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Abstract

In this paper, we give the new definition of the concept of ordinal
numbers and prove its existence theorem on the basis of the ZFC set
theory. This is the generalization of Peano’s system of axioms of finite
ordinal numbers.
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Introduction

In this paper, we give the new definition of the concept of ordinal numbers
and prove its existence theorem. This is the main result obtained in Ito[4].

As for the related result, we refer to Matumura [6], Takeuti [7], Chapter 3,
and Iwanami Dictionary of Mathematics, 4th edition edited by Mathematical
Society of Japan.

As the result, we can prove the existence theorem of the concept of natural
numbers by using the concept of ordinal numbers. As for this result, we refer
to Ito [1] ~ [4].

We assume that the set considered in this paper is the set defined in ZFC
set theory. As for ZFC set theory, we refer to Ito [4]. As for the related results,
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we refer to Matumura [6], Takeuti [7], Chapter 3, and Iwanami Dictionary of
Mathematics, 4th edition edited by Mathematical Society of Japan.

All mathematical concepts considered in this paper are those which are
constructed by the sets of ZFC set theory. The concept of ordinal numbers and
the concept of natural numbers are constructed by such a way.

By naming the each mathematical concept constructed by the set of ZFC
set theory as, for example, the numbers 0, 1, 2, --- or the function f, etc. ,
we can study the mathematics and express the mathematics by using the usual
mathematical words.

Here we show my heartfelt appreciation to my wife Mutuko for her help of
typesetting the TEX-file of this manuscript.

1 Definition of the concept of ordinal numbers
and its existence theorem

In this section, we study the definition of the concept of ordinal numbers
and its existence theorem. As for the related results, we refer to Ito [1] ~ [4],
Matumura [6], Takeuti [7], Chapter 3, and Iwanami Dictionary of Mathematics,
4th edition edited by Mathematical Society of Japan.

We assume that A(a) denotes the formula of condition which holds for a
set a. Then we denote the family of all x which satisfies A(x) by {z; A(x)}.
Especially, when A(z) denotes the condition = ¢ =, this family is {z; = & z}.
{x; = & x} is not a set by virtue of Russell’s paradox. Therefore, generally, we
say that {z; A(x)} is a class.

Definition 1.1  Assume that a class A is A = {x; A(z)}. Then we define
that A is a set if the condition

holds. Here a denotes a certain set.

Therefore, we say that A is a proper class if A is a class and A is not a
set.

In the sequel, if a class is a set, we say simply that this class is a set.
Against this, we say simply that a proper class is a class.

Then we have the following proposition.

Proposition 1.1  We use the notation in Definition 1.1. Then the fol-
lowing (1) ~ (3) are equivalent:

(1) a=A.
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(2) Vz(z€a+—z € A).
(3) Vaz(z € A<+ A(x)).

Here we give the definition of ordinal numbers.

Definition 1.2 We say that the class On whose elements are sets is the
class of ordinal numbers if the following conditions (I) ~ (IV) are satisfied:

(I)  There exists the only one element ¢ in On which is said to be the empty
set.

(II)  If & € On is not the empty set ¢, we have o = {f; § < a} which
satisfies one of the following conditions (i) and (ii):

(i) We have the relation
a=pU{s}

if o contains the maximum 3.

(ii)  We have the relation

a={8 B<a}=J{8}

<o

if o does not contain the maximum. Here the symbol 8 < o means
that the condition 8 € « holds for two sets a, # in On.

(III)  We have the condition

Va(Ve < apf € On— a € On) — Yo € On.

(IV)  On is the smallest class which satisfies the conditions (I) ~ (III).
We define that an element of On is an ordinal number.

We say that the condition (IV) in Definition 1.2 is the axiom of transcen-

dental induction.
Here we say that the ordinal number « is an isolated ordinal number if

o contains the maximum S and we have the relation
a=pU{B}

Further we say that the ordinal number « is a limit ordinal number if o
does not contain the maximum and we have the relation

a={8 B<a}=J{B}

B
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If the ordinal number « is a limit ordinal number, we denote it as lim(«).
Then, On is the class of all ordinal numbers but not a set.
Here we formulate the system of Peano’s axioms which gives the definition
of finite ordinal numbers in the following.

Definition 1.3(System of Peano’s axioms)  We define that the set
N whose elements are all sets is the set of all finite ordinal numbers if it
satisfies the following conditions (i) ~ (iii):

(i) We have ¢ € N.
(i) If &« € N holds, we have o/ = U {a} € N.

(iii) N is the maximum set which satisfies the conditions (i) and (ii).
(Axiom of mathematical induction).

It is known that the axiom (IV) of ordinal numbers in Definition 1.2 is the
new axiom which is obtained by changing the axiom of mathematical induction
into the axiom of transcendental induction. By using the axiom of transcen-
dental induction, we can prove that the proposition A(«) concerning an ordinal
number « holds for an arbitrary ordinal number o € On. Thus, we say that
the method of proof by using the axiom of transcendental induction is the
principle of transcendental induction. As the formula of transcendental
induction usually used, we have the following theorem.

