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Abstract

Consider the Cauchy problem for the dissipative wave equation :
uy — Au+u =0, u=u(x,t) in RN x (0,00) with u(z,0) = uo(z)
and us(z,0) = ui(z). If {up,u} are compactly supported data
from the energy space, then there exists a domain X,, in RY such
that {z € R | o] > t1/%*9} C X, for large ¢ > 0 and [y (lue* +
|Vul?)dz < C(1+¢)™™ with m > 0 for ¢ > 0, and moreover, if
ug+u1 =0, then [y |uf?dz < C(1+¢)™™ fort > 0.

2000 Mathematics Subject Classification. 35B40, 35L15
1 Introduction

We are concerned with the Cauchy problem for the dissipative wave equa-
tion :

up — Au+u, =0, w=u(z,t) in RY x(0,00) (1.1)
with the initial data
u(z,0) = up(z) and wu(z,0) = ui(z), (1.2)

where A=V -V = Z]N;l 82/0z? is the Laplacian in RY.
We assume that {ug,u;} are compactly supported data from the energy
space :

ug € H'RY), wu; € L*(RY) (1.3)
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and
supp up U suppu; C B(K) (1.4)
with K > 0, where B(K) is an open ball with center 0 and radius K :
B(K)={zeR" ||z| < K}.

Then, it is well known that the problem (1.1)~(1.2) with (1.3)—(1.4) admits
a unique global solution u(t) on [0, co) such that

u(t) € C([0,00); H'(RY)) N C([0, 00); LA(RY))
(see [2], [5]) and
suppu(t) C B{t + K) for ¢>0. (1.5)
By the standard energy method, we obtain the following energy estimate :
Elt) <CEO)(1+t)"" for t>0

where

E(t) = Ju®I + [ Vu®)]* = / (lue(z, D)1 + | Vu(z, 1)]?) do

RN

and E(0) = |Ju1 [|> + || Vuo||?, and || - || is the norm of L2(R™Y) (see [1], [3], [4]).
On the other hand, Todorova and Yordanov [6] have been obtained the
following decay estimate :

/ (Jue? + |Vul?) de < CE(0) exp(—£/2) (1.6)
B(t1/2+8)e
with 6 > 0, under the assumptions (1.3) and (1.4). Here, B(K)¢ is the com-
plement of B(K), that is,

B(K)*=RY\ B(K) ={z e R | |z| > K}.

We are interested in the decay estimate for larger domains than B(t!/2+9)e,
When m > 0 and § > 0, it is easy to see that for large t > 0,

(t+ K)Y?log(1 +t)™ < t1/2+9
and hence
B(t'/215)° G B((t+ K)/?log(1 + t)™)°.

The purpose of this paper is to derive the decay estimate for large domain of
integral B((t + K)'/?log(1 + t)™)¢ than B(t}/>%)¢ in (1.6).
Our main result is as follows.
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Theorem 1.1 Let m > 0. Suppose that the initial data {ug,u1} satisfy the
conditions (1.3) and (1.4). Then the solution u of (1.1)~(1.2) satisfies

/ (Jue)? + |Vul?) dz < " E0)(1 +1)™™ (1.7)
B((t+K)1/2 log(14+t)™)°

for t > 0. Moreover, if ug +u; =0, then

/ |u|? dz < eK||u0|]2(1 +6)™m (1.8)
B((t+K)1/2 log(1+t)™)¢

fort>0.
Theorem 1.1 follows from Theorem 2.2 and Theorem 2.3 in next section.
2 Decay Estimates

The function ¢(z,t) = 3 (t + K —/({t+K)? - |x|2) given by [6] plays an
important role through this paper. It is easy to see that

oL |=[? ,

2t+ K+ /(t+K)? — [af?
¢t:% b (tj;)lz(-I:c]Q):_ (H%LI”P) o
=
|w|2=§<7ﬁ%’

and then we obtain the following.

