laws of the natural statistical phenomena.
We mention the laws of natural statistical physics in the following.

2.1 Fundamental problem of natural statistical physics

In the natural statistical physics, we understand the physical phenomena
on the basis of the statistical properties of the physical quantities such as
expectation values or means of the physical quantities of a certain physical
system. ’

Then, because the physical quantities of the physical system are functions
of the position variables and the momentum variables, we have to know that
the natural statistical states of this physical system are described as the states
of natural probability distributions of the position variables and the momen-
tum variables in order to understand the natural statistical phenomena of the
physical system.

By virtue of the laws of natural statistical physics, if we determine the L*-
density ¢ which determines the natural probability distribution of the position
variables of this physical system, the natural probability distribution of the
momentum variables are determined by its Fourier transform 1/; By virtue of
the laws of natural statistical physics, this L?-density v is determined as a
solution of a certain Schrédinger equation. Therefore, in order to investigate
the natural statistical phenomena of the physical system, it is known that the
Schrodinger equation is the fundamental equation and it is the fundamental
problem to solve the Schrodinger equation. Thus we can understand the natural
statistical phenomena on the bases of the laws of natural statistical physics.

In the following sections, we establish the laws of natural statistical physics.

2.2 Laws of natural statistical physics

In this section, we establish the laws of natural statistical physics in the
case where a Schrodinger operator has only the discrete spectrum.

Law I(physical system) We postulate that the physical system  is
a probability space 2 = Q(B, P). Here (1 is the set of systems p of micro-
particles, B is the o-algebra composed of subsets of  and P is the o-additive
probability measure.
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Law IlI(state of physical system) We postulate that the state of the
physical system €2 is the natural probability distribution of the position variable
r(p) and the momentum variable p(p) of a system p €  of micro-particles.
Here 7(p) moves in R" and p(p) moves in its dual space R, = R".

Further we put n = Md. Here d is the dimension of the physical space and
M is the number of micro-particles which compose the elementary event p.

(i)  We postulate that the natural probability distribution of the position
variable » = r(p) is ruled by the law of natural probability distribution
which is determined by a L’-density 1(r) defined on R"™.

(ii) We postulate that the natural probability distribution of the momentum
variable p = p(p) is ruled by the law of natural probability distribution
determined by its Fourier transform 1/;(1')‘ Here the Fourier transform
U(p) of a L?-density ¥ (r) is defined by the following:

_ 1 Pe—iD /R gy,
bip) = (M)n/w )e dr,

) = — L)l PT)/R
Vo) = o [iw) ap

where we put
= t(xlv T2, "0y In), P = t(ph D2yt pn)>

(p, 7) =p1x1 +paz2+ o+ Pnn-

/
Here we put A = 51_ and h denotes Planck’s constant. The reason why we
7r

define the Fourier transformation in Law (II), (ii) in such a form is to derive the
Schrodinger equation for the physical system by using the variational principle.

The constant is chosen so that the theoretical results of a certain physical
system coincide with the observed data of a certain physical quantities for the
natural statistical phenomena.

Law ITI(motion of physical system) We postulate that the L2-density
1(r, t) which determines the law of natural probability distribution of the po-
sition variable r at time t is the solution of the time evolving Schrodinger
equation. We say that this time evolution is the motion of the physical sys-
tem. The law of motion of the physical system is described by the Schrédinger
equation. We say that this Schrédinger equation is the equation of motion of
the physical system.

The Schrodinger equation is described in the following form:

o
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We say that the operator H is a Schrédinger operator. H is a self-adjoint
operator on a certain Hilbert space. The concrete form of this Schrodinger
operator H is determined concretely for every concrete physical system.