Theorem 1.1(Transcendental induction)  We use the notation in the
above. Then, we have the relation

Va(V8 < ¢ A(B) = A(e)) — Ala)) = Va A(w).

Here we prove the existence of the model of the ZFC set theory by using
the principle of transcendental induction.
Now we define a class P(a) by using the relation

P(a) = {x; z C a}.

Then we study the definition of a function R(«) by virtue of the transcen-
dental induction.

We define the function R(«) by using the transcendental induction in the
following:

(A) We define R(0) = 0.

(B)  Assume that R(S) is defined for an arbitrary 8 < « when the ordinary
number « is constructed. Then we define R(a) as in the following (B.1)
and (B.2):
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(B.1) If o is not a limit ordinal number, there exists 8 such that
a=[FU{B} = +1holds. Then we define

(B.2) When « is a limit ordinal number, we define

R(a) = |J R(B).

B<o

(C)  According to the construction of the ordinal numbers, we continue the
process of definition (B) without limit.

In this definition, when we construct an ordinal number successfully by
starting from 0, we define the value of R(«) according to the processes (A), (B),
(C) on the stage of construction of the ordinal number a. Thereby, we complete
the definition of the function R(a) with the completion of the construction of
the ordinal number o.

Therefore it means that we have the unique definition of the function R(«)
for all ordinal numbers.

For the function R(a) defined in the above, we have the following theorem
1.2 ~ 1.4.

Theorem 1.2  We have the following three relations:

(1) R(0)=0.
(2) R(a+1)=R(a)JP(R(a)).
(3) If « is a limit ordinal number, we have

R(e) = |J R(B).

B<a

Theorem 1.3  We have the following three properties:
(1) a<B— R(a) C R(B) AR(a) € R(B).
(2)  The set R(a) is transitive. Namely, we have the condition

vz, y(m cyAy€ Rla) = z € R(w)).

(3) a€ R(a), bCa—be R(a).
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Theorem 1.4  We have the following two properties:
(1)  R(a+1)=P(R(a)).
(2)  We have Vzda(z € R(a)).

Namely, we have

V= U R(a).

a€0n

Especially, when, starting from the assumption R(0) = ¢, we define the
function R(«) by virtue of the processes (A), (B), (C), the class V constructed
in Theorem 1.4 is the model of the ZFC set theory. Therefore, we have the
following theorem.

Theorem 1.5  There exists a model of the ZFC set theory.

Next we study the definitions of sum, product and power of ordinal
numbers.

For two ordinal numbers « and 3, we define the sum «+ 3. the product o 3
and the power o’ of the ordinal numbers in the following by using the principle
of transcendental induction.

Definition 1.4(definition of sum)  We define the sum a + 3 of the
ordinal numbers « and g such that the following conditions (i) ~ (iii) are
satisfied:

(i) a+0=c.
(i) a+pf =(a+p8).
(i) a+vy=sup{a+& &<}

Here we assume that 3’ = 8+ 1 and + is a limit ordinal number.

Definition 1.5(definition of product) We define the product a8 =
a - 8 of the ordinal numbers o and 8 such that the following conditions (i) ~
(iii) are satisfied:

(i) a-0=0.
(i) a-pf=a b+

(iil)  a-y=supf{a-& § <}
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Here we assume that A’ = 8+ 1 and 7 is @ limit ordinal number.

Definition 1.6 (definition of power) For two ordinal numbers o and
B where o > 0, we define the power o® such that the following conditions (i)
~ (ili) are satisfied:
i =1
(i) o =o’ o
(iii) o =sup{a®; £ <~}
Here we assume that 8’ = 8+ 1 and « is a limit ordinal number.

Then we have the laws of calculations of sum, product and power of ordinal
numbers in the following.

Theorem 1.6  Assume that o, 3, v are the ordinal numbers. Then we
have the laws of calculations (1) ~ (5) of sum, product and power of ordinal

numbers in the following:
1) (a+B8)+v=a+ (8+7). (Associative law).
2) (a-B)-y=a (B-v). (Associative law).

aBtr =8 . .

(1)
(2)
(3) «a-(B+7)=a-B+a- . (Left distributive law).
(4)
(5)

5 a?7 = (f).

Remark 1.1  In general, the commutative laws a + 8 = 8 + o and
a- =B - «, the right associative law (8 +v)-a = - a+ - o do not hold.
Further, the relation (o - 8)Y = o - 87 for the power does not holds in general.

Then we have the following theorem concerning the order relation of ordinal
numbers.

Theorem 1.7  For the order relation of ordinal numbers, we have the
following (1) ~ (7):

(1) For every two ordinal numbers « and 3, only one of the relations a <
B, o= or B <~ holds.

(2) Ifa< B, B <+ hold, we have oo < . [Transitive law].
(3) If o < B holds, we have ooy <+ 7.
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(4) Ifa<pB, v>0 holds, we have v-a < =y - 8.

(5)  For an arbitrary ordinal number o, we have o > 0.
(6) Ifa < B holds, we have o+ 1 < 3.

(7)  We have a C On — Ja(a < a).

By virtue of Theorem 1.7, (6), we see that o+ 1 is the next ordinal number
of a.

