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Abstract

In this paper, we study the fundamental principles of natural statis-
tical physics. We derive the Schrédinger equations by solving the varia-
tional problems for the energy functionals of the physical systems. We
give the many solutions of the natural statistical physics. At last we give
several unsolved problems of the natural statistical physics. As for the

precise, we refer to the references.
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Introduction

25

In this paper, we established the fundamental principles of natural statis-

tical physics.

The theory of natural statistical physics is different from the quantum me-

chanics.

In this theory, we study the phenomena of electrons, atoms and molecules
as the statistical phenomena of the family of these micro-particles. These phe-
nomena are governed by the laws of natural statistical physics. We give the
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three cases of the laws of natural statistical physics. We need the marginal dis-
tribution law in order to calculate the expectation value of angular momentum.
Thus we give one case of the marginal distribution law.

In order to study the state of a physical system, we need the L?-density or
the L? -density which is the solution of the Schrddinger equation.

We derive the Schrédinger equation of the physical system as the solution of
variational problem on the basis of the variational principles. We give the three
cases of the derivations of the Schrodinger equations. We show the solutions
of the problems of natural statistical physics. We have already those solutions
in many cases of the natural statistical phenomena. At last we give several
unsolved problems of the natural statistical phenomena. As the reference, we
give the table of correspondence of new and old terminologies in this theory.

From now on, it is the problem to analyze the concrete natural statistical
phenomena by using this new theory.

At last, T express my heartfelt thanks to my wife Mutuko for her helping
me the work of typesetting of the manuscript.

1 Fundamental problems of natural statistical
physics

In the natural statistical physics, we understand the physical phenomena
on the bases of statistical quantities such as the expectation values or mean
values of physical quantities of a certain physical system. Then, the physical
quantities of the physical system are the functions of the position variables
and the momentum variables. Therefore, in order to understand the natural
statistical phenomena of this physical system, we have to know the natural
probability distribution states of the position variables and the momentum
variables of this physical system.

By virtue of the laws of the natural statistical physics, if we determine
the L?-density v determining the natural probability distribution law of the
position variables of this physical system, the natural probability distribution
law of the momentum variables of this physical system is determined by its
Fourier transform .

By virtue of the laws of the natural statistical physics, this L?-density v
is the solution of Schrédinger equation of this physical system. Therefore, in
order to study the natural statistical phenomena of this physical system, the
fundamental problem is to solve the Schrodinger equation as the fundamental
equation. Thus the natural statistical phenomena can be understood on the
bases of the laws of the natural statistical physics.

In the following sections, we postulate the laws of the natural statistical
physics.
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2 Laws of natural statistical physics

In this section, we postulate the laws of natural statistical physics. Here
we consider the case where the Schrodinger operator has only the discrete
spectrum.

When we study the natural statistical phenomena using the natural statis-
tical physics, we postulate the following three concepts :

(1) The physical system.
(2) The state of the physical system.
(3) The motion of the physical system.

We call these postulations to be the laws of natural statistical physics.
These laws are the natural laws of natural statistical phenomena.

The laws of natural statistical physics are described in the following way.
As for these facts, we refer to Ito [1], [5], [6], [8], [9], [13]~[20], [22], [24],
Ito-Kayama [1], [2], Ito-Kayama-Kamosita [1], and Ito-Uddin [1], [2].

The laws of natural statistical physics are formulated in Ito [5] at first time.
This gives the mathematical expression to the statement of natural statistical
physics in Ito [8]. These laws were completely expressed in the form in Ito [15].

Law I (physical system) We postulate that the physical system (2 is a
probability space Q = Q(B, P) = (Q, B, P). Here {1 is the set of the systems p
of micro-particles, B is a c-algebra composed of the subsets of €2, and P is a
completely additive probability measure.

Law II (state of the physical system) We postulate that the state of
the physical system € is defined to be the natural probability distributions of
the position variable 7(p) and the momentum variable p(p) of the system of the
micro-particles p € Q. Here r(p) moves in n-dimensional space R" and p(p)
moves in its dual space R,. Here we put n = Md, d denoting the dimension
of the physical space and M denoting the number of micro-particles which
compose an elementary event p. Then, because the space R" is self-dual, we
identify R, with R™.

(i) We postulate that the natural probability distribution of the position
variable r = 7(p) is determined by an L?-density ¥(r) defined on R".

(ii) We postulate that the natural probability distribution of the momen-
tum variable p = p(p) is determined by its Fourier transform v (r). Here, we

put
1 ~i(pT)/h
Y(p) (Vanh)" /’lﬁ(?‘)e dr,
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h
Here we put & = —, where h denotes Planck’s constant. Here the integral

denotes the Lebesgue integral on the whole space R"™ when the integration
domain is not expressed clearly. In the sequel, the similar notation is used.

(iii) We postulate that, for a Lebesgue measurable set A in R",

W) = [ eear
A
denotes the probability of the event “r(p) belongs to A”. Then we have

P({p € Qir(p) € A}) = n(A).

Thereby we have the probability space (R", M,,u). Here M, denotes the
family of all Lebesgue measurable sets in R".

(iv) We postulate that, for a Lebesgue measurable set B in R",

v(B) = [ 10(o)Fdp
B
denotes the probability of the event “p(p) belongs to B”: Then we have

P({p € Qp(p) € B}) = v(B).

Thereby we have the probability space (R", Ny, v). Here N, denotes the family
of all Lebesgue measurable sets in R".

The reason why we define the Fourier transformation in such a form in Law
(II), (ii) is to meet with the necessity that the Schrédinger equation of the
physical system should be derived by using the variational principle in section
6. The constants are chosen in order that the theoretical results coincide with
some observed data of the natural statistical phenomena.

Law III (motion of the physical system) We postulate that the L?-
density (7, t) determining the natural probability distribution law of the posi-
tion variable 7 at time ¢ is determined by the time evolving Shrédinger equation.
We call this time evolution the motion of the physical system. The law of mo-
tion of the physical system is described by the Schrédinger equation. We call
this Schrodinger equation the equation of motion of the physical system.
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The Schrodinger equation is described in the following form :

oy

th— = H.

ot v
We call the operator H a Schrodinger operator. H is a self-adjoint operator on
a certain Hilbert space. The concrete form of this operator is determined for

every concrete physical system.

3 Laws of generalized natural probability dis-
tribution

In this section, we postulate the laws of generalized natural probability
distribution. Here we consider the case where the Schrédinger operator has the
continuous spectrum.

The laws of generalized natural probability distributions are formulated in
Tto [26] at first time.

Law I' ((generalized) proper physical subsystem) We postulate
that the proper physical subsystem or the generalized proper physical sub-
system 2 is a physical subsystem which is a probability subspace of the total
physical system (£2, B, P). Here Q is the set of the system p of micro-particles,
B is a o-algebra composed of the subsets of 2, and P is a completely additive
probability measure. ’

Then this satisfies the law I’ of the state of generalized proper physical sub-
system and the law III' of the motion of generalized proper physical subsystem
in the following.

Law IT’ (state of the (generalized) proper physical subsystem) (1)

When the Schrédinger operator has only the discrete spectrum, we postulate
that the state of the proper physical subsystem ' is determined by using the
eigenfunction v of the Schrédinger operator in the same way as Law II in
section 2.

