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Abstract

In this paper, we study the derivation and the solution of Schrédinger
equation of the hydrogen atoms using the theory of Natural Statistical
Physics. Using these results, we study the phenomena of the spectra of
hydrogen atoms and the phenomena of the stability of hydrogen atoms.
Here we consider the system of hydrogen atoms for which we need not
to consider the influence of the outer electro-magnetic field. This is the
case where there is no influence of outer electro-magnetic field or where
we can neglect the influence of the outer electro-magnetic field. In this
paper, we succeeded in deriving the Schrédinger equation in the natural
and reasonable way by the method of variational calculus. Thereby we
can obtain the complete understanding of the phenomena of the spectra
of hydrogen atoms and the phenomena of the stability of hydrogen atoms.

We remark that the model of the system of hydrogen atoms considered
in this paper does not concern with the scattering state of hydrogen
atoms.

In this paper, Fourier’s method plays the fundamental role. For the
results of this paper, we refer to Ito[16], [19], [20], [22], [24], [25], [26].

2010 Mathematics Subject Classification. Primary 82D99, 82B99,
81Q99.
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1 Systems of hydrogen atoms and the formula-
tion of the problem

In this paper, we study the derivation of the Schrodinger equation of the
system of hydrogen atoms and its solutions which are necessary to analyze the
natural statistical phenomena of the system of hydrogen atoms in the basis of
the laws of natural statistical physics.

Using the above results, we study the spectral phenomena of the system of
hydrogen atoms and the stability phenomena of hydrogen atoms as the natural
statistical phenomena of the system of hydrogen atoms. Thereby we obtain the
complete understanding of these phenomena.

We assume that hydrogen atoms considered here are in the bound state.
Each hydrogen atom is moving in the 3-dimensional space.

One hydrogen atom is a combined system of two particles composed of one
nucleus and one electron rotating around the nucleus. Here the nucleus of the
hydrogen atom is composed of one proton.

This means that the nucleus and one electron are moving as a combined
system under Coulomb interaction. Even though the system of hydrogen atoms
is a system of two particles, the mass of an inner electron is throughly smaller
than the mass of the nucleus. Therefore we analyze the phenomena using an
approximating model of a system of one electron moving in a field of Coulomb
potential at the point of center where the nucleus keep to rest.

Here we consider the system of hydrogen atoms for which we need not
consider the influence of spin. It is the case where there is no influence of the
outer electro-magnetic field or where we can neglect such an influence. This
means that no factor of the outer electro-magnetic field is contained in the
Schrédinger equation of the system of hydrogen atoms. Namely we study the
phenomena using such an approximating model.

Each electron is moving in the field of Coulomb potential according to
Newtonian dynamics. Because the masses of a proton and an electron are very
small, we consider their motion neglecting the gravitational interaction.

Here we put the mass of one electron m = m,, and the charge of one
electron —e. Then the electron is moving according to the Newtonian equation
of motion

d*r e?

Moy = —grad V(r) = —aT

Therefore, the mechanical energy of the inner electron of one hydrogen atom
1 dr
£=p* -, (p=m—-)

does not depend on the time ¢. The first term is the kinetic energy and the
second term is the potential energy. Namely the conservative law of mechanical
energy holds for each inner electron of a hydrogen atom.
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Therefore each electron has its own mechanical energy. We can define the
energy functional to be the expectation value of this mechanical energy for the
physical system of the inner electrons of hydrogen atoms.

Using variational principle in section 3, we can derive the Schrodinger equa-
tion as Euler’s equation of the variational problem. Then, this Schrédinger
operator has only the negative eigenvalues in the bound state.

Using the eigenvalues

mee?

En = T TF9 o9
2h%n?2

(n: 1>2a3>"')

of the Schrodinger operator, we can prove that the Bohr’s law holds for the
spectrum of the system of hydrogen atoms. This fact was demonstrated by
virtue of the experiment of Frank-Herz in 1914. Here we put /i = h/2m, h
being the Planck constant.

