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Abstract

In this paper, we study on the phenomena of potential well in the
view point of natural statistical physics.

We derive the Schrédinger equation of potential well by virtue of my
new theory of natural statistical physics. This derivation is very new and
natural and reasonable in the physical sense.

We solve the eigenvalue problem for the Schrodinger equation of po-
tential well. Thereby we obtain the new and true eigenfunctions of the
Schrédinger operator of the potential well.

By virtue of my new theory, we can understand the phenomena of
potential well naturally and reasonably in the physical sense.

At last, we study the meaning of the impact force naturally and rea-
sonably in the physical sense.

As for these results, we refer to Ito [1]~[4]. Especially, as for the
phenomena of potential well, we refer to Ito [2], [4].
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81Q99, 81V45, 82D35.
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Introduction

In this paper, we study on the phenomena of potential well in the view
point of natural statistical physics.

Using the mathematical model of a phenomenon of potential well, we can
understand the motion of free electrons in a metallic conductor.

The object of this research is to establish the complete theory of natural
statistical physics. For that purpose, we study the physical phenomena in this
subject. It is important that the scale of the problems are large or small. But
it is also important to construct the complete theory systematically. Though
the themes of research are seen to be scattered, they take shape as the natural
statistical physics. By studying this problem, it does not mean the closing of
a series of research of natural statistical physics.

In order to understand the phenomenon, it is better to study the phe-
nomenon truthfully.

We cannot understand the phenomenon only by thinking independently of
the physical phenomenon as it is.

In order to understand the physical phenomenon, we do not think it logi-
cally, but we think it using the causality law.

Even if we consider all possible cases about the physical phenomenon logi-
cally, we have not the master card to determine which case is true effectively.
In order to understand a physical phenomenon, it is important to study the
phenomenon using the causality law.

Of course, when the theoretical model is determined correctly, we study the
model mathematically using logical thinking.

1 Setting of the problem

Now we consider the case where an infinite number of electrons move in
a small conductor. We can neglect the mutual interaction of electrons. The
motion of electrons are controlled by some electro-magnetic force.

The case where the action of the force is expressed by a potential well
approximately is a phenomenon of potential well.

Here we consider the good setting of the problem.

Now we consider that a physical system (2 is the family of electrons moving
in a potential well V(z) in one-dimensional space.

Here, we assume that an electron is a material point with mass m and
electric charge —e. Therefore, the control by the action of electric force is
expressed in the potential V' (x).
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Assume that V > 0,a > 0 are two constant. Then the potential well V(z)
is expressed in the form

Vi) — -V, (~a<z<a),
(3:)—{0’ (z<a, z>a)

on 1-dimensional space R.
Then, by virtue of the potential V(z), the force

_dV(z)

F = e Vié_o(z) — Vi (x)

acts on the electrons.

Thereby, we controlled the motion of electrons. This means that the impact
force V acts in the positive direction at the point —a, and the impact —V acts
in the negative direction at the point a.

Here, .
V(z)=— / F(z)dr = / dzg(:)dx

-0

:/_ (—V5_a(m)+V5a(:v)) dx

-V, (~a<z<a),
0, (z < —a,z>a)

is the potential energy of the electron for the force F'.

Then we assume that L2-density 1 (z,t) determines the natural probability
distribution of the position variable z of the physical system depending on the
time ¢. Then the L?-density 1 (z,t) is the solution of the Schrédinger equation.

Here the graph of the probability density |y (z,t)|* determined by the L2
density ¥(z,t) is the graph which represents the mathematical information
given by the probability density which gives the probability distribution law of
the position variable of the electrons moving under the control by the potential
V(z).

2 Derivation of the Schrodinger equation

For the purpose of the natural statistical study on the phenomenon of the
potential well, we solve the local variational problem by using the local varia-
tional principle on the basis of the laws of natural statistical physics. Thereby
we derive the Schrodinger equation.
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Then, the L?-density v(z,t) which determines the natural probability dis-
tribution of the position variable of the physical system at the time ¢ is given
by the following theorem.

Theorem 2.1  Assume that the initial natural probability distribution of
the position variable is given by the L*-density 1(x).

Then, the L*-density y(z,t) which determines the natural probability dis-
tribution of the position variable of the physical system is the solution of the
wnitial value problem of the time evolving Schrédinger equation

OY(z,t) _ K *P(z,t)

ih 5% = om  oa? + V(z)y(z, 1),

P(z,0) = ¥(z), (Initial Condition),
(—oo <z < oo, 0 <t <0).