(2)  When the Schrédinger operator has the continuous spectrum, we
postulate that the state of the generalized proper physical subsystem Q' is de-
termined by using the generalized eigenfunction v of the Schrédinger operator
in the following :

(i)Y We postulate that the generalized natural probability distribution of

the position variable » = 7(p) is determined by an L2 .-density ¢(r) defined

on R".
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(ii)’ We postulate that the generalized natural probability distribution of
the momentum variable p = p(p) is determined by its Fourier transform ¥ (p).
Here, % is the Fourier transform of v defined by the relation :

¥(p) = Jim bs(p),

where the limit is taken in the sense of generalized functions.
In the above formula, we use the local Fourier transform g defined in the
following way :

-1 PP/ gy,
isp) = s [ st P M,

, __ 1 b (p)eiPT)/A
b5y = e [ sp)e P M,

T :t(xlax%”' ,CL'n), p:t(plap'zr"' :pn)y
p-T=pi12 +pax2+ o+ DnZn.

Here, for arbitrary compact set S in R", ¥g denotes the section of 1 on the
closed sphere S = {||r|| < R} of the radius R > 0. Namely, ¥5(r) is defined
by the relation ¥s(r) = ¥(r)xs(r). Here xs(r) denotes the characteristic
function of the closed sphere S = {||r|| < R} of the radius R > 0. Further we

/
put A= 2_7,’ where h denotes Planck’s constant.
T

(iii)’ We postulate that, for a Lebesgue measurable set A in R",

/ s (r) P

ANS
/wmmr
S

denotes the probability of the event “r(p) of a system p of micro-particles
moving in the region S belongs to AN S”. Then we have

ps(A) =

P({peir(p) € ANS}) = pus(A).

Thereby we have the relative probability space (R", M,,NS, us) corresponding
to ¥g. Here M,, denotes the family of all Lebesgue measurable sets in R".

(iv)’ We postulate, for a Lebesgue measurable set B in R",

P({peQ; r(p) €S, p(p) € B}) =vs(B)
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denotes the probability of the event “p(p) of a system p of micro-particles
moving in the region S belongs to B”. Then we have

/ (b5 (p)Pdp
/ s (p)]? dp

Thereby we have the relative probability space (R", N,,vg) corresponding to
¥g. Here N, denotes the family of all Lebesgue measurable sets in R".

The reason why we define the Fourier transformation in such a form in Law
(IT), (i)’ is to meet with the necessity that the Schrodinger equation of the
physical system should be derived by using the variational principle in section
7. The constants are chosen in order that the theoretical results coincide with
some observed data of the natural statistical phenomena.

Law III' (motion of the physical subsystem) We postulate that the
L?-density 1(r,t) determining the natural probability distribution law of the
position variable r at time ¢ is determined by the time evolving Shrodinger
equation. We call this time evolution the motion of the physical system. The
law of motion of the physical system is described by the Schrédinger equation.
We call this Schrodinger equation the equation of motion of the physical system.

The Schrodinger equation is described in the following form :

zh-—q/i Hqp.

We call the operator H a Schrodinger operator. H is a self-adjoint operator on
a certain Hilbert space. The concrete form of this operator is determined for
every concrete physical system.

4 Laws of natural statistical physics concerning
the periodic motion

In this section, we postulate the laws of natural statistical physics concern-
ing the periodic motion.

Law I (physical system) We postulate that the physical system (2 is a
probability space 0 = Q(B, P) = (2, B, P). Here ) is the set of the system p
of micro-particles, B is a o-algebra composed of the subsets of €2, and P is a
completely additive probability measure.
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Each system of micro-particles p moves periodically on the interval D =
[—a,a]™. Tts fundamental period is 2a in each direction of orthogonal axes.

Law II (state of the physical system) We postulate that the state of
the physical system Q = Q(B, P) = (2, B, P) is defined to be the natural prob-
ability distributions of the position variable r(p) and the momentum variable
p(p) of the system of micro-particles p € Q. Here r(p) moves periodically on
the interval D = [—a, a]™ in n-dimensional space R" and p(p) moves in its dual
space P,, which is the countable set of n-column vectors whose components are
integers. Here we put n = Md, d denoting the dimension of the physical space
and M denoting the number of micro-particles which compose an elementary
event p.

(i) We postulate that the natural probability distribution of the position
variable 7 = 7(p) is determined by an L2-density ¥(r) defined on D.
Here ¥(r) satisfies the periodic boundary conditions

w(r)}mj:~a = w(THIj:ae (T‘ €D, Jj= L2 ,’l?,)

and the normalization condition

/ () Pdr = 1.
D

(ii) We postulate that the natural probability distribution of the momen-
tum variable p = p(p) is determined by its Fourier coefficients ¢(r). Here we

put
I(p) = / b(r)e= P T
D

1
(V2ah)

1 . .
b = e 3 B(p)PTIR,
(m) peP,
/ ) Pdr = 3 1) =1
b peP,

r =" (xl)x%”' 7xn)7 p:t (p17P27"‘ 7pn)7

P-T=p1%1 + p2X2+ o+ DpTh-

h
Here we put A = o where h denotes Planck’s constant.
T

(iii) We postulate that, for a Lebesgue measurable set A in D = [—a, a]”,

u(A) = / () [2dr
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denotes the probability of the event “r(p) belongs to A”. Then we have
P({p € Xr(p) € A}) = u(A).

Thereby we have the probability space (D, M,,u). Here M, denotes the
family of all Lebesgue measurable sets in D.

(iv) We postulate that, for any subset B in Py,

v(B) =Y [¥(p)f

peB

denotes the probability of the event “p(p) belongs to B”. Then we have
P({p € Qp(p) € B}) = v(B).

Thereby we have the probability space (P, N,,v). Here AV;, denotes the family
of all subsets in P,,.

The reason why we define the Fourier coefficient in such a form in Law (II),
(ii) is to meet with the necessity that the Schrédinger equation of the physical
system should be derived by using the variational principle in section 8. The
constants are chosen in order that the theoretical results coincide with some
observed data of the natural statistical phenomena.

Law III (motion of the physical system) We postulate that the L2-
density (7, t) determining the natural probability distribution law of the posi-
tion variable r at time ¢ is determined by the time evolving Shrédinger equation.
We call this time evolution the motion of the physical system. The law of mo-
tion of the physical system is described by the Schrodinger equation. We call
this Schrodinger equation the equation of motion of the physical system.

The Schrédinger equation is described in the following form :

oy
ot
We call the operator H a Schrodinger operator. H is a self-adjoint operator on
a certain Hilbert space. The concrete form of this operator is determined for

every concrete physical system.
Here (7, t) satisfies the following initial and boundary conditions :

ik Hy.

¥(r,0) = ¥(r), (r € D), (Initial condition)

¢(T)|xj=—a = ¢(T)|1'j:a7 ¢(Tat)|zj:—a = ¢(T7t>|$j:a7
(reD, 0<t<oo), (j=1,2,---,n),
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(periodic boundary conditions).

Here, ¥ (r) is a given L2?-density.
When H contains a potential V' (), we assume that it satisfies the periodic
boundary conditions

V(T)|£A,:—a = V(T)Ir_,:av ('f’ € Ds .] = 1v27' o ,TL).

5 Marginal distribution law

In this section we study the concept of marginal distribution law.

When we study the expectation values of angular momenta of the system of
inner electrons of hydrogen atoms, we need the concept of marginal distribution
law.

