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Abstract
In this paper, we discuss some geometric properties of Riemannian
submersions whose total space is a manifold through various classes of
Kenmotsu structures. The study focuses on the superminimality of the
fibres. This property facilitates the transference of the structure from the
base to the total space.
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Introduction

Almost contact metric submersions are Riemannian submersions whose total
space is furnished with an almost contact metric structure (¢,&,7, g). This the-
ory, initiated by D. Chinea [2], and B. Watson [14] independentely each other,
continue to fascinate a number of differential geometers; For instance, we can
cite [4], [8] and [9] among many others.

From D. Chinea and C. Gonzalez [5], it is known that there are 4.096 classes
of almost contact structures. These manifolds are grouped in Sasakian, cosym-
plectic and Kenmotsu types. In [10], K.Kenmotsu introduced a class of almost
contact Riemannian manifolds which are neither cosymplectic nor Sasakian.

In this paper, we would like to understand what happens in the Kenmotsu
type by the use of Riemannian submersions. One of the main problems in the
study of almost contact metric submersions is the relationships between the
properties of the total space, the base space and the fibres.
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The present paper is organized as follows. Section 1 is devoted to the pre-
liminaries on almost Hermitian and almost contact metric manifolds. Here,
various classes of manifolds in Kenmotsu type and the diagram of their inclu-
sions are presented. Section 2 deals with almost contact metric submersions.
In this section, we examine the structure of the fibres, the transference of the
structure from the total to the base space or to the fibres. We show that the
superminimality of the fibres is a tool in the transference of the structure from
the base to the total space. In this case, we have found that the criterion of
Watson, [15], for this transference does not apply to some other classes such as
Go— Kenmotsu and almost trans-Kenmotsu.

1 Preliminaries on Manifolds

1.1 Almost Hermitian Manifolds

By an almost Hermitian manifold, one understands a Riemannian manifold,
(M., g), of dimension 2m, furnished with a tensor field , J, of type (1, 1) satisfying
the following two conditions:

(i) J2D = - D, and
(ii) g(JD,JE) = g(D.E), for all D, E € x(M).

Any almost Hermitian manifold admits a differential 2—from, Q, called the
fundamental form or the Kédhler form, defined by

Q(D, E) = g(D, JE).

The codifferential of Q2 is given by

m

sQUD) = - Z {(VE,Q)(E;, D) + (V,5,Q)(JE;, D)}

The Lee 1—form is defined by 6(D) = —1560Q(JD).

Almost Hermitian structures have been completely classified by A. Gray and
L.M. Hervella [7]. We just recall the defining relations of some classes which
will be used in this study.

An almost Hermitian manifold (M?™, g, J) is said to be :

(a) Kahlerian if dQ(D, E,G) = 0 and N; = 0, where N; denotes the
Nijenhuis tensor of J;

(b) almost Kdihlerian (or Wy-manifold) if dQ(D, E,G) = 0;
(c) nearly Kahlerian (or Wi-manifold) if (VpQ)(D, E) = 0;
(d) Ws-manifold if (VpQ)(E,G)— (VypQ)(JE,G)=0= 4,
(e) semi-Kdhlerian (or Wy & W, & Wi-manifold) if 62 = 0;
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() W) @ W-manifold if (VpQ)(D, E) - (Vyp)(JD, E) = 0 = 60;
(g) G—’l—manifold if (VI)Q)(DE) — (VJDQ)(JD,E) = 0;

(h) Hermitian or (W3 @& Wy-manifold) if Ny = 0 or equivalently
(VpQ)(E,G) — (V1 pQ)(JE, G) = 0.

(i) a Ga—manifold or (W, & Wy @ Wj-manifold) if
G{(Vo)(E.G) - (V,pQ)(JE,G)} = 0 or G{g(Ns(D, E), JG)} = 0.

() quasi Kdihlerian or (W1 @ W-manifold) if
(VoO)(E,G) + (Vsp(JE,G) = 0.