Then the phenomenon of the potential well is understood by solving the
initial value problem of the Schrédinger equation. Namely, when the initial
distribution of the electrons is given, the L?-density ¥(z,t) is varying accompa-
nying the motion of the electrons. Then the expectation of a physical quantity
calculated by using the L?-density 1 (x,t) varies. By virtue of the observation
of the variation of such a physical quantity, we can understand the phenomenon
of potential well.

By using this mathematical model, we can explain the motion of free elec-
trons in a metallic conductor. Thereby we can explain that a metallic matter
has the property of electric conductivity.

3 Eigenvalue problem for the Schrédinger op-
erator

We have the solutions of the Schrodinger equation on the stationary state
in the following theorem.

-solutions ¥\ (z), v{"(z), v\ (),
wép) (z) of the Schrodinger equation on the stationary state

Theorem 3.1  We have the L?

loc

R A (z)

g T V@ (@) = &uy (@),
2 2

=P _ =P
(& = 2m Vior &y 2m)’
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(j=1,2; —00 <z <00, —00 < p < 00).

By solving the Schrodinger equation in the stationary state, we determine
the system of eigenfunctions as the solutions of the eigenvalue problem for the
Schrodinger operator.

We give the concrete expressions of the system of eigenfunctions v,b§n) (z),

(), P (z), P () in the following theorems 3.2~ 3.4.

2
Theorem 3.2 In the case 0 > £ > —V, we put £ = 2p—m -V, (ol <

V2mV). Then, we have the piecewise C* and continuous solutions ¢§p)(x) and
1/;;" )(x) of the Schradinger equation as follows:

1
(i) In the casespz(n—*) L (n=1,2,---,N), we have

2/ 2a’
1\ mz
n ceos{n—=|—, (Jz| <a),
= = [ (7)€
0, (|z] > a).
(ii) In the cases p = %g, (n=1,2,---,N), we have

esin 2 (Jz] < a),
a

P () — ™ () =
¥y () = ¥g (x) {0, (12l > )

1
Here, ¢ = — 1is the normalization constant. Further N is the biggest natural
a

number among which satisfy the condition

2av2mV

N < 3

In the theorem 3.2, the interval to which the point # = a in the domain of
eigenfunction solutions belongs is different from the interval in the definition
of potential well. As for this fact, it is enough to understand as follows.

In the definition of potential well, it is good that the point z = a is the left
end point of the interval [a,c0) by virtue of its physical meanings.

Nevertheless, the eigenfunction solution in the theorem 3.2 is LY -function.

Really, this solution is a piecewise C'! and continuous function. Therefore,
by the reason of the continuity condition of the solution at the point z = a, we

can consider that the point z = a is the right end point of the interval [~a, a].
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Here we express the domain of the function so that the symmetry property
of the function is expressed.

Theorem 3.3  In the case £ > 0, we put

2 /2
P

p ’
R > - .
5 5 V, (Ip'l 2 V2mV, —oco0 < p < o0)

Here, p' denotes a function of p.
Then we have the solution z,ZJY) )(CL’) of the Schridinger equation as follows :

(1) In the case z > a, we have

¢§p>($) - Al(p)eip(z~a)/h+Bl(p)e—ip(z~a)/h

!
= ¢(cosp'a/h - cosp(z — a)/h — % sinp’a/h - sinp(x — a)/h).
(ii)  In the case x < —a, we have

P(z) = Au(p)e =/ 4 By (p)eiplral/n

/
= c(cosp'a/k-cosp(z + a)/h+ P sinp’a/Ah - sinp(z + a)/h).
p
(iii)  In the case |z| < a, we have
P (z) = ccosp'z/h.

Here, in the cases (i), (ii), A1(p) end B1(p) are defined as follows :
c

Ai(p) = 2

(pcosp’a/h + ip’ sinp’a/h),
Bi(p) = 2—; (pcosp’a/h — ip'sinp’a/h).

1
Here, c = —= denotes the normalization constant.

va

Theorem 3.4  Let £,p,p’ be as the same as in Theorem 3.3. Then we
have the solutions wép )(x) of the Schrédinger equation as follows:

(iv)  In the case x > a, we have the solutions

wép)(x) - A2(p)eip(x—a)/ﬁ_+_Bz(p)e—ip(z—a)/h

7
= c(sinp’a/h - cosp(z — a)/h+ %Cosp'a/h -sinp(z — a)/A).
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(v)  In the case x < —a, we have the solutions

U (@) = = Aa(p)e™ P+ = By(p)e et

/
= —c(sinp'a/h - cosp(z + a)/h — % cosp'a/h - sinp(z + a)/h).

