Energy Decay for a Dissipative Wave Equation with Compactly Supported Data

By

Kosuke Ono

Department of Mathematical Sciences
The University of Tokushima
Tokushima 770-8502, JAPAN
e-mail: ono@ias.tokushima-u.ac.jp
(Received September 30, 2011)

Abstract

Consider the Cauchy problem for the dissipative wave equation: $u_{tt} - \Delta u + u = 0, \ u = u(x,t) \text{ in } \mathbb{R}^N \times (0,\infty) \text{ with } u(x,0) = u_0(x) \text{ and } u_t(x,0) = u_1(x). \text{ If } \{u_0,u_1\} \text{ are compactly supported data from the energy space, then there exists a domain } X_m \text{ in } \mathbb{R}^N \text{ such that } \{x \in \mathbb{R}^N \ \big| \ |x| \geq t^{1/2+\delta}\} \subsetneq X_m \text{ for large } t \geq 0 \text{ and } \int_{X_m} (|u_t|^2 + |\nabla u|^2) \, dx \leq C(1+t)^{-m} \text{ with } m>0 \text{ for } t \geq 0, \text{ and moreover, if } u_0+u_1=0, \text{ then } \int_{X_m} |u|^2 \, dx \leq C(1+t)^{-m} \text{ for } t \geq 0.$

2000 Mathematics Subject Classification. 35B40, 35L15

1 Introduction

We are concerned with the Cauchy problem for the dissipative wave equation :

$$u_{tt} - \Delta u + u_t = 0$$
, $u = u(x, t)$ in $\mathbb{R}^N \times (0, \infty)$ (1.1)

with the initial data

$$u(x,0) = u_0(x)$$
 and $u_t(x,0) = u_1(x)$, (1.2)

where $\Delta = \nabla \cdot \nabla = \sum_{j=1}^{N} \partial^2 / \partial x_j^2$ is the Laplacian in \mathbb{R}^N .

We assume that $\{u_0, u_1\}$ are compactly supported data from the energy space :

$$u_0 \in H^1(\mathbb{R}^N), \quad u_1 \in L^2(\mathbb{R}^N)$$
 (1.3)

and

$$\operatorname{supp} u_0 \cup \operatorname{supp} u_1 \subset B(K) \tag{1.4}$$

with K > 0, where B(K) is an open ball with center 0 and radius K:

$$B(K) \equiv \{ x \in \mathbb{R}^N \mid |x| < K \}.$$

Then, it is well known that the problem (1.1)–(1.2) with (1.3)–(1.4) admits a unique global solution u(t) on $[0, \infty)$ such that

$$u(t) \in C([0,\infty); H^1(\mathbb{R}^N)) \cap C^1([0,\infty); L^2(\mathbb{R}^N))$$

(see [2], [5]) and

$$\operatorname{supp} u(t) \subset B(t+K) \quad \text{for} \quad t \ge 0. \tag{1.5}$$

By the standard energy method, we obtain the following energy estimate:

$$E(t) \le CE(0)(1+t)^{-1}$$
 for $t \ge 0$

where

$$E(t) \equiv \|u_t(t)\|^2 + \|\nabla u(t)\|^2 = \int_{\mathbb{R}^N} \left(|u_t(x,t)|^2 + |\nabla u(x,t)|^2 \right) dx$$

and $E(0) = ||u_1||^2 + ||\nabla u_0||^2$, and $||\cdot||$ is the norm of $L^2(\mathbb{R}^N)$ (see [1], [3], [4]). On the other hand, Todorova and Yordanov [6] have been obtained the following decay estimate:

$$\int_{B(t^{1/2+\delta})^c} \left(|u_t|^2 + |\nabla u|^2 \right) dx \le CE(0) \exp(-t^{2\delta}/2)$$
 (1.6)

with $\delta > 0$, under the assumptions (1.3) and (1.4). Here, $B(K)^c$ is the complement of B(K), that is,

$$B(K)^c \equiv \mathbb{R}^N \setminus B(K) = \{x \in \mathbb{R}^N \mid |x| \ge K\}.$$

We are interested in the decay estimate for larger domains than $B(t^{1/2+\delta})^c$. When m > 0 and $\delta > 0$, it is easy to see that for large t > 0,

$$(t+K)^{1/2}\log(1+t)^m < t^{1/2+\delta}$$

and hence

$$B(t^{1/2+\delta})^c \subseteq B((t+K)^{1/2}\log(1+t)^m)^c$$
.

The purpose of this paper is to derive the decay estimate for large domain of integral $B((t+K)^{1/2}\log(1+t)^m)^c$ than $B(t^{1/2+\delta})^c$ in (1.6).

Our main result is as follows.

Theorem 1.1 Let m > 0. Suppose that the initial data $\{u_0, u_1\}$ satisfy the conditions (1.3) and (1.4). Then the solution u of (1.1)–(1.2) satisfies

$$\int_{B((t+K)^{1/2}\log(1+t)^m)^c} (|u_t|^2 + |\nabla u|^2) \, dx \le e^K E(0)(1+t)^{-m} \tag{1.7}$$

for $t \geq 0$. Moreover, if $u_0 + u_1 = 0$, then

$$\int_{B((t+K)^{1/2}\log(1+t)^m)^c} |u|^2 dx \le e^K ||u_0||^2 (1+t)^{-m}$$
(1.8)

for $t \geq 0$.