Remark 2.2.1 In the theory of natural statistical physics, we study the
derivatives or the partial derivatives of L2-functions or L - functions respec-
tively. Then these L?-functions or these L -functions are not always differen-
tiable in the classical sense. Therefore, we remark that we define the derivatives
or the partial derivatives of L*-functions or L'l200~functions in the sense of L2-
convergence or L2 -convergence respectively in these cases.

loc

Remark 2.2.2  We consider that a L?-density in the Law III is a L2-
valued function of the time variable t. Here we put L? = L*(R"). Therefore
the function ¥(r, t) is not imposed the condition that 1(r, t) is a L?-function
of t. Namely we consider that the time variable ¢ is a parameter. Then the

0 . .
partial derivative -% is the derivative of the vector-valued function ¥(r, t)
with respect to t. This derivative is taken in the sense of strong derivative.
Namely, we have

Ylr, t+h)—(r, t)  0Y(r, t)
h—0 h T

=0

with respect to the norm of L2 = L?(R"). In the sequel, we do not repeat this
remark.

2.3 Laws of generalized natural probability distribution

In this section, we establish the laws of generalized natural probability dis-
tribution. Here we study the case where the Schrédinger operator has the
continuous spectrum.

Law I'((generalized) proper physical subsystem)  We postulate
that a proper physical subsystem or a generalized proper physical subsystem
is a physical subsystem ) as a probability subspace of the total probability
space 2 = Q(B, P). Here Q is the set of systems p of micro-particles, B is a
o-algebra composed of subsets of 2 and P is a o- additive probability measure.

Then this satisfies the Law II' of state of generalized proper physical sub-
system and Law III' of motion in the following.

Law II'(state of (generalized) proper physical subsystem) We
postulate that the state of a proper physical subsystem ' is the natural prob-
ability distribution or the generalized natural probability distribution of the
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position variable 7(p) and the momentum variable p(p) of the systems of micro-
particles p € . This is determined in the following (1) and (2):

(1)  We postulate that, if the Schrédinger operator has the discrete spec-
trum, the state of the proper physical subsystem Q' is determined by an
eigenfunction 9 of the Schrodinger operator by the similar way to the
Law II in section 2.2.

(2)  We postulate that, if the Schrédinger operator has the continuous spec-
trum, the state of the generalized proper physical subsystem §2' is deter-
mined by a generalized eigenfunction ¢ of the Schrédinger operator in
the following (i)’ and (ii)":

(i) We postulate that the generalized natural probability distribution
of the position variables r = r(p) is ruled by the law of local natural
probability distribution determined by the L7 -density ¥(r) on R".

oc
(i)’  We postulate that the generalized natural probability distribution
of the momentum variables p = p(p) is ruled by the law of local
natural probability distribution determined by the Fourier transform

P of ¥(r).

In the above Law I, (ii)’, 4 is the Fourier transform of ¢ defined by the
relation

P(p) = lim Vs (p).

Here the limit lién means the Moore-Smith limit for the family S = {S} of

all compact subsets of R" in the sense of convergence of generalized functions.
Here the local Fourier transform g of the L -density ¢(r) is defined in
the following:

help) = 5 (e i@ T/
¥s(p) (\/ﬁ)n/ws(r)e dr,

Y i@ T
1/]5(7‘) (\/'m)n/wb(p)e dp,

T = t('rla Ty * vty 1771)7 p = t(pla P2, "y pn)a
(p: 7") =p1x1 + paxo + -+ Puln.
Here, for an arbitrary compact subset S € S of R", g denotes the section
over S € S. Namely, 1¢(r) is defined by the relation ¢s(r) = ¥(r)xs(r). Here

xs(r) denotes the defining function of the set S € S. Further we put h = o
T

where h denotes Planck’s constant.
Then, the Fourier transform (p) is generally defined as a generalized func-

tion. Especially, g@(p) is equal to a LY -density or a Dirac measure dp.
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The reason why we defined the Fourier transformation as in the form of
the Law IT, (ii)’ is that we can derive the Schrodinger equation of the physical
system by using the variational principle.

The constants are chosen so that the theoretical results of a certain physical
system coincide with the observed data of the physical quantities for the natural
statistical phenomena.