(k) Wy @ Ws-manifold if g {(VDQ)(D, E) - (VJDQ)(JD7 E)} =0=6Q.

() locally conformal almost Kéahler (W, © Wy-manifold) if
A2 = QAf or G {(VDQ) (E,G) - =1-0(D, E)6Q (JG)} -0,

m—

where G denotes the cyclic sum over D, E and G.

1.2 Various Classes of Kenmotsu Manifolds

Since Kenmotsu manifolds constitute a fragment of contact geometry, we begin
by recalling some background notions in the latter.

An almost contact structure on a differentiable manifold, M, is a triple
(p,&,m) where:

(i) ¢ is a characteristic vector field,
(ii) 7 is a differential 1—form such that n(§) = 1, and
(iii) ¢ is a tensor field of type (1,1) satisfying
42D = ~D + (D)X,
for all D € x(M).

As in the case of almost Hermitian manifolds, the fundamental 2—form, ¢,
of an almost contact metric manifold is defined by

¢(D,E) = g(D,¢E).
Among some remarkable identities we have:

(1) (Vpn)E = g(E,Vp&);

(2) 2dn(D,E) = (Vpn)E — (VEn)D.




Tshikunguila Tshikuna-Matamba

Let {E1, ..., Bm, ©FE1, ... 0E,, £} be a local p—basis of an open subset of M,
then the codifferential § is given by

§6(D) = = > {(VE,6)(Ei, D) + (Vor,8)(9Ei, D)} = (Ved) (&, D);

i=1

on=— Z {(VEmE; + (Vop,meE:}.

i=1
Almost contact metric manifolds are extensively studied in [1].
The analogous of the Lee form is the 1—form, w, defined by

w(D) (66(pD) — n(D)dn).

Let us recall the well known structures in the topic of Kenmotu manifolds.
An almost contact metric manifold is said to be:

(1) almost Kenmotsu if d¢(D, E.G) = 3G {n(D)¢(E.G)};

(2) Kenmotsu if d¢(D, E,G) = 5G{n(D)¢(E,G)}, dn =0 and
NW = 0; where N = N, + 2dn ® ¢ with N, the Nijenhuis tensor of ¢.

1
T m

(3) Gi1—Kenmotsu if
(Vo) (D, E) = (Vopd)(¢D, E) — n(D)$(E, D) = 0 = dn;

(4) Gy—semi-Kenmotsu if it is G; —Kenmotsu and d¢ = 0;

(5) Go—Kenmotsu if
G{(Vpo)(E,G) — (Vepd)(0E.G) —n(D)$(E,G)} = 0 = dn;

(6) Go—semi-Kenmotsu if it is Ga—Kenmotsu and d¢ = 0;
(7) nearly Kenmotsu if (Vpp)D = —n(D)pD and dn = 0;

(8) semi-Kenmotsu normal if
(VD(b)(Ev G) - (V¢D¢)(¢E, G) = U(E)Cb(G» D)v (5¢ =0 and dn = 0;

(9) quasi-Kenmotsu if
(Vo) (E.G) + (Vend)(pE, G) = n(E)¢(G, D) + 2n(G)¢(D, E)
and dn = 0;

(10) almost trans-Kenmotsu if

G{(VDo)(E.G) = 5 6(D, E)id(G) — 2n(D)(E,G)} =0

and dn = 0;
(11) generalized Kenmotsu if (Vp@)(E,G) — (Vopd)(9E,G) = n(E)¢(G, D)
and dn = 0.

The latter class is introduced in [13].
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These various classes are related as shown in the following diagram.

G1-
Kenmotsu \
G-semi-
Kenmotsu
Nearly semi- Kenmotsu
Kenmgotsu normal

generalized
Kenmotsu

Kenmotsu

Figure 1. Diagram of the strict inclusions.