(vi) . In the case |z| < a, we have the solutions

() = esinp'z/h.

29

Here, we determine the constants Aa(p), Ba(p) in the cases (iv), (v) as follows

c . .
Az (p) = 5};(}) sinp'a/h—ip' cosp'a/h),

Bsy(p) = —z%(psinp’a/h+ ip' cosp’a/h).

1
Then, ¢ = — denotes the normalization constant.

Va
It is proved that this system of eigenfunctions satisfies the ortho-normalization
conditions.
Theorem 3.5 We have the ortho-normalization conditions in the follow-
ng:

(1) w&””wwi"’(z)dx = bpn, (nyn'=1,2,---,N).

(2) w @) v$ (2)dz = 6prmy (nyn' =1,2,-+ ,N).
@ [ W@ = [ e @ =o,

(n,n' =1,2,-++,N).
/_ o:o W9 2y P (z)de = 6(q — p),
(j=1,2, ;-00 <p,q < 00).
/ PO @)y P dx__/ o ()9 (@) = 0,
(—00 < p,q < c0).
(6) /_o:o W (@) 9P (@) de = /_‘: P (@™ (@)de = 0,

(t=1,2,n=12,---,N; j=1,2, —00 < p < 00).
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Here, we propose the theorem of the completeness of the system of eigen-
functions. But the proof of this theorem is an open problem.

Theorem 3.6  We have the following equality :

] =

(476" @) + v @) e (@) )

n=1

8

o9}

+ [ (WP @+ @) ) dp
=i

"—1x), (—oo <z, 2’ < 00).

Then the theorem 3.6 is equivalent to the next corollary 3.1.

Corollary 3.1  For the function ¥(z) € L?, we have the equality:

N

/ T @) Pazr =" (lanl? + bl

oo n=1

+/°° (la@)P + )2 ) d

—0

Here, we put

Theorem 3.7 (Theorem of eigenfunction expansion) When an ini-
tial natural probability distribution of the physical system is given by the L2-
density ¥(x), we have the equality:

N

(@) = (@@ + byl (@) )

n=1

+ / Z (alpye? @)+ b(p)ul? (@) )’ dp
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Here we put

/ o (2) P (2)dz,

b_/ W4 (@) () dz

alp) = / # (@) () de,

/ ¥ (@) (a)dz

Then the expectation value E of the energy of this physical system is equal

to the following:

B= {(n-3) gogloal + 2ol }

n=1

oo 2
[ o+ b))

—00

Now we put

(n) _ ) Ep

o (o) = 9" @) exp (~i2t ),
2

P =P
(]‘1a2, gp"’2m V)

®)( 4y — @ &
¥ (x,t) =y, (x) exp ( i ht>
2
P
2m)'
The solution 9(x,t) of the Schrodinger equation is given by the equality

(k=1,2, & =

N
@)= (@l (@0 + bz, 1) )

n=1

+ /_ o:o( (P)’l/’(p)(w,t)+b(p)q/;£”)(x7t)) ip.

Corollary 3.2  We use the notations used in theorem 3.7. Assume that
the initial distribution of the physical system is given by the following L?-density

N
@) =Y (@@ + buvi(@) ) -

n=1
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Then the solution ¥ (z,t) of the time evolving Schrédinger equation of the phys-
ical system is given by the equality

N
v =Y (@l (@0 + 597z, )

n=1

Here the expectation value E of the energy of this physical system is given by
the equality

2

B=Y {(n- 1) sl + 2}

n=1

4 Meanings of the phenomena and natural sta-
tistical phenomena

Now we study the structure of the physical system Q = (Q, B, P).

Really, the physical system €2 has the following structure in the stationary
state.

Namely, 2 has the following direct sum decomposition:

Q=0 UQyUN3UQy, (direct sum). (4.1)
U Qip,y Qg = U Qap, (direct sum), (4.2)
n=1
Q; = U Qjp, (4 =3,4), (direct sum), (4.3)
=00 PO

P(Qun) = lanlz’ P(Q2n) = [bn]?,
P(Qsp) = la(p)?, P(Qap) = [b(p)?,
(=00 < p < ).
Then, for A € B, we have the equality:

N
Z( (1) Pa, (4) + P(Q21) Po,, (4) )

+ [ (AP, + PADP©s) ) dp

—0
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i (Ianl Py, (A)+ !anQPQ%(A))

Efty
+ [ (AR + Py(Alp) b(r)* ) dp.