At first, we give a mathematical model for the system of hydrogen atoms.
We consider the system of hydrogen atoms as the family of hydrogen atoms,
each electron of which is moving in the Coulomb potential

V) ===, (r=1rl)

with its center at the nucleus of the hydrogen atom.

Each electron is moving according to Newtonian equation of motion by
virtue of the causality laws.

As a mathematical model, this physical system is the system of inner elec-
trons of hydrogen atoms which are moving in the Coulomb potential with its
center at the origin.

We denote this system of inner electrons of hydrogen atoms by Q = Q(B, P).
In this paper, we call this physical system to be the system of hydrogen atoms.

Each electron p has its position variable r = r(p) and its momentum vari-
able p = p(p). Here we postulate that the variables r = r(p) and p = p(p) are
the vector valued random variables defined on Q.

In this case, each electron p has the total energy

£ =
(p) T -
where m, and e denote the mass and the electric charge of the electron respec-
tively.
We calculate the expectation value of the angular momentum of the system
of inner electrons of hydrogen atoms

L=rxp="YL, L, L.).
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By virtue of the laws of natural statistical physics, the probability distribu-
tion law of the variable » = 7(p) is determined by the L?-density ¢ which is a
solution of Schrodinger equation of the system of hydrogen atoms

h2 2
5 =g =) v

Then the probability distribution law of the variable p = p(p) is determined
by its Fourier transform 4.
Here we define the Fourier transformation of ¢ as follows:

7 _ 1 =P/
$®) = o [ ®ninar,

where we put

r="12z,9,2), p="(De; Dy, D2)s P T = D+ Pyy + P22

Here we give the fundamental relations in the natural probability distribu-
tion laws in the following:

P({peir(p) € A)) = /A () 2dr,

and

P({p € %p(p) € BY) = /B 19 (p)|2dp.

Here A and B are Lebesgue measurable sets in R®.

Further the natural probability distribution law of the variable (z(p), py(p))
is determined by the partial Fourier transform zﬁ(az, Py, %) as the marginal dis-
tribution of the simultaneous distribution of the variables (z(p), py(p), 2(p))-

Here the partial transformation of v is defined in the following relation:

- 1 [e ) i
w(x,Py,z)=m/ bla,y, 2)e" P My,

The other marginal distributions are defined similarly.

Thereby, by using the natural probability distribution law of the vari-
able (x(p),p,(p)) as the marginal distribution, the expectation value of the
z-component L, of the angular momentum is calculated by the following for-
mula

Bl = [ Lpapo) = [ 50 (o =gz ) wriar

In the right hand side of the above equality, the operator expression is formal
and used only for the benefit of the mathematical calculation. Further, we
remark that this operator expression has no physical meaning.
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For Ly, Ly, L? = L2+ L2 + L2, we calculate their expectation values in the
same way.

We remark that the partial derivatives of the L?-functions ¢ are calculated
in the sense of L?-convergence. We call these the partial L?-derivatives of .

6 Solutions of variational problems

In this section, we study the solutions of variational problems in order to
derive the Schrodinger equations. For the precise, we refer to Ito {12], section
3.2

Hamiltonian H appeared in the Schrodinger equation which describes the
natural statistical phenomena of the physical system considered here has, gen-
erally, the form

n B2 a'z
H= ; 2m; Oxz? TV

Here, m;, (1 < i < n) denote the masses of the micro-particles. The
values of m; corresponding to one micro-particle are the same. V denotes the
potential.

We call this operator H the Hamiltonian operator. In other word, we
also call this the Schrédinger operator.

In this section, especially, we study the solution of the variational problem
when this Schrodinger operator H has only the discrete spectrum.

Let R™ be the n-dimensional space. Here we assume n > 1.

Now we consider one physical system Q = Q(B, P). Mathematically, we
consider that this is a probability space. Its elementary event p is one system
of micro-particles. Its position variable is 7 = 7(p) = *(z1(p), z2(p), - - - , zn(p))
and its momentum variable is p = p(p) = *(p1(p), p2(p),- -+ , Pn(p))-

We consider that the variable 7 moves in R" and the variable p moves in
its dual space R". Here, because the space R" is self-dual, we identifies the
dual space R, with the space R".

Then, by virtue of the law II in Ito [12], section 2.2, the L?-density ¥(r)
determines the natural probability distribution law of the position variable r
and its Fourier transform v)(p) determines the natural probability distribution
law of the momentum variable p.

We assume that the potential V(r) is a real-valued measurable function on
R™.

Then we define the energy functional J[] of L?-density ¥(r) by the

relation
n_ 39
= [ (Z%

g=1

d(r)
53:,-

+ V(r)|¢(r)|2> dr.
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Here the integral denotes the Lebesgue integral on the whole space R™ when
the integration domain is not expressed clearly.

In the sequel, we consider the integral similarly.

In this section, the partial derivatives of L2-functions are defined in the
sense of L2-convergence. As for the precise, we refer to Ito [29], [34].

The domain of J[i] is the Hilbert space of all L>-functions 1 given by the
relation

D= {w € L2;/|V¢(r)|2dr < oo,

W@ <

Here V = Vp denotes the gradient operator.
D is the metric space with the metric

r(,¢) = [lv" - ¢

defined by the following norm
l)1* = / (I ()] + V()| + [V (r)l[o(r)) dr.

Here we use the notation

n

QDY

=

dy(r)
6.’132'

Now we assume that D = D(R") is the space of all C*°-functions with compact
support in R™ and D is dense in D.

J[1] is the continuous functional on D.

Then we study the variational problem in the following.

Problem I (variational problem) We use the notation in the above.
Then determine the stationary function 1 of the energy functional J[¢] defined
on D. Here we assume that ¢ € D satisfies the condition

/ I@b(r)[2 dr = 1.

Now, if we put
K[y] = / o (r)|?dr,

the variational problem I in the above is the stationary value problem of J[t/]

under the condition
K[y] =1
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Therefore we determine the stationary function using the Lagrange’s method
of indeterminate coefficients.
£ being a Lagrange’s indeterminate coefficient, we put

1Y) = Jl] = E(K[Y] - 1).

Then the conditional stationary value problem in the above is equivalent to the
stationary value problem of I[3].

Now, assume that we have a solution ¥ of the conditional stational problem
in the above. Then this ¢ is the stationary function of I[¢)].

Then, ¢ being a sufficiently small real parameter, we have

(1T + elemo =0, )
L (116 + e lemo =0 )

for any ¢ € D.
Then, by the formulas (1), (2), we have the equality

n

R [8p 0 ‘
Z (8351 or Z>+(4P7V¢’) (p,EY) = 0.

2m;
1 (]

P

Here (-, -) denotes the inner product in L2.
Using Plancherel’s equality twice in the first term in this formula, we have
the equality
< h2 a%p
i=1

Because this formula holds for any ¢ € D, we have

2 2
_Zh Mww £, (3)

2m; Ox;

When we have a solution ¢ € D which is not identically zero for the eigen-
value problem (3), we say that £ and ¥ are the eigenvalue and the eigen-
function of the Schrodinger operator

respectively. Especially, ¥ is the eigenfunction belonging to the eigenvalue £.
This eigenvalue problem for the Schrédinger operator H is the fundamental

problem of the natural statistical physics as the generalization of the eigenvalue

problem for the Sturm-Liouville operator to the case of several variables.
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This is the Euler differential equation for the conditional variational
problem. We call this the Schrédinger equation.