In general, the physical state of a physical system is varying toward the
equilibrium state of energy or the thermal equilibrium state. Thereby we can
completely understand and interpret the phenomena of stability of hydrogen
atoms.

2 Laws of natural statistical physics

In general, every material particle is the natural existence which has its own
mass and charge.

Because it is known that an electron has its own mass and charge by the
effective measurement, it is the evidence that an electron is a material particle.
Here we put the mass of an electron to be m = m, and its charge to be —e.

Therefore we can consider that an electron is moving by virtue of Newtonian
equation of motion in the field of Coulomb potential.

On the basis of these facts, we can understand the spectral phenomena of
the system of hydrogen atoms as the natural statistical phenomena.

We can consider that the nucleus of a hydrogen atom has approximately
the infinite mass. Therefore, in the first approximation, the inner electron of

the hydrogen atom is moving in the field of Coulomb potential V'(r) = —% by

virtue of Newtonian equation of motion.

Here, in order to analyze the natural statistical phenomena of the system
of inner electrons of the hydrogen atoms, we establish the laws of natural
statistical physics as follows.

Law I (Physical system) The system (2 of hydrogen atoms is a set of
inner electrons of hydrogen atoms. It is a probability space (2,5, P) math-
ematically. Here (2 is the set of inner electrons p of hydrogen atoms, B is
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o-algebra of the family of subsets of {2, and P is a completely additive proba-
bility measure on B. Its elementary event is one inner electron p of a hydrogen
atom. This is a system of one particle composed of an inner electron moving
in the field of Coulomb potential.

Law II (State of physical system) We define a natural statistical
state of the system {2 = ({2, B, P) of hydrogen atoms to be the state of natural
probability distributions of the position variable 7(p) and the momentum vari-
able p(p) of inner electrons p of hydrogen atoms. Here r(p) is varying in the
3-dimensional space R® and p(p) is varying in its dual space R®, where R® is
considered to be a self-dual space.

(i)  The natural probability distribution law of the position variable r =
r(p) is determined by an L?-density ¥ (r) on R>.

(ii)  The natural probability distribution law of the momentum variable
p = p(p) is determined by the Fourier transform 1 of 9. Here the Fourier
transform v of ¥ is defined by the relation

9(p) = )2 [ yr)e @ har,

r= t<$1,$27l’3),p = t(plap27p3)7

P T =121 + paXa + P33,

h .
where the integral domain is the whole space. Here we put A = o h being
the Planck constant.

(iii)  For a Lebesgue measurable set 4 in R*  we put

uta) = [ () el

Then we have
u(A) = P({p € r(p) € A}).

Thus p(A) denotes the probability of the event “r(p) belongs to A”. Thereby
we have the probability space (R®, M3, u). Here M denotes the family of all
Lebesgue measurable sets in R>.

(iv)  For a Lebesgue measurable set B in R®, we put

v(B) = /B 1 (p) 2 dp.
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Then we have
v(A) = P({p € &;p(p) € B}).

Thus v(B) denotes the probability of the event “p(p) belongs to B”. Thereby
we have the probability space (RB,Ng, v). Here N3 denotes the family of all
Lebesgue measurable sets in R®.

The reason why we define the Fourier transformation in such a form in
Law (II), (ii) is to meet with the necessity that the Schrodinger equation of
the system of hydrogen atoms should be derived by using variational principle
in section 3. The constants are chosen in order that the theoretical results
coincide with some observed data of the natural statistical phenomena.

Law IIT (Motion of physical system) The L2-density ¥(r,t) deter-
mining the natural probability distribution law of the position variable 7 at
time ¢ is determined by the time evolving Shrodinger equation. We call the
time evolution the motion of the system of hydrogen atoms. The law of motion
of the system of hydrogen atoms is described by the Schrodinger equation. We
call this Schrodinger equation the equation of motion of the system of hydrogen
atoms.