Further, by virtue of Theorem 1.7, (7), we see that there exists a large
ordinal number without limit.

Theorem 1.8 We have the relation

0#ACOn—3ac AVB € Ao < B).

We often say that Theorem 1.8 is the principle of transcendental in-
duction.

Definition 1.7 If 0 #£ A C On, there exists the minimum of 4. We
denote this element as uA. If 0 # A C On does not hold, we define A = 0.

In fact, by virtue of Theorem 1.7, it is proved that there exists the minimum
of Aif 0 # A C On holds.

Therefore the minimum of A is uniquely determined if 0 # A C On holds.

When A is {o; A(a)}, we denote puA as paA(a). We read this as “the
minimum « which satisfies A(a)”.

Therefore we have the following (1) and (2):

(1)  FeA(a) = A(paA(a)).
(2)  A(B) = pad(a) < 8.

Further, if ~3aA(a) holds, we define paA = 0.

Here the symbol Ua denotes the minimum upper bound or the supremum
of a. If there exists the maximum of a, Ua denotes the maximum. If there
does not exist the maximum of a, Ua denotes the limit of a. We denote Ua as

supa Oor sup .
aca

Theorem 1.9 We have the relation

a C On— Ua € On.
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Theorem 1.10  We have the relation

aCOn, a€a—a<lUa

Theorem 1.11  We have the relation

aCOn,Viea(f <a)—Ua<a

We denote the smallest limit ordinal number in On as w.
Then the following two conditions are equivalent:

(1) « € On is a finite ordinal number.

(2) We have the condition o < w.

Theorem 1.12  The ordinal number w in the above is equal to the set
w={0, 1, 2, ---} of all finite ordinal numbers.

Next, on the basis of the principle of transcendental induction, we study
the construction of ordinal numbers. Namely we study the construction of
the model of ordinal numbers.

Theorem 1.13(Existence of the model of ordinal numbers)  We
construct the class On of sets such that it satisfies the following conditions (1)

~ (3):

(1)  When we construct the empty set ¢, we define that this empty set is
0 € On.

(2)  If o € On is not 0, we construct the set {8; B < a} of all ordinal
numbers B < o. Then we have the following conditions (i) and (ii):

(i)  When there ezists the mazimum f of the set {8; B < a}, we have
a=8+1=pU{8}.

(i)  When there does not exist the mazimum of the set {§, § < a},
is a limit ordinal number and we have

a=1{6 B <a}=J{8)

f<a

(3)  On is the smallest class which satisfies the conditions (1) and (2).
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Then On is the class of all ordinal numbers. Therefore an element of On is an
ordinal number.

The class On constructed in the above satisfies the system of axioms in
Definition 1.2. Hence we can construct the model of ordinal numbers by using
the principle of transcendental induction. Thereby we can prove the existence
of the model of ordinal numbers.

Hence we have the existence theorem of ordinal numbers.

Theorem 1.14  We use the notation in the above. There exists the model
of the class of all ordinal numbers. Therefore there exists the class On of all
ordinal numbers.

We can show concretely the beginning part of the construction of the model
of ordinal numbers in the above.

At first, we construct the empty set, we define that it is 0. Next, because the
set constructed until now is only 0, we construct the set {0} which is composed
of only 0. Then we define that it is 1.

Then, because the set constructed until now is only 0 and 1, we construct
the set {0, 1} which is composed of only 0 and 1. Then we define that it is 2.

By repeating this construction, we construct all finite ordinal numbers
0, 1, 2, ---. Further we continue to construct ordinal numbers as possible
as we can do by using the principle (C). Therefore, when we construct the set
{0, 1, 2, ---} of all finite ordinal numbers, we define that it is w.

Next, by constructing the set {0, 1, 2, ---, w}, we define that it is w + 1.
Further, by constructing the set {0, 1, 2, -+, w, w+ 1}, we define that it is
w + 2. Thus, by continuing the construction of ordinal numbers, we construct
the ordinal numbers

w—*—w’...fw’...?w?...’w'

as possible as we can do.
Thus we can construct the class On of all ordinal numbers.
The beginning part of ordinal numbers is

07 {0}7 {0~ 1}~ B {Oa ]-7 25"'}) {07 17 27'“7‘*}}» Tty
0? 1> 27 T, W,y w+17

At last, we prove that the set IN of all finite ordinal numbers satisfies the
system of Peano’s axioms. Namely we have the following theorem.

Theorem 1.15  We denote that the set N = {o; o < w} of all finite
ordinal numbers is N = {0, 1, 2, --- }.
Then we have the following (1) ~ (3):
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(1) We haveO € N.
(2) Ifa€ N holds, we define a+1=aU{a}. Then we havea+1€ N.

(3) N is the mazimum set which satisfies the conditions (1) and (2).

Therefore the set N = {0, 1, 2, ---} of all finite ordinal numbers satisfies
the system of Peano’s axioms gives the definition of finite ordinal numbers. By
using the set N of all finite ordinal numbers, we can construct the model of
natural numbers. Then we can use the definitions of summation and multipli-
cation and the order relation defined for ordinal numbers as those of natural
numbers. As for this fact, we refer to Ito[1] ~ [4].
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