This Schrodinger equation is the necessary condition in order to the exis-
tence of the solution of the variational problem I in the above. For the concrete
physical system, we can prove the completeness of the system of eigenfunctions
of this eigenvalue problem.

Then, because we can determine the L?-density for the total physical sys-
tem completely by the eigenfunction expansion, we can solve this Schrodinger
equation completely.

In this sense, by solving the Schrodinger equation obtained here, we can ob-
tain the information on the natural probability distribution state of the physical
system.

7 Solutions of local variational problems

In this section, we study the solutions of local variational problems in order
to derive the Schrédinger equations. For the precise, we refer to Ito [12], section
3.2.

In this section, especially, we study the solution of the local variational
problem when this Schrodinger operator H has a continuous spectrum.

Let R"™ be the n-dimensional space. Here we assume n > 1.

Now we consider one physical system Q = Q(B, P). Mathematically, we
consider that this is a probability space. Its elementary event p is one system
of micro-particles. Its position variable is r = r(p) = (z1(p), z2(p), - - , 2n(p))
and its momentum variable is p = p(p) = *(p1(p), p2(p), - , Pnu(p)).

We consider that the variable » moves in R" and the variable p moves in
its dual space R™. Here, because the space R" is self-dual, we identifies the
dual space R, with the space R".

Then, by virtue of the law I’, the law II" and the law III" in Ito [12], section
2.5, the L7 -density 1(r) determines the generalized natural probability distri-
bution law of the position variable r and its Fourier transform ¥ (p) determines
the generalized natural probability distribution law of the momentum variable
p.

We assume that the potential V(r) is a real-valued measurable function on
R".
We assume that S is a certain compact set in R"™ and S is not a null-set.
Then, for a certain L2 -density ¥(r) defined on R", we put

loc
Ys(r) = v(r)xs(r).

Here xs(r) is the characteristic function of S.
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Then we define the local energy functional Js[is] by the relation

[(E5

i=1

Os(r)

&ci

J

In this section, the partial derivatives of L% -functions are defined in the sense

2
of Li, -convergence.

The domain I of Jg[ths] is the Hilbert space

2
+ V(T)st(r)i2> dr

Js[ps] =
1/)S(T)|2d’l"

D=— {lbs e I2(S): /5 Vs(r)Pdr < oo,

[veiestrpar < oo}.

The norm |{|¢s|| of D is defined by the following relation

ls|? = / (s(r)P + (Vs () + V() s () )

Then I is a metric space by the metric

(s, ¥s) = [V — sl

defined by the norm in the above .

Here D = D(S) ia a space of all C*™°-functions with compact support in S.
Then we assume that D is dense in .

Then Jg[¥s] is a continuous functional on D.

Now we study the following local variational problem.

Problem II (local variational problem) We use the notation in the
above. Then determine the LZ -density v so that, for any compact set S which
is not a null-set, g is a stationary function of the local energy functional Js[vs]
defined on D.

Now we put

Is[s] = /9 <Z Z;Zni

i=1

Ops(r)

6:61-

2
+ V(T)lws(r)!2> dr,

KSWS]:/SWS(?“)IQdT.
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Then we have Is[vs)

Then assume that we have a solution 9 of the local variational problem
in the above. Namely we assume that we have a real number € and an L{, -

function v which is not identically zero so that, for any compact set S in R"
which is not a null-set and ¥g = 1xs, we have either one of the following (1),

(2) :
()  Ks[ys] #0, and, Js[ps] = E.
() Ksys] = 0.

Since the case (II) is evident, we consider the case (I).
Then, for a sufficiently small real parameter ¢, we have, for any ¢ € D,

& (Jslbs +egDlemo = 0, &
2L (v +isgleco = 0. @)

Now we put

" R? r r ——
ttoov = [ (35 B2 v s o

= 2mi 8l’i 89.%'

Kslipvs] = [ otrus(rydr.
Here o(r) denotes the complex conjugate of p(r).

Then we have p

d
—oIslbs +ew] = — (

Islys + eyl )
de 3

Ks[yg + ey]

3 sty + o) Kslys + o) — Isls +egl 4 (Kslbs + )
- Kslps +ep]? ’

Therefore we have
d
E(Is[?ﬁs + e¢])|e=0 = 2Re Is[p, ¥s],
d
£(KS[¢S + €¢])|e=0 = 2Re K5[0, ¥s].
Here Re o denotes the real part of a complex number «.
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Then we have

d 2Re Is[p,vs]  2Is[ys]Re Ks[p, ¥s]
(T 0 = - =
d{:‘( SWJS +E99])| 0 KS[wS] KSW’S’P 0
by virtue of the formula (1).
Similarly, we have
d 2Im 15 [p,¥s]  2Is[¥s]im Ks[p, vs] _
& Uslbs + ispDlemn = 2550 KssP

by virtue of the formula (2).
Here Im « denotes the imaginary part of a complex number a.
Hence we have

Is[p,vs]  Is[¥s]Ks|p, ¥s]

Kslvs] Ksys]? =0
Then we have Ts[s)
Tslos] =z el = €

Therefore we have
IS[W? ’{f-/)S] - gKS[(,O. ws] = O

Hence we have
= 12 9p(r) 9ys(r)
/ (Z 2m; Ox;  Ox; ) dr
/ V(r)o(r)s(r)dr — 5/ o(r)s(r)dr = 0.
s

By applying Plancherel’s equality twice in the first term of this equality, we
have

" B2 0%yg
2 2m182

+ Vips — Evs ) g=

Here (-,-)s denotes the inner product in L*(S).
Then, because ¢ is an arbitrary element in D, we have

“h? 0%y
_ZQmZ 32 + Vg = Eyg, (res).

Thereby, because S is arbitrary, we have the differential equation

R 9%y .
‘szzawLw} gy, (r € RM).
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This is the Euler differential equation of the local variational problem.
This is nothing else but the Schrédinger equation of the physical system
considered here.

When we have the L -density ¢ which is not identically zero for the gen-
eralized eigenvalue problem for the Schrodinger operator, £ and 1 are said to
be the generalized eigenvalue and the generalized eigenfunction of this
Schrodinger operator H respectively. Especially, 1 is said to be the generalized
eigenfunction belonging to the generalized eigenvalue £.

This Schrodinger equation is the necessary condition in order that there ex-
ists a solution of this local variational problem. But, for the concrete physical
system, we can prove the completeness of the system of generalized eigenfunc-
tions of this generalized eigenvalue problem. Then, because we can completely
determine the L?-density of the total physical system by the generalized eigen-
function expansion, we can completely solve the Schrédinger equation.

In this sense, we can obtain the information of the natural probability dis-
tribution state of the physical system by solving the Schrodinger equation ob-
tained here.

8 Solutions of periodic variational problems

In this section, we study the solutions of the periodic variational problems
in order to derive the Schrédinger equations of the physical systems of the
systems of micro-particles moving periodically. . For the precise, we refer to
Ito [12], section 9.1.

The Hamiltonian H appeared in the Schrodinger equation which describes
the natural statistical phenomena of the physical system considered here has,
generally, the form

" B 0?
H==2 o T
i=1 g
Here, m;, (1 <14 <n) denote the masses of the micro-particles. The values of
m; corresponding to one micro-particle are the same. V denotes the potential
which satisfies the periodic boundary conditions.

We call this operator H the Hamiltonian operator. In other word, we
also call this the Schrodinger operator.