Law IIT'(motion of physical subsystem) We postulate that the L?-
density (7, t) which determines the law of natural probability distribution of
the position variable at time t is determined by the time-evolving Schrodinger
equation. We say that this time evolution is the motion of the physical subsys-
tem. The law of motion of the physical subsystem is the Schrédinger equation.
We say that this Schrédinger equation is the equation of motion of the physical
subsystem.

The Schrodinger equation is described in the following form:

o

2 Hy.
ot v

We say that the operator H is a Schrodinger operator. H is a self-adjoint
operator on a certain Hilbert space. The concrete form of this Schrodinger
operator H is determined concretely for every concrete physical subsystem.

2.4 Laws of natural statistical physics for periodical mo-
tion

In this section, we establish the laws of natural statistical physics for a
physical system which is moving periodically.

Law I(physical system) We postulate that the physical system (2 is
a probability space Q = Q(B, P). Here € is the set of the systems of micro-
particles, B is the o-algebra composed of subsets of 2 and P is the o-additive
probability measure. Every micro-particle p moves periodically on the interval
D = [—a, a]" and its basic period is equal to 2a on the direction of each
orthogonal axis. Here we assume a > 0.

Law II(state of physical system) We postulate that the state of the
physical system 2 = Q(B, P) is the probability distribution of the position
variable r(p) and the momentum variable p(p) of the system p € Q of micro-
particles. Here 7(p) varies periodically on the interval D = [—a, a]" in the
n-dimensional space R" and p(p) varies on its dual space P,,.

Further we assume n = Md. Here d is the dimension of the physical space
and M is the number of micro-particles composing an elementary event p.
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(i) We postulate the natural probability distribution of the position variable
r = r(p) is ruled by the law of natural probability distribution which is
determined by the L?-density v(r) defined on D. Here 9(r) satisfies the
periodic boundary conditions:

Q/}(T.)latj':—a = 1/’(7‘)|;r,,-:a7 (T €D, j =12 -, n)

(ii) We postulate that the natural probability distribution of the momentum
variable p = p(p) is ruled by the law of natural probability distribution

which is determined by the Fourier type coefficients ﬁ(p) of ¥(r).

Here the Fourier type coefficients zﬂ(p) of ¥(r) and the Fourier type series
of ¥(r) are defined in the following:

o) = 2 e i@y
$() (W)n/ﬂ“ dr,

P D(p)el® TN
v = oy > v :

peP,
[ it = ¥ ) =1,
D
peP,
T = t(wlv L2y * s xn)» pP= t(plv P2, 0y pn)z

(p7 7") =p1x1 + p2Za+ -+ DPnTn.

h
Further we assume A = —. Here h denotes Planck’s constant.

The reason why we deﬁn@ the Fourier type coefficients as in the form of
the Law II, (ii) is that we can derive the Schrédinger equation of the physical
system by using the variational principle.

The constants are chosen so that the theoretical results of a certain physical
system coincide with the observed data of the physical quantities for the natural
statistical phenomena.

Law ITI(motion of physical system) We postulate that the L2-density
¥(r, t) which is ruled by the law of natural probability distribution of the
position variable r at time ¢ is determined by the time-evolving Schrédinger
equation. We say that this time-evolution is the motion of the physical sys-
tem. The law of motion of the physical system is described by the Schrodinger
equation. We say that this Schrodinger equation is the equation of motion of
the physical system. The Schrodinger equation has the form in the following:

o
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We say that the operator H is a Schrodinger operator. H is a self-adjoint
operator on a certain Hilbert space. The concrete form of this Schrodinger
" operator is determined concretely for each concrete physical system.
Here ¥(r, t) satisfies the following conditions (1) and (2):

(1)  (Initial condition)
¥(r, 0) =¢(r), (r € D).
(2)  (Periodic boundary conditions)
V)], =0 = V)], =as U(Py Ozymma = V(. )z;=as
(reD, 0<t<x), (j=1,2,---.n).
Here 1(7) is the given L2-density.