The Schrodinger equation is described in the following form :

L, 0P

ih T Hv.
We call the operator H a Schrodinger operator. H is a self-adjoint operator
on a certain Hilbert space. The concrete form of this operator is determined
afterward.

Here we consider that the position variable and the momentum variable and
the energy variable of electrons are continuous random variables defined on the
probability space made by the system of hydrogen atoms. Then the L2-density
determining the natural probability distribution law of the position variable is
determined as a solution of the Schrodinger equation.

As for the laws of natural statistical physics, we refer to Ito[16], Section 2.2
and Ito[25], Section 6.2.

3 Setting of mathematical models

Now we assume that the system of hydrogen atoms considered here is a
probability space 2 = (12, B, P). Its elementary event p is an inner electron of
a hydrogen atom moving in the 3-dimensional space R
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Here the force acts on the electron in the hydrogen atom by the Coulomb

potential
2

e
Vi=-%, r=|rl.

Then the mechanical energy of each inner electron p of a hydrogen atom is
determined by the classical mechanics. Its value is

5P + V(r(o)).

Here the mass of an electron is m = m, and its charge is —e.

This energy variable is considered as a natural random variable on the
probability space (2. This is a continuous random variable.

Then r = r(p) and p = p(p) have different values for each inner electron p
of a hydrogen atom and, in general, its values are considered to be distributed
randomly. In such a sense, » = r(p) and p = p(p) are considered to be random
variables. Especially it is the mode of phenomena as the natural statistical
phenomena that these variables are the natural random variables on the system
of hydrogen atoms.

We assume that electrons in hydrogen atoms considered here are in the
bound state. Therefore, the Schrodinger operator determined afterward has
only the discrete spectrum.

Then, we consider that, by virtue of Law II in Section 2, the natural proba-
bility distribution law of 7 = r(p) is determined by the L?-density 1(r) and the
natural probability distribution law of p = p(p) is determined by its Fourier
transform 7,/3(1))

Then the expectation value E of the energy variable is given as the integral
using the probability measure P as follows :

B=E [ 5 lp)* + Vo) ]
= B [ 5 Ip(o)I? ] +EV(r(o)]
= [ (5lel?) liw)dp+ [Violwr)Par

= [{ E v + v L ar

Here we use the Plancherel formula for the Fourier transformation. Also
the integral domain is the whole space. V = Vj denotes the gradient operator
with respect to 7.

In this paper, we define the partial derivatives of an L2-function 1) in the
sense of L2-convergence.
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Here we represent this energy expectation value by the relation

I = [ { v ro)l? + Vot } ar

We call this J[¢] the energy functional.

As the solutions of the variational problem for this functional, we have the
L?-densities 9 which are realized practically in the stationary states.

Here we consider the following variational principle and the variational prob-
lem.

Principle I (Variational principle) The L2-density v¢(r) which is
realized practically in the stationary state is a stationary function for the energy
functional J[¢].

Thereby, among the admissible L?-densities ¢(r) which determine the nat-
ural probability distribution laws of the position variables r = 7(p) of the inner
electrons p, we choose the L2?-density ¥ (r) realized practically in the stationary
state. These solutions determine the natural statistical phenomena observed
practically.

In order to determine the stationary function for Principle I, we consider
the following variational problem.

Problem I (Variational problem) Determine the stationary functions
1) of the energy functional J[1].

4 Solutions of variational problem and the der-
ivation of the Schrodinger equation

In this section, we study the solutions of variational problem I in section 3
and thereby we derive the Schrdodinger equation.
The Schrodinger operator H has the form
2 2
He-A_C
2m T
Here A denotes the Laplacian with respect to 7.
This is the case where this Schrédinger operator H has only the discrete
spectrum.
Now let the system of hydrogen atoms be 2 = (2,8, P). Its elementary
event is one inner electron p of a hydrogen atom. We put its position variable
r = r(p) = Yx1(p), z2(p),3(p)), and its momentum variable p = p(p) =

t(pl(p)>p2(p)7p3(p))‘
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We consider that the variable 7 moves in the space R>, and the variable P
moves in the dual space Rz = R>. Here we identify R5 and R®.