Let R™ be the n-dimensional space. Here we assume n > 1. Put D =
[—a,a]™ where a > 0.

Now we consider one physical system Q = Q(B, P). Mathematically, we
consider that this is a probability space. Its elementary event p is one system
of micro-particles which move periodically in D. Its position variable is 7 =
r(p) = Hx1(p),z2(p), -+ ,Zn(p)) and its momentum variable is p = p(p) =

Hpr(p), p2(p); -+ s pn(p))-
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We consider that the variable 7 moves in D periodically and the variable
p moves in its dual space P,, which is the countable set of n-column vectors
whose components are integers.

Then, by virtue of the law II in Ito [12], section 9.1, the L?-density v(r)
determines the natural probability distribution law of the position variable r
and its Fourier coefficients 2/}(p) determines the natural probability distribution
law of the momentum variable p.

We assume that the potential V(r) is a real-valued measurable function on
D which satisfies the periodic boundary conditions

V(r)e;=—a = V(r)lz;=a; (r €D, j=1,2,--+,n).
Then we define the energy functional J[¥] of L%-density v(r) by the

relation
= [ (Z -

i=1

Oy(r)
c%si

+ V(T)h/)(?‘)lg) dr.

Here the integral denotes the Lebesgue integral on the interval D.

In this section, the partial derivatives of L2-functions are defined in the
sense of L%-convergence. As for the precise, we refer to Ito [29], [34].

The domain of J[¢/] is the Hilbert space of all L?-functions ¢ given by the
relation ‘

D= {w e 1 [ 1vutr)Pir < o,

[ el < oo}

Here V = V¢ denotes the gradient operator.
D is the metric space with the metric

r(w, ¢) = ¥ — ¢
defined by the following norm

lll? = /D (D) + [VHE) 2 + [V e()[?) dr.

Now we assume that D = D([—a, a]™) is the space of all C*°-functions with
compact support in D = [—a, a]™ and D is dense in D.

J[¢] is the continuous functional on D.

Then we study the periodic variational problem in the following.

Problem I (periodic variational problem) We use the notation in
the above. Then determine the stationary function v of the energy functional
J[¢] defined on D. Here we assume that ¢ € D satisfies the condition

[ winpar=1
D
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and the periodic boundary conditions

";[)(T)Izj:—a = %D(T)lm,-:a, ("' € D7 ] =1,2,--- ’n)'

- /D [b(r) Pdr,

the periodic variational problem I in the above is the stationary value problem
of J[¢] under the condition

Now, if we put

K[y =1.

Therefore we determine the stationary function using the Lagrange’s method
of indeterminate coefficients.
& being a Lagrange’s indeterminate coefficient, we put

1Y) = J[y] - E(K[¥] - 1).

Then the conditional stationary value problem in the above is equivalent to the
stationary value problem of I[¢].

Now, assume that we have a solution 1 of the conditional stationary problem
in the above. Then this 1 is the stationary value problem of I[¢].

Then, € being a sufficiently small real parameter, we have

2 (I +e@Dlemo =0, (1)
L (11 + iedleo =0 ©)

for any ¢ € D.
Then, by the formulas (1), (2), we have the equality

Zn: v (W a¢)+(s0,V¢)—(so,€w)=o,

-1 31‘1 ZT;

Here (-,-) denotes the inner product in L.
Using Plancherel’s equality twice in the first term in this formula, we have
the equality
n
h2 aQw
(0= o gz V¥ EV) =0

3=1

Because this formula holds for any ¢ € D, we have

LA S
> om St ve=ey. ®)

2m; 0
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When we have a solution ¢ € I which is not identically zero for the eigen-
value problem (3), we say that £ and v are the eigenvalue and the eigen-
function of the Schrodinger operator

=1

respectively. Especially, 9 is the eigenfunction belonging to the eigenvalue £.

This is the Euler differential equation for the conditional variational
problem. We call this the Schrédinger equation.

This Schrédinger equation is the necessary condition in order for the exis-
tence of the solution of the periodic variational problem I in the above. For
the concrete physical system, we can prove the completeness of the system of
eigenfunctions of this eigenvalue problem.

Then, because we can determine the L?-density for the total physical sys-
tem completely by the eigenfunction expansion, we can solve this Schrodinger
equation completely.

In this sense, by solving the Schrodinger equation obtained here, we can ob-
tain the information on the natural probability distribution state of the physical
system considered here.

9 Derivation of Schrédinger equation (1)

In this section, we study the derivation of Schrédinger equation using the
variational principle. As for this, we refer to Ito [13]~[20], [22], [24], Ito-Kayama
(1], [2], Ito-Kayama-Kamoshita [1], Ito-Uddin [1].

Let a probability space 2 = Q(B, P) be a certain physical system. An
elementary event p in Q is a system of micro-particles as a combined system
of some micro-particles. Then, let » = r(p) = (z1(p), z2(p), -+ , zn(p)) be the
position variable of a system of micro-particles and p = p(p) = *(p1(p), p2(p),

-, Pn(p)) be its momentum variable.

We assume that the position variable » moves in the space R" and the
momentum variable p moves in the space R".

Then, by virtue of Law II in section 2, an L2-density 1(r) determines the
natural probability distribution law of the position variable r» and its Fourier
transform 1[)(p) determines the natural probability distribution law of the mo-
mentum variable p.

The total energy of each system of micro-particles, which is determined by
the classical dynamics, has its value

n

- G pi0 V(o).

=1
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Here the first term is the mechanical energy of the system of micro-particles and
second term is the potential energy. There, m; is the mass of a micro-particle.
m; has the same value for the one micro-particle. Thus, because one particle
has d components of the momentum variable, d components of the momentum
variable correspond to one value of m;.

This energy variable is considered to be a natural random variable defined
on the probability space ).

In general, the random variable is a continuous random variable.

The expectation value of this energy variable, namely the energy expecta-
tion value is calculated in the following.

As a result, we have a Schrédinger operator

. R H?
H——; 2m; 8x2+v

Here we consider the case where the Schrodinger operator H has only the
discrete spectrum. Then the energy expectation value is calculated by using
the law II in section 2. Namely, when A and B are measurable sets in R", we
have the relations

P({p e Qr(p) € A)) = /A () 2dr,

P({p € 2 p(p) € B}) = /B () 2dp.

Then the energy expectation value is equal to

(p)* +V(r(p)) ]

— 2m;

- [ me nP+ V) dr

We denote this energy expectation value as follows:

2
g = [ ( ;;iml P4Vl ) dr

We call this J[¢] to be the energy functional.
In order to determine the natural probability distribution which is really
realized among the admissible natural probability distributions, we postulate
the variational principle I.

Principle I (variational principle) The stationary state of the phys-
ical system is realized as the state where the energy functional J[3] has its
stationary value.
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By using this principle, we choose the L2-density which is realized physically
in the real among the admissible L?-densities for this physical system.
Therefor we consider the following variational problem 1.

Problem I (variational problem) Determine the stationary function
¥ of the energy functional J[i] under the condition

[ =1.

Thus, we solve the variational problem I in section 6.
As the Euler’s differential equation of the variational problem I, we obtain
the Schrédinger equation

n 2 2
-y D ) L v(r) = Eu(r).

, P
“ 2m; O]

Here £ is Lagrange’s indeterminate coefficient.

This Euler’s differential equation is only a necessary condition for the sa-
tionary value problem.