Lemma 2.1 The function y(z,t) = % (t +K—/({t+K)? - |a:|2) for |z| <
t + K satisfies

"/)(I)t) > 0’ '(/)t(xat) = wt(x’t)Q - va(m»t)P (2‘2)
and
1 |z)? 1
ngw(x’t)gﬁ(t+K)' (2.3)

The following decay estimate means (1.7).
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Theorem 2.2 Let m > 0. Suppose that the initial data {ug,u1} satisfy the
conditions (1.3) and (1.4). Then the solution u of (1.1}—(1.2) satisfies

/ (Jue)® + [Vu)?) de < IF(14+8)~™ (2.4)
[€]>(t+K)Y/2 log(1+t)™

fort >0, where

2= / U0 (o (2)]? + [Vao(2)2) de < X E(0).
RN

Proof. Multiplying (1.1) by 2e?*“u;, we have

0=¢? (%(utz + | Vul|?) — 2div(u, Vu) + 2@5)
d oy 2 2 (20 2e*¥
== (e (uf + |Vul?)) — 2div(e®™u,Vu) + mP(a:, t) (2.5)
where
P(z,t) = (V7 — vo)u? — 2, Voo - Vu+ 2 [Vu|?, by (2.1)
= uZ | VY|* — 20u, Vb - Vu + 97 [Vul?
= |,V — 4, Vul* (>0).

When z # 0, we see ¢¢ < 0 (by (2.1)) and hence P/(—¢;) > 0. When z = 0,
we see ¢y = 0 and |V¢| = 0 and hence P/(—1;) = ui > 0. Moreover, we see
from (1.5) that supp P(-,t) C B(t+ K) for t > 0.

Integrating (2.5) over RY, we have

d [ It
= (el + ¥ val?) <0
and hence
le¥ue|* + fle? Vull* < et Duy || + |0 OVuo||* (= 17) (2.6)

for t > 0. By (2.3), it is easy to see that I? < X E(0).
On the other hand, we observe from (1.5) that for ¢ > 0,

le¥ul|® + eV Vul® = / e (Ju,|* + |Vul?)dz, by (2.3)

|lz|<t+K
/ 1 Je)?
2 e2i+K
lz|<t+K

>

(Juel® + [Vul?) dz

z|2

|
2 7% (Jug|? + |Vu)?) da

/|x|z(t+f<>1/2 log(14t)™

> (1 +t>m/ (IUt|2 4 |Vu|2) dr o)
[2]> (¢4 K)1/2 log(14t)™
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Therefore, we obtain from (2.6) and (2.7) that

/ (Jusf? + [Vul?) de < I2(1+ 1)~
| (4K /2 log(144)m

for t > 0, which implies the desired estimate (2.4). O
The following decay estimate means (1.8).

Theorem 2.3 Let m > 0. Suppose that the initial data {uo,u1} satisfy the
conditions (1.3) and (1.4). Then the solution u of (1.1)~(1.2) satisfies

/ lulde < TE(1+t)™™ (2.8)
21> (t4+K) /2 log(1+t)™

fort > 0, where

2= / @ 0yy(2)? dz < e ug
RN

Proof. Putting
t
w(a:,t):/ u(x, s)ds
0

for the solution u = u(z, t) of (1.1)~(1.2), we observe that w; = u, w(z,0) = 0
and

ug +u— Aw = up + w3 in RY x (0,00). (2.9)
Multiplying (1.1) by 2e?¥u, we have
2e*¥ (ug + uy )u
2 (4 2 2 : d 2
=€ | Su + 2u® — 2div(uVw) + a]Vw| (2.10)

29

= % (e*(u? + |[Vw|?)) — 2div(e*uVw) + 2 Qz, 1) (2.11)

(—r)
where
Q(z, 1) = (Y2 — vo)u? — 29uVy - Va + 97 |Vw|?, by (2.1)
= w2 V|? = 2uVy - Vo + 47 |Vl
= [uVy — ¢ Vw* (>0).
When z # 0, we see ¥; < 0 (by (2.1)) and hence Q/(—%;) > 0. When z =0,

we see 1; = 0 and |V4| = 0 and hence Q/(—;) = u® > 0. Moreover, we see
from (1.5) that supp Q(-,t) C B(t+ K) for t > 0.
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Integrating (2.11) over R, we have
d )
o (HewuH2 + ||e“Vw]|2) < Z/RN e?? (ug + up)udz
If up + u; = 0, then we observe
le¥ull® < [le”COu|® (= 17) (212)

for t > 0. By (2.3), it is easy to see that I7 < eX|jugl|?.
On the other hand, we observe from (1.5) that for ¢ > 0,

el = [ luPda, by (23)
|lzj<t+ K

1 zp?
2/ e? K |u)? dx
Je|<t+ K

>

L=l o
e? 7K |y|* dx

/IHCIZ(H*K)”:’ log(1-+¢)™

> (1+ t)m/ lul? dz . (2.13)
|2[>(t+K)1/2 log(1-+1)™

Therefore, we obtain from (2.12) and (2.13) that

/ lul?de < IZ(1+t)~™
J2] > (¢4K)1/2 log(14t)

for ¢ > 0, which implies the desired estimate (2.8). O
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