Then, by virtue of law II in section 2, the L*-density v(r) determines the
natural probability distribution law of the position variable r, and its Fourier
transform zﬁ(p) determines the natural probability distribution law of the mo-
mentum variable p.

Therefore the energy expectation value E of the total system of hydrogen

atoms is equal to

e2

EzE[’QLmP(PF““(E]

. 2
= [ garlitw)dp— [ <o) Par

= [ (s ive? - S ) o

Here the integral domain is the whole space R®, and V = V represents the
gradient operator.

Then, for the L?-function 1 (r) on R*, we represent the energy functional
J[¢] as follows :

5= [ (55 1900 = S il ar

The domain of J[¢] is the Hilbert space of L>-functions as follows :

~{ver [1vumpar <o, [Luwrar <oo}.

The norm ||| of D is defined by the relation

612 = [ (WP + 1907+ S e ) ar

Then J[3)] is a continuous functional on D.

Here D = D(R?) is the space of all C°°-functions with compact support.
Then D is dense in D.

Then variational problem I in section 3 is fixed as follows.

Problem I (Variational problem) Determine the stationary functions
1 of the energy functional J[] defined on I under the condition

= [1wrypar =1

Thus we ask the stationary function using Lagrange’s method of indetermi-
nate coefficient.
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£ being an indeterminate coefficient of Lagrange, we put
I[y] = J[¥] - E(K[¢] - 1).

Then the conditional stationary problem and the stationary value problem for
I[¢] are equivalent.

Now we assume that we have a solution 1 of the conditional stationary
value problem in the above. Then this 1 is a solution of the stationary value
problem for I[¢)]. Then, € being a sufficiently small real parameter, we have

d
I+ £¢Dlemo = O, (41)
d I ; =0 (4.2)
(T + ieglemo = '
for every ¢ € D. Hence we have
hZ
5= (Ve V) + (0, V) = (9, £4) = 0

by virtue of the equations (4.1), (4.2). Here (-,-) denotes the inner product in
L2,
Using the Plancherel formula twice in the first term in this formula, we have

h?
(go,—%vaw —&p): 0.
Because this holds for every ¢ € D, we have

52
—5 AU+ VY = Ey. (4.3)

When there exists a solution 1) € D of the eigenvalue problem (4.3) which
is not identically 0, £ and v are called the eigenvalue and the eigenfunction
of the Schrodinger operator H respectively. Especially 4 is the eigenfunction
associated with the eigenvalue &.

This is the Euler’s differential equation for the conditional variational prob-
lem. We call this the Schrodinger equation.

This Schrodinger equation is the necessary condition in order that there
exist the solutions of variational problem I in the above. Further we can prove
the completeness of the system of solutions of this eigenvalue problem for the
system of hydrogen atoms.

Then we can determine the L?-density for the total system of hydrogen
atoms completely by virtue of the eigenfunction expansion. Hence we can solve
the Schrodinger equation completely. Namely, in the Theorem 5.5 in section
5, we prove that the completeness of the system of solutions of the eigenvalue
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problem in the above is the sufficient condition in order to the existence of the
solutions of the variational problem I in the above.

In this sense, we can obtain the information of the physical states of the sys-
tem of hydrogen atoms by virtue of solving the Schrédinger equation obtained
here.

5 Schrodinger equation and its solutions

The solutions of the eigenvalue problem for the Schrodinger equation of the
stationary states are given in the following theorem. This is the well known
facts.

Theorem 5.1  There exist the eigenvalues &,, (n = 1,2,3,---) of the
Schrodinger equation of the stationary states and the system {tnim(r)} of its
eigenfunctions associated with them. Namely we have the following equations :

2 2
( h FANE %‘) 7vbnlm(r) = Snwnlm(r)a

- 2m,

(Im| <1, 1=0,1,2,...,n—1, n=1,2,3,---),

meet

bn =~ open2

(n=1,2,3,---).