Go-
Kenmotsu

Go-semi-
enmotsu

Almost
enmotsu

Almost trans-
Kenmotsu
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2 Almost Contact Metric Submersions
In [11], O'Neill has defined a Riemannian submersion as a surjective mapping
T M — B
between two Riemannian manifolds such that
(i) 7 is of maximal rank;
(i) 7T,j(kern, )t is a linear isometry.
The tangent bundle T'(M), of the total space M, admits an orthogonal de-

composition

T(M) = V(M) ® H(M),

where V(M) and H(M) denote respectively the vertical and horizontal distribu-
tions. We denote by V and H the vertical and horizontal projections respectively.
A vector field X of the horizontal distribution is called a basic vector field if it
is m—related to a vector field X, of the base space B. Such a vector field means
that X, = 7. X.

On the base space, tensors and other objects will be denoted by a prime ’
while those tangent to the fibres will be specified by a carret " Herein, vector
fields tangent to the fibres will be denoted by U, V and W.

Let (M?"+! g 0 &,n) and (M2 +1 ¢/ o' €. 1/) be two almost contact
metric manifolds. By an almost contact metric submersion of type I, in the
sense of Watson [14], one understands a Riemannian submersion

T A12m+1 N [/2m’+l
satisfying
(1) mep = @'ms,
(it) m&=¢'.

When the base space is an almost Hermitian manifold, (M"2™  ¢',J’), the

Riemannian submersion
F 1
T A{Qm—}—l MI???I

is called an almost contact metric submersion of type II, if m.p = J'm., [14].

Various classes of Riemannian submersions are presented in [6].

2.1 Fundamental Properties

Now, we overview some of the fundamental properties of these submersions.

Proposition 2.1. Let © : M2™+1 — M2™'+1 pe qn almost contact metric
submersion of type I. Then
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(a) ¢ = ¢;
(b) ' =mn;
(c) n(U) =0 for all U € V(M);

d) H(Vxp)Y is the basic vector field associated to Vi oY, if X and Y
X.
are basic.

Proof. See Watson [14]. O

Proposition 2.2. Let m : M2™+t — M"™ be an almost contact metric
submersion of type II. Then

(@) 70— 6
(b) n(X) =0 for all X € H(M),

(¢) H(Vxp)Y is the basic vector field associated to (V' J )Y if X and YV
are basic.

Proof. See again Watson [14]. O

2.2 Transference of Structure

Proposition 2.3. Let  : M2™t1 — M'?™'4) be an almost contact metric
submersion of type I. If the total space is generalized Kenmotsu, Kenmotsu,
almost Kenmotsu, quasi Kenmotsu, nearly Kenmotsu or G;—Kenmotsu for i €
{1,2}, then the fibres are respectively Hermitian, Kdihler, almost Kdhler, quasi
Kihler, nearly Kéhler or G;—manifolds for i € {1,2}.

Proof. Let M*™*! be a generalized Kenmotsu manifold. Considering three
vector fields U, V and W tangent to the fibres, we have

(Vug)(V,W) = (Voud)(eV. W) = n(V)¢(W,U)
and dn = 0; The vanishing of n on vertical vector fields gives to
(Vud)(V,W) = (Veud) ¢V, W) = 0
which corresponds to
(Vu)(V,W) ~ (Vu)(JV.W) =0
which is the defining relation of a Hermitian manifold. O

Recall that, the O’Neill tensors of configuration T and A are defined, on the
total space of a Riemannian submersion by setting

TpE = HVypVE + VVypHE,
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ApE =VVypHE + HVypVE.

These tensors play an important role in the study of the geometry of the fibres
and the horizontal distribution respectively.