—

Here, Pqo,, (A), Pa,, (A), P3(Alp) and Ps(A|p) denote the conditional prob-
abilities.

Then, for j = 1,2, n=1,2,--- , N, we call (Qj, BNQjn, Pa,,(-)) a proper
physical system, and for j = 3,4, —oo < p < oo, we call (R, BNQ;p, P;(-p))

a generalized proper physical system.

Then considering the formulas (4.1)~(4.3) and calculations until now, and
using the symbols in Ito [3], section 6.2 law II and section 6.5, law II', we have
the following, for 7,n,p chosen as in the above :

For a measurable set A in R and a measurable set B in R, we have the

following :

Pa,.({p € U : 2(p) € A}) = /A ™ () 2dz, (= 1,2),

Po,.. ({0 € Qn : () € BY) = /B W ) 2dp, (= 1,2),

/ 68 (2) 2 da
P({p € Qjp;z(p) € AN S}|p) = =402 , (1=23,4),
[ P

/ W(p) 2dq

P({p € Qjp;p(p) € B}p) = , (7 =3,4),
/_ 19 (0)Pdg.
P(Qplp) = im P({p € Qypiz(p) € SH =1, (j = 3,4).

Here , lign denotes the Moore-Smith limit.

Therefore, the conditional expectation values Ejn of the proper physical
system ;, and Ej, of the generalized proper physical system €;p are the
following respectively:

B = o, | g0 + V(a(9)|
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)

2
= . ) p
Bjp= lim Julwf)] = 5

(j=3,4,;—0c0 < p<oo)
Then, by virtue of the relation of the total physical system Q and the
proper physical systems (2, and the generalized proper physical systems ;p,

the energy expectation value E of the total physical system is equal to the
following:
— 1
E=E|—p(p)3+V
|50 + V(o)

N
=3 (Bunlanp + Boalonl?)
n=1

—o0

N NZ g2
_ ] 2
2 ("= 2) Smalonl+ gl )

oo 2
+ / P (la(p) 2 + b(p) ) dp.

o0 2M

+ [ (Boplat) + B ) o
n?h?

Now, assume that the initial distribution of the physical system is given
by the L?-density in the corollary 3.2. Then, if we assume that the following
condition are satisfied :

b(x) =0, (jz] > a),

we have the equality
P(z,t) =0, (Jz| >a, 0 <t < oc0).

Therefore, when the system of electrons, whose energy expectation value £
belongs to the interval [V, 0), are delivered in the region |z] < a at the initial
time, we know that the probability of the possibility that these electrons run
out of the potential region is equal to 0. .

Namely, the electrons of low energy trapped in the potential well are con-
tinuing to stay at the state where these electrons are trapped in the potential
well as they are.
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5 Meaning of the impact force

Here we study the meaning of the impact force in the section 1.
In the space R, we consider the potential:

1, (x >0),
V@) =1 te), (-e<w<0)
0, (x < —¢),
V(x):{ 1, (2>0),
0, (xz<0).

Then, in the wide sense of uniform convergence, we have the limit

Ve(z) — V(z), (¢ — +0)
Then, we have the equality

0, (z > 0),
dVe(z) 1
T dr —o (—e <z <0),
0, (x < —¢)

Further, in the sense of convergence as the density function or the Radon
measure, we have the limit

—d%ix) — g(z), (= +0).

Then, for z € R, we have the limit

Ve(a:)=/m dVelo)

oo dx
@ 1, > 0),
— V(z) = /— glx)dz = { 0 Ei - 0;

Here, because the density function V (z) is §(z), We have the equality g(x) =
6(z).

Therefore, g(z) = &(z) is considered to be an impact force at the point
z = 0. Then the —(work) by the impact force §(z) is considered to be the
potential energy V().

Here we consider the meaning of the impact force. Now, if we put

F@) = -8~ )
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we have thw equalities

/ F(z)dz = — §(z)dx = -1,
{0} {0}

/ Fz)ds = — / 5()dz = 0.
Jlz|>0 |z}>0

This means that the work by the force —d(z) concentrates on {0} and its
work is equal to —1.

In this meaning, we can consider the force —d(z) as the impact force at the
point x = 0.

References

(1] Y. Ito, New Quantum Theory, I, Science House, 2006, (in Japanese).

2] ——, New Quantum Theory, 11, Science House, 2007, (in Japanese).

[3] ——, Fundamental Principles of Natural Statistical Physics,
Science House, 2009, (in Japanese).

[4] ——, Natural Statistical Physics, preprint, 2009, (in Japanese).