This system of the eigenfunctions {¢,;m,(r)} is given by the following the-
orem.

Theorem 5.2  The eigenfunctions in Theorem 5.1 are given by the fol-
lowing equalities :

Ynim (1) = 1/fnzm(7‘7 0, ) = Rnl(r)Ylm(Qv 3),

_ 2 N\ (=112
B (r) = = {< nag ) 2n[(n+ )13 } s L (9),

(|m|§l7 l:O,l,Q,‘..,TL‘L TL:1,2,3,"')-

Here we put
h? 2
ag = — § = T,
mee nag
Further, the special functions appeared in the representation of Ynim(r) are

as follows: Ry, (r) is the radial function, L%m)(z) is the associated Laguerre
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polynomial, Y,™(0, ¢) is the spherical function, and P™(x) is the associated
Legendre polynomial.

Theorem 5.3 (Normalized orthogonality condition)  For the system
of eigenfunctions {¥nim(r)}, we have the following equality

/wn’l’m’("")*wnlm (T)dr = 5nn’6ll’6mm’-

Here 8, denotes Kronecker’s symbol and (n,l,m) and (n',I',m') are chosen
as in Theorem 5.1.

Theorem 5.4 (Completeness condition) Let H be the closed subspace
spanned by the system of eigenfunctions {nim(r)} in L? = L%(R®). We use
the above notation. Then, for ¥(r) € H, we have the following equality

oo n—1

[ =35 3 leun

n=1 =0 m=-I

Cplm = /wnlm("') w r)dr

Here (n,l,m) are chosen as in Theorem 5.1.
Therefore we have the following theorem of eigenfunction expansion.
Theorem 5.5 (Theorem of eigenfunction expansion)  We consider

the system of eigenfunctions {Ynim(r)} as in Theorem 5.1. Then, for a square
integrable function ¥(r) € H, we have the following equality :

&S} l
= Z Z nlmwnlm

n=1 =0 m=-—

fun

n-—

Here the Fourier type coefficients cim are gwen by the equalities :

Cnlm =~ / wnlm T‘)dT‘

Here (n,l,m) are chosen as in Theorem 5.1.

Especially, if ¥(r) is an L?-density, its Fourier type coefficients {cnim} sat-
isfy the following condition :

>

n=11

|
—

n

Z |cnlm|

m=-—1

il
=)
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Theorem 5.6  Let H be as in Theorem 5.4. Further, let J[y] be as in
Problem 1, and {&,}, {¥nim} be as in Theorem 5.1. Now we define the closed
subspace H,, of H to be spanned by the system of eigenfunctions

{Yrim;m| <1,1=0,1,2,--- ,k~Lik=nn+1,n+2,---}.

Then we have the following :

min
YEH A, ||¥]|=1
(lm<Li=01,2,---,n—1;n=1,2,3,--+),
<& < <E,<-- <0, li_)m &, =0.

Here the multiplicity of the eigenvalue &, is equal to n?, (n > 1).

As for Theorem 5.6, we refer to Ito[26].

By virtue of this Theorem, we can see that the solutions {¥nim}, {€n}
of the eigenvalue problem in Theorem 5.1 are the complete solutions of the
variational problem for the energy functional J{y]. Namely this solutions give
the necessary and sufficient condition in order that the variational problem is
solved.

For the Schrodinger equation for the time evolution of the physical system
of the system of hydrogen atoms in the bound state, we have the following
theorem.