Using the latest, which is the integrability tensor, D. Chinea [3] has defined
an associated tensor A* on horizontal vector fields by putting

A*(X,Y) = AxipY el A@Xy

and has established the following structure equations

56U = 56(U) + %g(trA*, U); (2.1)
60(X) = 6¢'(X..) + g(H,pX); (2.2)
§n=o6n om—g(H,E), (2.3)

where H denotes the mean curvature vector field of the fibres and trA* is the
trace of A*.
Concerning the Lee forms w and 6, the above equations lead to the following

Lemma 2.1. Let w : M?™+1 s M™2m'+1 e an almost contact metric sub-
mersion of type I, then 8(U) = w(U) if and only if trA* = 0.

Proof. The vanishing of 1 on the vertical distribution leads to
1 N
L = ——3¢(U).
AU) = ——=30(D)

But, from equation (2.1), we have §¢(@U) = 6¢(U) if and only if trA* = 0.
Since the fibres of an almost contact metric submersion of type I are almost
Hermitian manifolds, we have ¢U = JU and §¢ = dQ so that ©(U) = 0(U) as
required. O

Proposition 2.4. If the total space of an almost contact metric submersion
of type I is semi-Kenmotsu normal or G;—semi-Kenmotsu for i € {1,2}, then
the fibres are Ws—manifolds or W; & Ws—manifolds respectively if and only if
trA* =0.

Proof. Let us consider the case of semi-Kenmotsu normal. On vertical vector
fields U, V and W tangent to the fibres, we have
(Vud)(V, W) = (Voud) oV, W) = n(V)(W,U), 6¢ = 0 and dn = 0;
the vanishing of n on vertical vector fields leads to
(Vuod)(V, W) — (Voud)(pV, W) =0, §¢ = 0 and dn = 0;

In the light of equation (2.1), 8¢ = 0 if and only if trA* = 0. On the other
hand, since ¢ = J on the fibres of a type I submersion, we obtain (VQ)(V, W)—
(Viu)(JV,W) = 0 = §Q. Other cases are treated in the same way. O

Proposition 2.5. Let m : M2™t! — M"?m'+1 pe an almost contact metric
submersion of type I. If the total space is almost trans-Kenmotsu , then the
fibres are Wy @ Wy—manifolds if and only if trA* = 0.
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Proof. Analogous to the preceding. O
Let us look to the analogous properties of submersions of type I

Proposition 2.6. Let m : M?>™+t1 — M"™ be an almost contact metric
submersion of type II. If the total space is G;—semi-Kenmotsu for i € {1,2},
almost trans-Kenmotsu or semi-Kenmotsu normal, then the fibres inherit the
structure of the total space if and only if trA* = 0.

Proof. Note that all these manifolds are defined by the use of codifferential, §¢,
of the fundamental 2—form ¢. Using equation (2.1), we have that d¢ = d¢ if
and only if trA* = 0 on vertical vector fields. 0

Proposition 2.7. Let m : Mt — M’>™ be an almost contact metric
submersion of type II. If the total space is an almost trans-Kenmotsu manifold,
then the base space is a Wa ® Wy —manifold if and only if the fibres are minimal.

Proof. Because of the vanishing of 7 on horizontal vector fields, we have

6 {(Vx011.2) - X V)d0(e2) ) =0

Taking into account that the base space is an almost Hermitian manifold,
we get

o{ (Vi )7, 2. - XY ('2) | =0

which is the defining relation of a locally conformal almost Kéahler (or a Wy @
W,—manifold). Recall that, with equation (2.2) in mind, §¢ = 6§ if and only
if H=0. a

Proposition 2.8. Let m: M?™* — M’ be an almost contact metric submer-
sion of type I or type II. If the total space is endowed with the nearly Kenmotsu
structure, then,

(a) TypU = ¢TyU,

(b) Te£ =0,
(¢c) AxpX =0,
(d) At =0.

Proof. Remember that a nearly Kenmotsu manifold is defined by
(Voe)D = —n(D)eD.