But, in fact, if the obtained system of eigenfunctions satisfies the complete-
ness condition, we can obtain the all information necessary for the physical
system. Thus, the solution ¢ of the variational problem I is obtained as the
solution of the Schrédinger equation.

Now, the eigenfunctions ¥, (r) and the eigenvalues &,, satisfy the eigenvalue
problem

n 2 2 r
S D) |y () = Emtin (),

L m;  Ox?
i=1 i
(m=1,2,3,---).

Then we assume the system of eigenfunctions {¢,,(r)} satisfies the orthonor-
mality conditions and the completeness condition as follows.

(1) (orthonormality condition). We have the relations

/ Vi (r)r(r)dr = 61, (5,6 =1,2,3,...).

Here §;; denotes the Kronecker’s symbol and the integral means the Lebesgue
integral on the space R".

(2) (completeness condition).  We have the relation

> (P (r) = 8(r' —7), (r,7' € R").

m=1
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Here 6(r' — r) denotes the Dirac’s measure.

Then, for any L2-density 1(r), we have the eigenfunction expansion

o0

"7[)(7') = Z mem(r)v

Cm = /wm(r)d)(r)dr, (m=1,2,3,---).

Then, by the inverse process of the separation of variables, we derive the time-
evolving Schrodinger equation.
At first, we consider the function

Em
U (r,8) = P (r) exp [ it ] .
This satisfies the equation

awma—(tr’t) = Entm(r)exp [~

Here, for the Schrédinger operator H, we have the equations
me(r) = 5m¢m(r)7 (m =123, )
Hence we have the equation

me(r t)
5

Now, by using the Fourier type coefficients {¢,,} of the initial condition %(r),
we put

ih

= Hippm(r,t).

P(r,t) = Z CmPm (T, ).
m=1
Then we have the relation
(7, t)

ih 5 Hy(r,t).

Namely, we have the solution ¥(r,t) of the equation

n 2 2 r,
—”Z o a¢ t)+V(r)w(r,t).

This is the time-evolving Schrodinger equation for the physical system consid-
ered here.
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10 Derivation of Schrédinger equation (2)

In this section, we derive the Schrodinger equation by using the local varia-
tional principle. Namely we derive the Schrodinger equation in the case where
the Schrodinger operator has the continuous spectrum. As for this, we refer to
Ito [13]~[20], [22], [24] and Ito-Uddin [2].

In this case, in general, we consider the generalized eigenfunctions in L2
of the Schrédinger operator in stead of the eigenfunctions in L2.

In order to study this case, we must consider the state of the generalized
natural probability distribution in stead of the physical state postulated in Law
I1. Therefore we study the problem in the frame of law I’, law II' and law 11T’
in section 3.

Then, by virtue of Law II', L -density ¥(r) determines the generalized
natural probability distribution law of the position variable r and its Fourier
transform ¥(p) determines the generalized natural probability distribution law
of the momentum variable p.

Here the total energy of each system p of micro-particles is determined by
virtue of the classical mechanics and has the value

loc

n

> o pilp)? + V().

i=1

This energy variable is considered to be a generalized natural random variable
defined on a probability space Q' as the physical subsystem.

The local expectation value of this energy variable, namely the local energy
expectation value is calculated by using law IT'.

Namely, for an arbitrary compact set S in R™ and two measurable sets A
and B in R", we use the relations

/ ls(r)|2dr
P({pe Qr(p) € AnS}) = 2408

/S (s (r) P
/W)s )|2dp

/ ¥s(p)| dp.

and

P({per(p) €S, p(p) € B}) =

Then we have the local energy expectation value Eg as follows :

n

Bs=DBs [Z 2;

i=1

() +V(r(p)) |
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(2

1=

B P v sl ) dr

[ wstrifar
s
Here we denote this local energy expectation value Js[is] as follows :
/ ( z": R | Oys(r) |2
s - 2mz 6%
=1

Jslvs] =
/q s () P

We call this Jg[s] to be the local energy functional.
Here we postulate the following principle.

vs(r)? ) dr

Principle II (local variational principle). In the case where the Schré-
dinger operator of the physical system has the continuous spectrum, its sta-
tionary state is realized as the state which takes the stationary value of the
energy expectation value of the physical system considered locally.

By using this principle, we choose the LZ -density which is realized physi-
cally in the real among the admissible L?-densities for this physical system.

Therefore we consider the following problem II.

Here we consider the case where the continuous spectrum of the Schrodinger
operator is a nonnegative real number for fixing the subject. For the concrete
physical systems, the various cases are considered accordingly to the forms of
the Schrodinger operators.

Problem II (local variational problem) Let {K;} be an increasing
sequence of exhausting compact sets in R"™ which are not null-sets.
Namely this satisfies the following conditions (i) and (ii) :

(i) KicKyc---CK;C---CR"

k-
j=1

Then, for an arbitrary non-negative real number £ > 0, determine the lo-
cally square integrable function 1(€)(r) (# 0) so that the following conditions
(1)~(5) are satisfied :

1) ¥O|k;=v;, (=1,2,3,---).
(2) ¢J+1IKJ:1}/)J) (.7:1,2737)
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(3) Forj=1,2,3,--, we have one of the conditions (a), (b) in the following

(a) The functional

/K (Zn 2}:- a‘é’;f_’“ ) !2 +V(7’)|¢j(r)|2)dr
T[] = 2=t '
/ ¥;(r)dr
K;

has its stationary value.

(b) ¥; =0.
(4) / VE O (r)dr = 6(E — €), (€', € > 0).

Here 6(€) denotes the Dirac measure.

(5) /000 E () E (r)dE = 6(r' — ), (r, ' € R").

Solving the local variational problem, we have the Schrodinger equation

n 2 2
-3 WO () = Ev,(),

2m; O

(reK;; j=1,2,3,--+)

as the Euler’s differential equation. Here £ is a Lagrange’s indeterminate coef-
ficient.

Eventhough the Euler’s differential equation obtained here is only a neces-
sary condition for the stationary value problem, all information nesseary for the
physical system is obtained if the system of generalized eigenfunctions obtained
here satisfies the completeness condition (5). Then we obtain the L% -density
¥(€)(r) which satisfies the conditions (1)~(3) in the problem II and satisfies

P E(r) = p;(r), (re K;, =1,2,3,--+)

for a certain £ > 0. Here 9(€)(r) satisfies the Schrédinger equation

—Z IV V) = 0O, (r € RY).

2m; 6:6

By virtue of the general expansion theorem, we define ¢(€) by the relation

¢(€) = / TE (P (r)dr
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for any L2-density 1(r), we have

www=Amcwwﬁma

Here, we use the inverse process of the method of separation of variables.
At first, we consider the function

YO (r,1) =)o [ it ]
Differentiating this function with respect to ¢, we have
(€)
7 t)
ot

Here we represent the Schrodinger operator H for the stationary state by the
relation

= EPE) (r) exp [ *i%t] .

ke hQ 62
H= —Z}:j 2m; ax +V(r).
Then we have

E(r) = EpE(r).

Hence we have

L (r,t)
zh—at

Therefore, if we put

={ HY©(r) } exp | —i%t |= HyE (r,1).

wmw=éfﬂw@wﬁw,

we have o)
r,t)
o v

Namely we have the solution ¥(r,t) of the time—evolving Schrédinger equation

ih

"R2 92e(r,
—Z h~ 9 ( t)+V(r)g0(r,t).

