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Abstract

We study the existence of global solutions to the initial-boundary
value problem for the degenerate nonlinear hyperbolic equation of
Kirchhoff type with linear dissipation :

2 b 2 7 g2
%}g———(/ dz) M+@+|u1pu20.

dx? Ot
In the case of 0 < ¥ < 1, under the conditions that p > 4y and the
size of initial data is suitably small, we derive the global existence
theorem.
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Introduction

In this paper we consider the initial-boundary value problem for the degen-
erate hyperbolic equation of Kirchhoff type with linear dissipation :

uer — ||te ()| Uz + ug + [u|Pu =0 in (a,b) x (0,00) (0.1)
with the initial data and boundary conditions

u(I?O) = ’LLO(:U), ut(x,O) = ul(x)7 a<z<b,
u(a,t) = u(b,t) =0, 0<t< o
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where u = u(z,t) is an unknown real function and a < b and
0<y<x1

and p > 0 and the symbol || - || means the usual norm of L? = L?(a, b).

Equation (0.1) describes small amplitude vibrations of an elastic stretched
string and was introduced by Kirchhoff [4].

When v > 1, in previous paper [9], we have proved the existence of global
solutions under the condition that the size of the initial data is small (cf. [5],
[8], [10], [12]).

Our interest in this paper is the problem in the case of 0 < v < 1 (cf.
(3], [11] for equations without the nonlinear term |u|Pu). In order to get an
a-priori estimate for H?-norm of the solution u(t), we derive the estimate for
[uea (8)[12/ luz()]|?, and we give the decay estimate [[u(t)||%. < C(1+t)77.
Our main result is Theorem 3.3 in section 3.

The notations we use in this paper are standard. The symbol (-,-) means
the inner product in L? or sometimes duality between the space X and its dual
X', and the norm of L? is often written as || - ||, (| - || = || - |l2 for p = 2)
simplicity. We put (a)* = max(0,a) where 1/(a)t = oo if (a)* = 0. The
constant c, is the Sobolev-Poincaré constant, that is, for 1 < p < oo,

ollp < cllva|l- (0.2)
Positive constants will be denoted by C and will change line to line.

1 Preliminaries

By applying the Banach contraction mapping theorem, we get the following
local existence theorem (see [1], [2], [9] and the references cited therein).

Proposition 1.1 Suppose that the initial data {uo,u;} belong to H*NHE x H}
and uyg # 0. Then, the problem (0.1) admits a unique local solution u(t) in
the class C([0,T); H? N H) N CH([0,T); HE) N C%([0,T); L?) for some T =
T(|luo|lg2 5 Jurllar) > 0. Moreover, if ||uz(t)]| > 0 for 0 <t < T, at least one
of the following statements is valid

(i) T = oo;
() lu@laz + lw@®)llgr — o0 ast—T—;
(iii) flug(t)] =0 ast— T—.

We define the energy and the potential associated with (0.1) by

B, w) = &l + J(u) (11)
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and
T = = P a3 (12)
20v+1) p+20
respectively.
In what follows, we denote
M@®) = |lu(t)|* and E(t) = E(u(t), u(t)) (1.3)

(E(0) = E(ug,u) for t = 0) and J(t) = J(u(t)) for simplicity.
Moreover, we introduce the function H(t) (i.e. modified second energy) by
e (1 s ()1 w4

H(t) = M) +M(t)1*7'

2 Energy Estimate
The energy E(t) = E(u(t), u:(t)) given by (1.1) has the energy identity

d
G EM+ lue(®)* =0 (2.1)

or
B()+ | lu()lPds = BO). (2:2)

Indeed, multiplying (0.1) by u; and integrating it over (a,b) or (a,b) x (0,%),
we have (2.1) or (2.2). Moreover, applying energy method together with the
Nakao inequality (see [6], [7]), we have the following the decay estimate of the
energy E(t) (see [6], [10], [11] for the proof).