In the case of a submersion of type I, the vanishing of 1 on vertical vector fields
gives n(U) = 0 so that the defining relation becomes (Vy¢)U = 0 from which
the horizontal projection gives

TueU = TyU.
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Considering the case of a submersion of type II, the horizontal projection
gives also (V@)U = 0 because @U is vertical. We then get the proof of (a).
Now, let us examine assertion (b). If we have a type I submersion, £ is
horizontal (basic). In this case, T:{ = 0 according to the fact that Tr = Tyg.
If we have a submersion of type II, one has (Ve@)¢ = 0 from which V& = 0
follows. Since & is vertical, the horizontal projection of V& = 0 gives T¢€ = 0.
Concerning assertion (c), it is clear that the relation becomes

(V)X = —n(X)pX.

If we have a submersion of type I, since X is horizontal, the vertical projection
gives V(Vx )X = 0 from which AxpX = Ay X follows. It can be shown
that Ax(pX = (.

If we have a submersion of type I, the relation gives (Vx¢)X = 0 because
7n(X) = 0 and thus, AxeX = 0 is deduced.

Considering assertion (d). In the case of a submersion of type I, we have
(Vep)é = 0 as above from which V£ = 0 follows. Since £ is horizontal, the
vertical projection of V€ = 0 gives A¢€ = 0. If we have a submersion of type
I1, it is known that & is vertical from which the proof follows. [

Proposition 2.9. Let 7w : M?™ 1 — M’ be an almost contact metric submer-
sion of type I or type II. If the total space is nearly Kenmotsu , then the fibres
are minimal.

Proof. Since, by Proposition 2.8, TyoU = Ty U, it is easy to show that the
fibres are minimal. O

Some implications of the minimality of the fibres

Proposition 2.10. Let m : M2™ 1 — M2+ pe an almost contact metric
submersion of type 1. If the total space is semi-Kenmotsu normal, G;—semi-
Kenmotsu fori € {1,2}. or almost trans-Kenmotsu, then the base space inherits
the structure of the total space if and only if the fibres are minimal.

Proof. The manifolds under consideration heeing defined with the codifferential,
it is clear that, with the use of equation (2.2), §¢’ = d¢ if and only if H = 0. [J

Proposition 2.11. Let m : M2?™t1 — M”™ be qn almost contact metric
submersion of type II. If the total space is G;—semi-Kenmotsu for i € {1,2}
or semi-Kenmotsu normal, then the base space is respectively W; & W3 or
Ws—manifold if and only if the fibres are minimal.

Proof. Let us consider the case of G; —semi-Kenmotsu which means that ¢ = 1.
On basic vector fields X and Y, we have

(Vxo)(X,Y) = (Vox o) (X, Y) =0

because of the vanishing of  on horizontal vector fields.
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With the fact that 7*Q) = ¢, the above relation becomes
(Vi )Xo, Y) = (Vg )X, V) =0
On the other hand, since the total space is defined with §¢ = 0, we can use the
Chinea equation (2.2) which leads to §Q' = 0 if and only if H = 0. (]
2.3 Superminimality of the fibres

Now we want to examine the superminimality of the fibres. Let (M*™*! g, 0. &,n)
be an almost contact metric manifold and M a @—invariant submanifold of M.
If, Vi@ = 0 for all V tangent to M, then M is said to be superminimal.

In order to verify the superminimality of the fibres of an almost contact
metric submersion of type I, there are four components of g(Vy¢)D, E) to be
considered on the total space M. From [12] we recall that

SM-1) g((Vv)U, W) = g(Vy(JU) = JVyU, W),
SM-2) g((Vv)U, X) = g(Tv(pU) — o(TvU), X),
SM-3) g((Vvp)X,U) = —g((Vve)U, X),

SM-4) g((Vvp)X,Y) = —g(ApxY + Ax(pY), V).

In the case of an almost contact metric submersion of type II, we easily find

SM-5) g((Vv@)U, W) = g(Vy (2U) — ¢V U, W),
SM-6) g((Vvp)U,X) = g(Tv (pU) — p(TvU), X),
SM-7) g((Vv)X,U) = —g((Vve)U, X),

SM-8) g((Vy@)X,Y) = —g(ApxY + Ax(pY), V).