Namely we have law III of section 3. Even in the case where the Schrodinger
operator H has the continuous spectrum, the solution 1 (r,t) of the Schrodinger
equation which determines the physical state of the total physical system is an
- L?-density at every time t.

By virtue of the conservation law of the probability, the time-evolving
Schrodinger equation has no other form than the above.
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By virtue of the laws of the natural statistical physics, the solution 1 of the
Schrodinger equation is the L2-density which determines the natural probability
distribution of the position variable.

Therefore it is understood that the function ¥ = ¢(r) is a function of real
variables.

11 Derivation of Schrédinger equation (3)

In this section, we derive the Schrédinger equation for the system of micro-
particles which are moving periodically by using the variational principle.

Let Q = Q(B, P) be a physical system which satisfies laws in section 4. Q
is a probability space.

An elementary event p in  is a system of micro-particles which is a com-
bined system of several micro-particles. These micro-particles move period-
ically. 7 = r(p) = Y=z1(p),x2(p), - ,xn(p)) is the position variable of the
system p of micro-particles and p = p(p) = “(p1(p),p2(p) -+ ,pn(p)) is its
momentum variable.

The position variable » moves in the interval D = [—a, a]™ in the space R"
and the momentum variable p moves in the space P,,.

Then, by virtue of law II, the L2-density 1 (r) determines the natural proba-
bility distribution law of the position variable r and its Fourier coefficients ¥/(p)
determine the natural probability distribution law of the momentum variable
p.

The total energy of each system of micro-particles is determined by the
classical mechanics and its value is equal to

S 5 mln)? + Vir(o).
i=1 t

Here the first term denotes the kinetic energy of the system p of micro-
particles and the second term denotes the potential energy. Here m; denotes
the mass of a micro-particle. The value of m; corresponding to one micro-
particle is the same. This energy variable is considered to be a natural random
variable defined on the probability space € which denotes the physical system.

In general, this is a continuous random variable.

We calculate the expectation value of this energy variable. We call this the
energy expectation value.

In general, the Schrédinger operator H has the form

LR 92
—+V

H=-5 1
- 2m15x1

J
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which will be known afterward.

This operator H is said to be the Schriodinger operator.

Here we assume the Schrodinger operator H has the discrete spectrum.

Then the energy expectation value is calculated by using law II in section
4 as follows. Namely, for a measurable set A in D and a subset B of P,, we
calculate the energy expectation by the relation

1
B[ 5—n(0)?*+ V(o) ]
j=1 oM
— 2 2
— [ (X g oM + V@I ) dr.
D NiD A
In this calculation, we use the Perseval’s equality for the Fourier series. 1,
denotes the partial L2-derivative with respect to the variable z; in the sense of

L?-convergence.
Here we put this energy expectation in the from

n

501 = [ (3 gl O + VR ) dr.

=1

We call J[y] the energy functional
The domain D of J[¢] is the space of L2-functions

D={yecl? /D [Vap(r)|2dr < oo, /D [V (r)|[v(r)|*dr < oo}

" The norm of D is defined by the relation
Wl = [ (1) + 190 + Ve ) ) dr.
D

Here D = D([—a,a]") is defined to be the space of all C*°-functions with
compact support in D = [~a, a]".

We assume that D is dense in D. J[¢] is a continuous functional on D.

In order to determine the natural statistical state realized really among
the admissible natural statistical states, we postulate the principle I in the
following.

Principle I (variational principle) The stationary state of the physical
system is realized as the state where the energy functional of the physical system
takes its stationary value.

We show that we can derive the Schrodinger equation by solving the varia-
tional problem in the following on the basis of the principle I,
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Problem I (variational problem) Determine the stationary function
% of the energy functional J[1)] among the admissible L-densities 1. Here
we assume that ¥(r) is an L?-density which satisfies the periodic boundary
conditions :

w(r)lr‘,‘:—a = '1/1(”')|z.,-:a,7 (’I" € D)] = 1727" : 777')'

We put
K1l = [ otr)ar.

Then the variational problem I in the above is the variational problem of
J[¢] under the condition
Kl =1.

£ being a Lagrange’s indeterminate coefficient, we put
IY] = JW] = E(K[Y] - 1).

Then the conditional stationary value problem in the above is equivalent to
the stationary value problem for I{¢].

Now assume that we have a solutions ¥ of the conditional stationary value
problem in the above.

Then, by solving the stationary value problem for I[t], we have the Schrédin-
ger equation

noop2 92
-—Z: g—f+vzp:5¢.
iz 2O

Thus, by solving the conditional variational problem, we have the Schroédin-
ger equation as the Euler’s differential equation.

This Schrodinger equation is a necessary condition in order that we have a
solution of the variational problem I in the above.

For a real physical system, we can prove the completeness condition of the
solutions of this eigenvalue problem. Then, because we can determine the L2-
density completely for the total physical system by virtue of the eigenfunction
expansion, we can solve the Schrédinger equation completely.

In this sense, by solving the Schrédinger equation obtained here, we can
obtain the information concerning the natural statistical state of the physical
system.

In general, there are many stationary states where the energy expectations
are the stationary value in one physical system.

The L?-density which is a stationary state is an eigenfunction of the Schro-
dinger equation in the above and the stationary value of its energy functional
is the eigenvalue.
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The physical subsystem whose natural probability distribution is deter-
mined by such a eigenfunction is said to be a proper physical subsystem.

Then the physical system considered here is the composite state of those
proper physical subsystems.

Further the L?-density which is the physical state of the total physical sys-
tem is given by the eigenfunction expansion using the system of eigenfunctions.
Then the energy expectation of each proper physical subsystem is equal to the
eigenvalue corresponding to it.

For one system of micro-particles, the position variable is the quantity which
moves continuously with time ¢ and the momentum variable is the quantity
which moves continuously with almost every time ?.

Nevertheless, the position variable and the momentum variable of the sys-
tems of micro-particles composing the physical system are the quantities which
depend randomly on every system of micro-particles at the definite time.

Now assume that the eigenfunction ,,(r) and the eigenvalue &, of the
eigenvalue problem in the above satisfy the equations

WY T) Y () = Enton(r),

A 3
p 2m; 0Ox;

(reD, m=1,2,3,--).

Here we consider that the periodic boundary conditions are always satisfied
and do not mention this fact in every case.

Then this system of eigenfunctions {¢,,(r)} satisfies the orthonormality
condition and the completeness condition in the following:

(1) (orthonormality condition) We have the relations

\/D’(/)j<7')’(/1k(’r)d’l" = 5j,k7 (.77k = 172737' )

Here §; ; denotes the Kronecker’s delta and the integral denotes the Lebesgue
integral on the whole space D.

(2) (completeness condition). We have the relations

> Y (T (r) = 8(r' = 7), (r',r € D)

m=1

Here §(r' — r) denotes the Dirac’s measure.

Then, an arbitrary L2-density 4(r) has the eigenfunction expansion

o

b =3 entbm(r),

m=1
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Cm =/D1[)m(r)1/1(7')dr (m: 1,2’3’)

Here we use the inverse process of the separation of variables and obtain the
time-evolving Schrodinger equation
At first, we consider the function

Do (73 £) = Ui (1) exp [ —i-ngt] .

;
By differentiating both sides with respect ¢ , we have
; 8 T, t . gm
zh—-qﬁ%%——) = Emm (r)exp [ ——z-ﬁ—t] .