Theorem 5.7  Let H be as in Theorem 5.4. We assume that the initial
natural probability distribution law of the position variable of this system of
hydrogen atoms is given by the L?-density ¥(r) € H. Then the L?-density
P(r,t) which determines the natural probability distribution law of the position
variable at time t is given by the solution of the initial value problem for the
time evolving Schriodinger equation

ouirty [ R €
Ot - ('— 2meA - —7’—> ’l/)(’f',t),

Y(r,0) = Y(r), (Initial Condition),
(reR* 0<t< o).

ih

Here, by using the Fourier type coefficients {cni,} of the eigenfunction
expansion of the initial condition ¥(r) in Theorem 5.5, the solution ¥(r,t) in
the above is given by the formula

—

n— 1

w(r’t) o Z Z Cnlm¢nlm(r7t)'

n=1 =0 m=—I
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nlm 7 )t nlm T)ex ? t ’

where (n,l,m) are chosen as in Theorem 5.1.
Then we have ¥(r,t) € H, (0 <t < oc0).

6 The Meaning of the spectra of hydrogen at-
oms
By virtue of the study until section 5, we see that the system {2 of hydrogen

atoms in the bound state has the following structure at time ¢. Namely, we
have the direct sum decomposition of {2 as follows :

0= Z 2,, (direct sum) (6.1)

n=1

pn:P(‘Qn)7 (n:1727"')7

n=1

Further each {2, is decomposed into the direct sum as follows :

n—

11
Z Z nim, (direct sum)

P(inm) = lcnlm|2a

n—1 1
Pn = Z Z |Cnlm|27 (n: 1a2>"')7

=0 m=-1

oo n~1

f:p Y Y el =

n=1 =0 m=—1

Then we have the following formulas, for every A € B

NgE

P(A)= ) P({0n)Pq,(4)

1

3
Il

—

n—

4
Z P nlm Pnnlm (A)'

11=0 m=-I

o

3
1l
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Here Py (A) and Pg,, (A) are the conditional probabilities.
Here, because we study the spectra of hydrogen atoms, we consider only the
principal index n. Therefore we consider the direct sum decomposition (6.1).
Then, we have the following, for any Lebesgue measurable sets A4 of R* and

B of R3,
Py, ({0 € Quimi m(0) € A}) = /A Wt (r) P,

Pinm({p € inm?P(p) € B}) = /B Iqﬁnlm(p)Pdp-

Therefore the energy expectation value of the proper subsystem 2,;,, of
hydrogen atoms is equal to

1 9 e?
Eo... %p(p) - 7 = J[d’nlm} = &,,

(|m|§l,l:017‘n__1’n:1727)

Then, by virtue of the relation of the total system of hydrogen atoms  and the
proper subsystems of hydrogen atoms, the energy expectation value E of the
total system of hydrogen atoms is equal to

_— 1 , €
= [2m (p)” -~ T}
oo n—1 |
1 , €2
=3 3 PO |gple” - ]

o0
|Cnlm|28n = Z Snpn

n=1 =0 m=~1{ n=0
%)
meet 1
= o P
n=1

The system of hydrogen atoms in the bound state is realized as the state
of mixture of the proper subsystems of hydrogen atoms at each time ¢. The
subsystem 2, of hydrogen atoms with the energy expectation value &, is the
state of mixture of the n? proper subsystems (2, of hydrogen atoms, (|m| <
L1=0,1,---,n—1).

The ratio of mixture of these subsystems {2, is determined by the sequence
{Pn}izq

Then, by virtue of the motion of the electrons in the hydrogen atoms ac-
cording to Coulomb force, the L2-densities 1, (7, ) and ¥(r,t) are varying
with time ¢. Then the values of {p,} are varying with time ¢ together with it.
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Therefore each hydrogen atom composing the subsystem with the mean
energy &, is varying its belonging to the proper subsystems together with time
t.

Thereby, when these hydrogen atoms move from the subsystem with the
mean energy &, to the subsystem with the mean energy &, the spectral line
corresponding to the difference of these mean energies

En—Em

is observed. This coincides well with the distribution of the spectrum observed
practically for the hydrogen atoms.

As the historical result, the spectrum of hydrogen atoms are known to be
as follows.

Here we remember the Bohr’s law established in 1913.

Bohr’s law  We use the above notation. Then, v being the oscillation
number of observed light, we have the relation

hy =&, —En.
Here h denotes the Planck constant.