Proposition 2.1 Let u(t) be a solution of (0.1).
Then, the energy E(t) satisfies

, ol
where we define
. 2
dy = <3E(0)§(W—D + 200*) . (2.4)

" Proof. Integrating (2.1) over [¢,t + 1], we have

i+1
/t luc(s)|IPds = E(t) — E(t+1) (= D(t)?). (2.5)
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Then, there exist two numbers ¢, € [t,t+1/4] and ¢, € [t+3/4,t+ 1] such that
lue(t)|1? < 4D(t)?  for j =1,2. (2.6)

Multiplying (0.1) by u and integrating it over (a,b), we have

M 4l = ol = ) = (),

and integrating the resulting equality over [¢1,¢s], we observe from (2.5) that

[ (e s puepz) o

ty
t+1

t+1
S/t IIUt(S)IIst+ZHut Ml ‘)||+/t l[we ()l lu(s)]| ds

< D)% +5¢.D(t) sup M(s)?
t<s<t+1

< D(t)% + 5¢. D(8)(2(y + 1) E(t)) 7= (2.7)

where we used the fact that E(t) is a non-increasing function at the last in-
equality.
Integrating (2.1) over [t, t;], we have

E(t) = E(t,) + / us(s) 2 ds

t2 t+1
<2 E(s)ds+/+ lluz(s)|* ds
t+1 t2
<2 [ s+ [ (et s 2ot ds

< 3D(t)? + 5¢, D(t) (2(y + 1) E(t) 7=

0 1

where we used (2.7) at the last inequality. Moreover, since D(¢)? < E(0)5+1 E(t)7+1,

we observe
E(t) < (3E(0)%~—1 + 200*) D(t)E(t) 75
and the Young inequality yields

2(~v+1)
27 +1

E(t) < ((3B0)7 + 20, D))
or
E(®)'* 77 = B() 57 < diD(1)?
<2 (E(t)—E(t+1)). (2.8)
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Thus, applying the Nakao inequlaity to (2.8), we obtain the desird estimate
(2.3). O

Immediately, we obtain the following estimate as a corollary of Proposition
2.1.

Corollary 2.2 Ifq > v, under the assumption of Proposition 2.1, it holds that

/ " M(s)7ds < B,(0), (2.9)
4]
where we define

By(0) = 26+ 1) (B0 + 2 poE). )

Proof. From (1.1) and (1.2), we see

| M(E)™+ < 207+ 1J(1) < 20y + DE®),
and then, we observe from (2.3) that

¢ t ,
/ M(s)%ds < / 20y +1)B(s)) 75 ds
0 0
.t . _a
< @0+ [ (BOTF +d - 17) s,
0

which gives the desired estimate (2.9) if ¢ > . D
3 A-priori Estimate

Proposition 3.1 Let u(t) be a solution of (0.1). In addition to the assumption
of Proposition 2.1, suppose that p > 4 and

M(t) >0 and (y+2)°H(t) <1. (3.1)
Then, it holds that
u 2
F(t) = ﬂfﬂ%i +Q(t) < do, (3.2)

where we define

' 2
Q) = 377w (M(tmum(t)uﬁ - (3m0) ) >0, (33)

dy = F(0) +2(p+ 1)c2Bg _, (0) . (3.4)
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Proof. Since we observe from (0.1) that
M5 (eel?) = ~2ell ~ 200, 100) + 2P, )
My ||um||2 = —50/0)+ (el + 30070)) + (),
we have
g (L=l ) 7 (1O (na PY MO = MO e P (0)
-2Q(t) — R(t) + S(¢), (3.5)
where Q(t) is defined by (3.3) and

R(t) = M—(t]j-m <2M(t>(u$tt,’u$t) + <M'(t)|[urtﬂz — %M’(t)M”(t))) s
S0 = s MO, ) = MO (W), )

On the other hand, we observe

! 2\
Fo0 =—tr+23 0 M(l)wz( <t>numu2—(§M’(t>)>

’ W (QM“)(%M + M (1) |2 - %M'mM"(n)
——(v+2) ]]‘é((f)) Q) + R(t). (3.6)

Adding (3.5) and (3.6), we have

d (vl v+ 2 M'(t)
at ( M) =+ Q(t)) -2 (1 + TW) Q@)+ S(t). (3.7

Here, we observe from (3.1) that

2 ]‘]\44'((;)) < (r+2)HB} <1 (3.8)

and

1SO1< 32 Tl P

2\ 7
< alp+ DEM(DE <—”§}(t”> )
<2(p+1)EM(t)E (3.9)
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where we used (1.4) and (3.1) at the last inequality. Thus, we have from (3.7)-
(3.9) that

Ugs || 2
4 (Lt QM) < 2o+ DEMOE (310)

and then, integrating (3.10) and using (2.9), we obtain the desired estimate
(8.2) if p/2 —y > (ie. p>4y). D
Proposition 3.2 Let u(t) be a solution of (0.1). Suppose that the assumption
of Proposition 3.1 is fulfilled. Then, the function H(t) given by (1.4) satisfies
H(t) < H(0) + 1(0), (3.11)
where we define
1(0) = 2(1 — 4)2d2Ba (0) + 2¢2 (p + 1)* B,(0).. (3.12)

Proof. Multiplying (0.1) by (—2us.¢/M(t)) and integrating it over (a,b),
we have
d M) Jluae]?
—H(t 2 =—(1-
@t ()+(+M(t)) My -
= Il + IQ .