It is clear that SM — 1) implies that if the fibres are superminimal, then
they are Kéhler.

Proposition 2.12. Let 7 : M>" 1 — M"™'+1 pe an almost contact metric
submersion of type I. If the total space is a Kenmotsu manifold, then the fibres
cannot be superminimal.

Proof. Suppose that the fibres are superminimal. This means that V¢ = 0 for
all vector fields U tangent to the fibres. But on Kenmotsu manifold we have

g((Vup)eU, &)
9(0U, 0U)g(£,§)
U]

0

I

If |U|> = 0 then U = 0 which is not true. Thus, the fibres cannot be
superminimal. O
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We can say something concerning the integrability of the horizontal distri-
bution.

Proposition 2.13. Let m : M2+ — M"™" pe an almost contact metric
submersion of type II with the total space a nearly Kenmotsu manifold. If the
fibres are superminimal, then the horizontal distribution is completely integrable.

Proof. Since n vanishes on horizontal vector fields, the defining relation of a
nearly Kenmotsu manifold gives

(Vxp)X =0.

On an almost contact metric submersion of type II with M, nearly Kenmotsu,
(Vxp)X = —n(X)pX for any horizontal vector field X. Therefore, AxpX = 0.
The usual polarization trick implies that Ax¢Y = ¢AxY. Combining this with
expression SM — 8) yields A= 0. |

Proposition 2.14. Let w : M2™ 1 — M2+ pe gn almost contact metric
submersion of type I with the total space a Gy — Kenmotsu manifold. If the fibres
are superminimal, then the horizontal distribution is completely integrable.

Proof. Let X be a horizontal vector fields and U a vertical one. According to
the defining relation of a Gy —Kenmotsu structure, we have

(Vxo)(X,U) = (Vox0) (X, U) = n(X)s(X,U).
Thus we obtain
~g(Ax X, pU) ~ g(Ax X, U) — g(ApxoX.oU) + g(A,x X, U) = 0,

yielding 2g(A,x X, U) = 0, from which one gets A,x X = 0.
Combining this result with the fact that expression SM — 4) vanishes, we
have A= 0. O

In the following, we will show that the superminimality of the fibres is a tool
in the transference of the structure from the base to the total space.

Lemma 2.2. Let w : M2 L — M2+ pe an almost contact metric sub-
mersion of type I. Suppose that dn’ = 0 on the base space. If the fibres are
superminimal, then dn =0 on the total space.

Proof. In order to see that dn = 0, we begin by assuming that X and Y are
basic vector fields on the total space. Then dn(X,Y) = dn/(X.,Y.) = 0. The
vanishing of expression SM — 2) implies, along with A,x = 0 that A= 0. Now

2dn(X,U) = (Vxn)U— (VenX
9(X,Vu€) — g(U,Vx¢)
9(X. Vi) — g(U, Ax§)
= g(X, V).
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The superminimality of the fibres implies that

0 = g((Vup)s X)
g(ngO{,X)—g((vaf,X)
g(Vué, pX).

Thus, Vi€ is g—orthogonal to all vector fields except, perhaps, £. Recall
that ||£]|* = g(&,€) is constant 1, so that g(Vy €, &) = 0.
Hence dn(X,U) = 0 and dn(U, X) = 0.

Recall, too, that the Lie bracket [U, V] is vertical from the complete integra-
bility of the vertical distribution.

Then

1
dn(U, V) = 5 {Un(V) = Va(U) = 0([U, V])} = 0
because 7 vanishes on the vertical distribution. O

The above Lemma 2.2 applies to nearly Kenmotsu, quasi Kenmotsu and
generalized Kenmotsu manifolds among many others.