Then, from the consideration in the above, the value of v is equal to

_meet (11
YT dnhp <m2 n2> '
Here m. denotes the mass of the electron.

Here, in the case m = 2, this result coincides with the spectral line of the
visible light from the hydrogen atoms discovered by Balmer in 1885. This is
now called to be the Balmer sequence.

The spectral sequences known until now are the following.
Writing by virtue of the representation of Rydberg, these are the following.

(1) Lyman sequence (discovered in 1906) :
1 1
V=RC<1—2—'—T-L’2—>, (n=2,3,~~).

(2) Balmer sequence (discovered in 1885) :

1 1
V:RC<?—E§>, (n=3,4,)

(3)  Paschen sequence (discovered in 1908) :

1 1
I/ZRC<3—2";’L“2‘>, (n:4a57)
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(4)  Brackett sequence (discovered in 1922) :

1 1
S R I

(5)  Pfund sequence (discovered in 1924) :

1 1
sore(L 1) e

Here R is said to be Rydberg’s constant and its value is given as follows :
R =1.09737 x 10°cm™*, (observed value),

Rch = 13.61eV, (dimension of energy).

By virtue of the condition in the above, R is equal to
_ mee?
 4mehd

as the theoretically evaluated value. Here, the constant ¢ denotes the velocity
of light.

By virtue of the consideration in the above, we can see that the theoretical
value and the observed value of R coincide well.

The Bohr’s law described in the above was demonstrated by the experiment
of Franck-Hertz in 1914. By taking account of the observed data of the experi-
ment of Franck-Hertz, it is evident that the regularity such as Bohr’s law holds
for the mean values &, of the energy.

Thus the spectral lines of the hydrogen atoms known until now are under-
stood and explained naturally and rationally by virtue of the theory of the
natural statistical physics.

7 On the stability of the hydrogen atoms

Here we consider the problem of the stability of the hydrogen atoms.

As for the result of this section, we refer to Ito[20].

If one hydrogen atom is isolated, its electron is rotating around the nucleus
and has emitted its total energy as the electro-magnetic waves. Finally this
electron has falled onto the nucleus and stops its motion relatively. Therefore
the hydrogen atom does not keep its stable state.

Nevertheless the hydrogen atom existing in the nature keeps its stable state.
It is the great question why is it so. This can be understood as follows by using
the theory of the natural statistical physics.
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In general, the physical state of a physical system moves toward the equilib-
rium state of the energy or the thermal equilibrium state. On the basis of this
fact, we show that we can understand and explain the phenomena of stability
of the hydrogen atoms completely.

If the hydrogen atoms exist collectively, the state of the system of hydrogen
atoms moves toward the thermal equilibrium state. Namely, if the energy of
one hydrogen atom becomes higher than the energy of the system around it,
it emits the energy and moves toward the equilibrium state with the system
around it. Further if the energy of one hydrogen atom becomes lower than
the energy of the physical system around it, it absorbs the energy and moves
toward the equilibrium state with the system around it.

This emission and absorption of the energy are observed as the spectrum of
emission and the spectrum of absorption of the hydrogen atoms. By virtue of
this mode of movement of the physical system, the hydrogen atoms keep their
stable states.

This is the solution of the problem of stability of the hydrogen atoms.

Thus each hydrogen atom always gives and takes the heat by virtue of the
mutual interaction with the surrounding hygrogen atoms and others. It is con-
sidered that the Schrédinger equation gives the state of the natural statistical
distribution in such a equilibrium state. The equilibrium state does not mean
that there is no interaction with the surrounding matter, but it means that the
thermal equilibrium is kept under the interaction with the surrounding mat-
ter. The state of the natural statistical distribution given by the Schrédinger
equation concerns only with understanding the natural statistical phenomena
of the physical state under the thermal equilibrium states insistently without
entering the analysis of the mutual interaction. The Schrédinger equation is
the approximating model in such a sense.
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