When the Schrodinger operator H includes the potential V = V(7), we
assume that it satisfies the periodic boundary conditions:

V(T)|I,/:“(l = V(T”-’L‘J:(l? (’I" €D, .7 =12 -, TL)

2.5 Laws of marginal distribution

In this section, we study the concept of the law of marginal distributions.

When we study the expectation values of the angular momentum of the
system of the inner electron of a hydrogen atom, we need the concept of the
law of marginal distributions.

At first, we consider the mathematical model for the system of hydrogen
atoms. The system of hydrogen atoms is the set of hydrogen atoms, and the
inner electron of each hydrogen atom is moving in the Coulomb potential

o2
Vi) =-S, (r=rl)

at the center of its nucleus.

Each electron moves by virtue of Newton’s equation of motion on the basis
of the law of causality. As the mathematical model, this physical system is
the system of electrons moving in the Coulomb potential at the origin as the
center.

We denote this system of electrons as Q = Q(B, P). We assume that an
elementary event p of £ is an electron, B is the o-algebra composed of subsets
of , P is the o-additive probability measure. We consider that this system is
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a system of one particle. Here an electron p has the position variable r» = r(p)
and the momentum variable p = p(p).

Here we postulate that the position variable r = r(p) and the momentum
variable p = p(p) are the vector-valued random variables defined on €.

In this case, each electron has the total energy

p(p)? - S =l

E prng
() S
Here m. and e denote the mass and the electric charge of an electron respec-
tively.
Now we calculate the expectation value of the angular momentum

L=vrxp="Ly Ly, L.)

of the system of electrons.

By virtue of natural probability distribution of the position variable r =
r(p) is determined by the L2-density ¢ which is the solution of the Schrédinger
equation

L OY(r, t) h?
ih ot = 2me

of the system of hydrogen atoms. Here the partial derivative of the L?-function
¥ of r with respect to x, y, z are defined in the sense of L?-convergence. The
variable ¢ of ¥(r, t) is considered to be a parameter. Therefore, the partial
derivative of ¥ with respect to ¢ denotes the strong derivative of the function
i(r, t) with respect to the parameter .

Here we remark that (7, t) is not assumed to be a L>-function as the
function of ¢.

Then the law of natural probability distribution of the momentum variable
p = p(p) is determined by the Fourier transform ¥ of Y.

Here we define the Fourier transformation ¢ of ¢ in the following:

o) — L ~i(p. T)/h
I) = s [ vt dr.

N

Here we put
r="z, v, 2), p="(pz, Py, P:),

(p, ) = Pz + pyy + D22

Here we omit the time variable ¢.
Now, we give the fundamental statistical formula of the law of natural
probability distribution in the following:

P ({pes () e A )= /A () P,
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P ( {p € plp) € B} )= /B [(p)|*dp,

where A and B are two Lebesgue measurable sets of R>.

Further, we postulate that the law of natural probability distribution of
the variable *(z(p), py(p)) is determined by the partial Fourier transform
1[}(3; Py, 2) as the marginal distribution of the simultaneous distribution of
the variable *(z(p), py(p), z(p)).

Here the partial Fourier transform w(x py, 2z) of ¥ is defined by the fol-
lowing relation:

R 1 Rl .
B py D= [ ey e My,

The other marginal distributions are defined similarly.

Thereby, by using the law of natural probability distribution of the variable
Y(z(p), py(p)) as the marginal distribution, we calculate the expectation value
of the z-component L, = zp, — yp, of the angular momentum by the following
relation

E[L.] = / Lo(0)dP(p) = / Mua% oY),

In the third side of the above equality, we remark that the operator expression
has nothing about the physical meaning.

These expressions are formal and used for the benefit of the mathematical
calculations.

For the other angular momenta

Lfc:ypz_zpyv Ly:pr_xpzv 2:L§+L5+L37

we calculate these expectation values similarly.
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