Proposition 2.15. Let m : M>™ 1 — M?™'+1 be an almost contact met-
ric submersion of type I. Assume that the base space is nearly Kenmotsu, a
G1—Kenmotsu or G1—semi-Kenmotsu. If the fibres are superminimal, then the
total space is nearly Kenmotsu, G1—Kenmotsu or Gy —semi-Kenmotsu respec-
tively.

Proof. Let us consider the case of the nearly Kenmotsu structure. Lemma
2.2 implies that dn = 0 on the total space. Since n vanishes on the vertical
distribution, we need only to show that (V@)U = 0 and that

0= (Vxe)X +n(X)pX.
Let X be basic, then
(Vxe)X +n(X)pX = (Vi, ") Xs + 7' (Xs)¢' X = 0.

Clearly, (V@)U = 0 because the fibres are superminimal. Therefore, the total
space is nearly Kenmotsu.

Now, let us consider the case of G;—Kenmotsu structure. In the preceding
Lemma 2.2 it is shown that if dn’ = 0 on the base space then the total space
also verifies dn = 0.

There are four components which must vanish to verify the
G1—Kenmotsu structure on the total space. We have

Gi— K-1) (Vud)(U,V) = (Voud) (U, V) = n(U)g(V, U);

Gi — K-2) (Vug)(U, X) = (Vou ) (U, X) = n(U)p(X, U);

Gi— K-3) (Vx¢)(X,V) — (Vox o) (90X, V) = n(X)g(V, X);

G1 — K—4) (Vx@)(X,Y) — (Vox§)(0X,Y) — n(X)$(Y, X).
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For the first two components, we note that superminimal fibres means that
Ve = 0 because of the vanishing of n on the vertical vector fields. The
fourth expression vanishes on basic horizontal vector fields because the projected
tensors by the submersion down to the base space vanish.

Now, consider expression GGy — K — 3). Recall that

(Vx)(X, V) = g(X.(VxpV))
= g(X,VxpV —o(VxV))
= g(X, AxpV — pAxV)
= —g(AxX. V) - g(AxpX,V)
= —g(AxeX,V).

Similarly, (Vx¢)(X, V) = g(A, . x X, V).
Thus,

(Vx )X, V) = (Vox 0) (X, V) = —g(Ax X + Axx X, V) = 0.

Therefore G| — K — 3) vanishes and M is G;—Kenmotsu.

Considering the case of (¢;—semi-Kenmotsu; in this proposition, it remains
to consider the case where §¢’ = 0. It is known that, since the fibres are super-
minimal, they are Kéhler and then minimal. With this, and the use of equation
(3.2). of Chinea, [3], we then have §¢ = 0.

|

Proposition 2.16. Let w : M2™+1 s M2™'+1 pe gn almost contact met-
ric submersion of type 1. Assume that the base space is generalized Kenmotsu,
quasi Kenmotsu or semi-Kenmotsu normal and the fibres are superminimal. If
(Vxp)V =0, then the total space inherits the structure of the base space.

Proof. Note that (Vx¢)V = 0, is the almost contact analogue of the Watson
criterion [15]. There are six expressions which must vanish to prove that the
total space inherits the structure of the base space. We have

GeK-1) (Verd)(V, W) — (Vo) (V. W) — n(V)o(W, U);

GeK-2) (Vi) (V, X) = (Voud) 9V, X) = n(V)b(X, U);

GeK-3) (Vug)(X,Y) = (Vou¢) (0 X, Y) = n(X)o(Y, U);

GeK'4) (v‘ﬁ (b)(U7 V) - (VOXCz)) (SOUV V) - U(U)é(v X)v

GeK-5) (Vx)(Y, V) = (Vox @) (@Y, V) = n(Y)e(V, X);

GeK-6) (Vx)(Y, Z) - (V,x 6)(9Y, Z) — (Y )$(Z. X).

Consider expression GeK-4). It is clear that the condition (Vx¢)U = 0,
applies to (Vox @) (U, V), and (Vx¢)(U, V). Since n(U)o(V, X)) = 0, expression
GeK-4) vanishes.