M o - 2 )

o

We observe from (3.2) that

2 T gt ||? 3
I <2(1—7) “;‘;th”) M(t)" lluae | < 2(1 — y)de M (t)Y (H I > ’

2p+1) y (s 2
< p < 92cP
1 < 22 Dl el < 22200+ 00008 ()
and from (3.1) that
M'(t) 1 v+1
24+ —2>2— >2l -
+pp 22O 22
Thus we have
d y+1 ”uth2 2 ”“avt"2 2
—_ A | etid LIS — vy P 3 4 T
G0+ 2 < (20~ M) + 220+ DM D)F) o
and from the Young inequality,
%H(t) < 2(1 =) 2d2M(£)* + 2¢2 (p+ 1) M (2)P . (3.13)

Therefore, integrating (3.13) and using (2.9), we obtain the desired estimate
(3.11). &

Our main result is as follows.
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Theorem 3.3 Let the initial data {ug,u,} belong to H*NH} x H} and ug # 0.
Suppose that p > 4 and

(y+ 1)2(H(0) + I(0)) < 1, (3.14)

where c., E(0), H(0), I(0) are defined by (0.2), (1.3), (1.4), (3.12), respec-
tively. Then, the problem (0.1} admits a unique global solution u(t) in the class
Co([0,00); H2 N HY) N C([0, 00); HY) N C2([0, 00); L?) satisfying

lu(®)llfe < C(L+)77 (3.15)
and the energy satisfies

E(t) = E(ult), w(t)) < C(1+1)7177. (3.16)

Proof. Let u(t) be a solution of (0.1) on [0,T1).
Since M (0) > 0 (by ug # 0), putting

T, =sup {t €[0,00) | M(s) >0 for0<s<t},

we see that 75 > 0 and M(t) >0 for 0 <t < T.

If To < T, then we see M(T3) = 0.

For 0 <t < T, if we assume (v + 2)(H(0) + I(0))2 < 1, then there exists
T3 > 0 such that

(Y+2H({t)? <1 for0<t<Ts,
and hence, from Proposition 3.2,
H(t) <H)+1(0) for0<t<T;5. (3.17)
Thus, we observe from (3.17) that
(v+2H()? < (v+2)(H(0)+I(0))F <1 for 0 <t < Tj,

and hence, we see T3 > T, that is,

1
Ht) < s 0<t<Ts. 3.18
( ) - ('Y + 2)2 fOI' St<ia ( )
Since M(T3) = 0, we see from (3.18) that lim E(t) = lim E(u(t), w(t)) =
t—To t—Ts

0.
We perform the change of variable s = Ty —t or t = T3 —s, then the function
Ulz,s) =u(z, Ty —t) on [0, T3] satisfies that

Uss — ||Uw(3)”27Um - Us + |UPU =0. (3.19)
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Multiplying (3.19) by U, and integrating it over (a,b), we have

4 BU,U.) =101 < 28w, U,)

and from E(U(0),Us(0)) = tlirg E(u(t), us(t)) = 0, we observe
—i2

S
BU).U) <2 [ BU.U(r) dr.
0
Applying the Gronwall inequality, we have that E(U(s),Us(s)) = 0 for 0 <
s < Ty or E(u(t),us(t)) = 0 for 0 < t < T, which contradicts E(ug,u1) =
E(0) > J(0) > 5-(—;/1_|r—1)M(0)“Y+1 > 0, and hence, we see T, > T7 and M(t) > 0
for 0 S t < Tl-

Thus, we conclude from (3.18) that ||u(t)|| gz + ||u(t)||zr < oo for ¢ > 0.
Therefore, the local solution u(t) of (0.1) in the sense of Proposition 1.1 can be
continued globally in time. Also, from Proposition 2.1 and Proposition 3.1 we
obtain the decay estimates (3.15) and (3.16). O
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