Here, putting the Schroédinger operator H of the physical system

" R 92
H=-%" +V(r),

Lt 2m; D22
i=1 ¢

we have
] me(r) =5m'¢m(7")a (m: 172'37)
Hence we have (1)
r
h m +
o
Here, by using the Fourier type coefficients {¢,,} of the initial condition ¢(r),
we put

= H¢n1(rr t)

Y(r,t) = Z Cm¥Pm(T,t).

m=1

Then ¥(r,t) satisfies the equation

OY(r,t)

5

= Hi(r,t).
Namely, we have the equation

LOU(rt) 5~ B2 0P((r.t)
e T “~2m; 0Oz}

+ V(r)y(r,t).

This is the time-evolving Schrodinger equation for the physical system consid-
ered here. Therefore we have the following theorem.

Theorem Assume that the functions ¥(r) and y(r,t) are given in the
above of this theorem. Then, ¥(r,t) is the solution of the initial-boundary
value problem for the time-evolving Schridinger equation

oY(r,t) "\ R? 0%(r,t)

ih—— =~;2mi—-————8x? + V(r)p(r,t),
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¥(r,0) = ¥(r), (r € D), (Initial condition),

w(r)ll‘j:“ﬂ. = "}/)(T)|xj:aa w(rat)]:cj:—a = u)(r,t)‘zj:(u
(reD,0<t< ), (j=1,2,---,n),(periodic boundary condition).

12 Solutions of problems of natural statistical
physics

Until now, the following problems are solved by using the “natural statis-
tical physics” .

(1) Laws(general). We established the laws of natural statistical physics
in the general form in the three cases. These are the renaming of the axioms
of natural statistical physics or the axioms of new quantum theory. As for the
precise, we refer to Ito [1], [5], [6], [8], [9], [13]~[16],[18], [20], [26], [27], [31].

In this paper, we give the final expression of these general laws of natural
statistical physics

(2) Solutions of the variational problems. We derive the Schrodinger
equation in the stationary state as Euler’s differential equation for the varia-
tional problem of the energy functional of the physical system. Thereby, we
can succeed to derive the Schrodinger equation naturally and reasonably in the
exact sense of mathematics. As for the precise, we refer to Ito [13], [14], [15],
[16], [17].[28], [19], [20], [22], [26], Ito-Kayama[51], [52].

(3) Derivation of the Schrédinger equation. By solving the eigen-
value problem for the Schrodinger equation in the stationary states, we obtain
the system of eigenfunctions of the Schroédinger operator.

By using the inverse process of separation of variables, we obtain the time-
evolving Schrodinger equation. By using the solution of this time-evolving
Schrédinger equation, we can obtain the mathematical informations of the nat-
ural statistical distribution of the position variable and the momentum variable
of the physical system completely. As for the precise, we refer to Ito [5], [6],
[13], [14], [15], [16], [18], [19], [20], [22], [26], [50], Ito-Kayama, [51], [52].

(4) Harmonic oscillator. ~ We derive the Schrodinger equation of the
system of harmonic oscillators and solve this equation. As for the precise, we
refer to Ito [16].
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(5) Black body radiation and Planck’s formula of radiation. We
study the problem of black body radiation and derive Planck’s formula of radia-
tion naturally and reasonably by using the theory of natural statistical physics.
As for the precise, we refer to Ito [16] and [17], Ito-Kayama-Kamosita[l].

(6) Specific heat of a solid. = We study the problem of the specific
heat of a solid by using the theory of natural statistical physics, Thereby we
succeeded in understanding the specific heat of a black body or a monatomic

solid by using Einstein model and Debye model respectively. As for the precise,
we refer to Ito [16], [28] and Ito-Uddin [54].

(7) Specific heat of an ideal gas. We study the problem of the specific
heat of an ideal gas by using the theory of natural statistical physics. Thereby
we succeeded in understanding the specific heat of an ideal gas naturally and
reasonably. As for the precise, we refer to Ito [16] and Ito-Uddin [55].

(8) Tunnel effect. We study the phenomena of potential barrier by using
the theory of natural statistical physics. Thereby we succeeded in understand-
ing the tunnel effect naturally and reasonably. As for the precise, we refer to
Ito [20], [25].

(9) Conductor and electric current. ~ We study the phenomena of
potential well by using the theory of natural statistical physics. Thereby we
succeeded in understanding the phenomena of conductor and electric current
and trupping effect naturally and reasonably. As for the precise, we refer to
Ito [20], [38].

(10) Double slit experiment. We study the phenomena of double
slit experiment by using the theory of natural statistical physics. Thereby we
succeeded in understanding the phenomena of double slit experiment. We also
study A. Tonomura’s experiment of bi-prism of electron beam as an example of
double slit experiment. Thereby we understand that the phenomena of double
slit experiment are the natural statistical phenomena. This is the evidence of
the reality of the theory of natural statistical physics. As for the precise, we
refer to Ito [20], [49].

(11) Spectrum of hydrogen atoms and Stability of hydrogen atoms.
We study the spectrum of hydrogen atoms and the stability of hydrogen atoms
by using the theory of natural statistical physics. Thereby we prove the Bohr’s
law of the spectra of hydrogen atoms and the stability of hydrogen atoms. As
for the precise we refer to Ito[20], [27], [39].

(12) Angular momentum. We study the angular momentum of hy-
drogen atoms by using the theory of natural statistical physics. Thereby we
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obtain the expectation value of hydrogen atoms and atomic structure of hydro-
gen atoms. Especially we obtain the value of Bohr’s radius. As for the precise,
we refer to Ito[20], [24], [27], [37], [39].

13 Unsolved problems

From now on, the physics must be studied by using Newtonian mechanics,
Maxwell electro-magnetic dynamics and natural statistical physics.

Especially we must study again the old studies of physics by using the
theory of old “quantum mechanics.”

Of course, there will be many physical phenomena which cannot be under-
stood using those three physical theories. In order to understand these physical
phenomena, it is expected to create the new physical theories.

The future problems of my study are the following:

(1) Statistical thermodynamics

i) phenomena of heat.

ii) phenomena of light.

iv) phenomena of specific heat.

(
(
(iii) phenomena of ideal gas.
(
(v) entropy

(vi) laws of thermodynamics.
(2) physics of atoms.

(i) angular momentum and spin.
(ii) composition of angular momenta.

(iii) atomic structure.

(3) physics of molecules.
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14 Table of correspondence of new and old ter-
minologies

In this section, we give the table of correspondence of new and old termi-
nologies in the theory of natural statistical physics which is the renaming of
new quantum theory.

Example new terminology(old terminologies), such as
- natural statistical physics (new quantum theory)

<< Table >>

- generalized natural random variable (generalized quantum random vari
able)

- generalized proper natural statistical state (generalized proper quantum
state)

- generalized proper physical system (generalized proper quantum system)

- law of natural statistical physics (axiom of natural statistical physics
or axiom of new quantum theory)

- L? natural random variable (L? quantum random variable)

- natural expectation (quantum expectation)

- natural probability (quantum probability)

- natural probability density (quantum probability density)

- natural probability distribution (quantum probability distribution)

- natural statistical physics (new quantum theory)

- natural statistical state (quantum state)

- n-th proper physical system (n-th proper quantum system)

- photon hypothesis (light quantum hypothesis)

- physical system (quantum system)

- proper natural statistical state (proper quantum state)

- proper physical system (proper quantum system)

- vector valued natural random variable (vector valued quantum random
variable)
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