In GeK-5), we have to treat (Vx¢)(Y,V) and (V,x0)(¢Y. V).

Recall that (Vx@)(Y,V) = g(Y,(Vxe)V) and
(Voxo) (@Y, V) = g(eY, (Vyoxp)V), we can apply the condition
(Vx)U =0,
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The last expression vanishes on basic horizontal vector fields because the
projected tensors by the submersion down to the base space vanish.

We have then proved the case of generalized Kenmotsu manifold.

Considering the case of semi-Kenmotsu normal manifold, it remains to con-
sider the case of §¢/ = 0 and dn = 0. Since §¢' = 0, we can use equation (2.2)
of Chinea to get §¢ = 0. In the light of Lemma 2.2, since dn/ = 0 then dn = 0.

The case of quasi Kenmotsu is treated in the similar way following general-

ized Kenmotsu.
O

Proposition 2.17. Let m : M2t — M"™'+1 e an almost contact metric
submersion of type I. Assume that the base space is Go—Kenmotsu or almost
trans-Kenmotsu and the fibres are superminimal. Even (Vx¢)V =0, then the
total space does not inherit the structure of the base space.

Proof In Lemma 2.2, it is established that if dn’ = 0 on the base space, then
the total space also verifies dn = 0.

As in the case of generalized Kenmotsu structure, there are six components
which must vanish to verify the G —Kenmotsu structure on the total space. We
have

Gy — K-1) G{(Vu)(V,W) = (Voud) (V. W) = n(U)s(V, W)};

G2 - K-2) G{(Vu ¢)(V X) = (Veud)(@V, X) = n(U)s(V, X)} ;

Gy~ K-3) G{(Vud)(X,Y) — (Voud)(pX,Y) = n(U)s(X,Y)};

Go— K=4) G{(Vx®)(U,V) ~ (Vox) (U, V) = n(X)$(U, V)}

Gy —K—-5) G{(Vx¢)(Y,V) = (Voxd) (@Y, V) = n(X)(Y,V)};

Go = K-6) G{(Vxd)(Y.2) = (Vox o) (¢Y, Z2) = n(X)$(Y, Z)} .

Since 7 vanishes on vertical vector fields, and the fibres are superminimal,
the three first expressions vanish. G5 — K—b) vanishes because ¢(Y,V) = 0
since Y is horizontal and V is vertical; (Vx¢)(Y, V) = 0 by the use of (Vx )V,
in the same way, we get (V,x¢)(pY,V) = 0.

The obstruction to the transfer of the structure to the total space is the
expression Go — K—4). Indeed, in this expression, n(X)¢(U,V) # 0 because
¢(U,V) = g(U,9V) and n(X) # 0.

In order to prove that the total space, (M?™*1 g, ¢p,&,n), is almost trans
Kenmotsu, the following six expressions must vanish.

ATK-L) G {(Vud)(V, W) — Lo(U,V)6o(eW) ~ 2(U)6(V. W)}

ATK-2) G {(Vuo)(Y, X) - (U, Y)S0(X) — 2n(U)d(V, X)}

ATK-3) G {(Vug)(¥, X) - 7$L¢>(U Y)3p(pX) — 2n(U)d(Y, X) } ;

ATK-4) G {(Vx$)(U,V) — 5 d(X,U)6(pV) — 2(X)p(U, V) };

ATK-5) G {(Vx@)(Y, V) — 55 6(X,Y)dg(pV) — 2n(X)$(Y, V) } 5

ATK-6) G {(Vx¢)(Y, Z) = 5 d(X,Y)06(pZ) — 20(X)$(Y, Z)} .

Since ¢(U,V) # 0, it is clear that ATK-1), ATK-2) and ATK-4) cannot
vanish. So, the total space does not inherit the structure of the base space.

Considering ATK-5), we have ¢(X,Y)d¢(pV) # 0 which obstructs this ex-

pression to vanish.
O
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