Theorem 1.1 follows from Theorem 2.2 and Theorem 2.3 in next section.

2 Decay Estimates

The function $\psi(x,t) \equiv \frac{1}{2} \left(t + K - \sqrt{(t+K)^2 - |x|^2}\right)$ given by [6] plays an important role through this paper. It is easy to see that

$$\psi = \frac{1}{2} \frac{|x|^2}{t + K + \sqrt{(t + K)^2 - |x|^2}},$$

$$\psi_t = \frac{1}{2} \left(1 - \frac{t + K}{\sqrt{(t + K)^2 - |x|^2}} \right) = -\frac{\psi}{\sqrt{(t + K)^2 - |x|^2}},$$

$$\psi_t^2 = \frac{1}{4} \left(1 + \frac{(t + K)^2}{(t + K)^2 - |x|^2} - 2 \frac{t + K}{\sqrt{(t + K)^2 - |x|^2}} \right),$$

$$|\nabla \psi|^2 = \frac{1}{4} \frac{|x|^2}{(t + K)^2 - |x|^2},$$
(2.1)

and then we obtain the following.

Lemma 2.1 The function $\psi(x,t) \equiv \frac{1}{2} \left(t + K - \sqrt{(t+K)^2 - |x|^2} \right)$ for |x| < t + K satisfies

$$\psi(x,t) \ge 0$$
, $\psi_t(x,t) = \psi_t(x,t)^2 - |\nabla \psi(x,t)|^2$ (2.2)

and

$$\frac{1}{4} \frac{|x|^2}{t+K} \le \psi(x,t) \le \frac{1}{2} (t+K). \tag{2.3}$$

The following decay estimate means (1.7).

Theorem 2.2 Let m > 0. Suppose that the initial data $\{u_0, u_1\}$ satisfy the conditions (1.3) and (1.4). Then the solution u of (1.1)–(1.2) satisfies

$$\int_{|x|>(t+K)^{1/2}\log(1+t)^m} \left(|u_t|^2 + |\nabla u|^2\right) dx \le I_1^2 (1+t)^{-m} \tag{2.4}$$

for t > 0, where

$$I_1^2 \equiv \int_{\mathbb{R}^N} e^{2\psi(x.0)} \left(|u_1(x)|^2 + |\nabla u_0(x)|^2 \right) dx \le e^K E(0) \,.$$

Proof. Multiplying (1.1) by $2e^{2\psi}u_t$, we have

$$0 = e^{2\psi} \left(\frac{d}{dt} (u_t^2 + |\nabla u|^2) - 2\operatorname{div}(u_t \nabla u) + 2u_t^2 \right)$$

$$= \frac{d}{dt} \left(e^{2\psi} (u_t^2 + |\nabla u|^2) \right) - 2\operatorname{div}(e^{2\psi} u_t \nabla u) + \frac{2e^{2\psi}}{(-\psi_t)} P(x, t)$$
 (2.5)

where

$$P(x,t) \equiv (\psi_t^2 - \psi_t)u_t^2 - 2\psi_t u_t \nabla \psi \cdot \nabla u + \psi_t^2 |\nabla u|^2, \quad \text{by (2.1)}$$
$$= u_t^2 |\nabla \psi|^2 - 2\psi_t u_t \nabla \psi \cdot \nabla u + \psi_t^2 |\nabla u|^2$$
$$= |u_t \nabla \psi - \psi_t \nabla u|^2 \quad (\geq 0).$$

When $x \neq 0$, we see $\psi_t < 0$ (by (2.1)) and hence $P/(-\psi_t) \geq 0$. When x = 0, we see $\psi_t = 0$ and $|\nabla \psi| = 0$ and hence $P/(-\psi_t) = u_t^2 \geq 0$. Moreover, we see from (1.5) that supp $P(\cdot, t) \subset B(t+K)$ for $t \geq 0$.

Integrating (2.5) over \mathbb{R}^N , we have

$$\frac{d}{dt} \left(\|e^{\psi} u_t\|^2 + \|e^{\psi} \nabla u\|^2 \right) \le 0$$

and hence

$$||e^{\psi}u_t||^2 + ||e^{\psi}\nabla u||^2 \le ||e^{\psi(\cdot,0)}u_1||^2 + ||e^{\psi(\cdot,0)}\nabla u_0||^2 \quad (\equiv I_1^2)$$
 (2.6)

for $t \ge 0$. By (2.3), it is easy to see that $I_1^2 \le e^K E(0)$.

On the other hand, we observe from (1.5) that for t > 0,

$$||e^{\psi}u_{t}||^{2} + ||e^{\psi}\nabla u||^{2} = \int_{|x|

$$\geq \int_{|x|

$$\geq \int_{|x|\geq(t+K)^{1/2}\log(1+t)^{m}} e^{\frac{1}{2}\frac{|x|^{2}}{t+K}}(|u_{t}|^{2} + |\nabla u|^{2}) dx$$

$$\geq (1+t)^{m} \int_{|x|\geq(t+K)^{1/2}\log(1+t)^{m}} (|u_{t}|^{2} + |\nabla u|^{2}) dx. \tag{2.7}$$$$$$

(2.11)

Therefore, we obtain from (2.6) and (2.7) that

$$\int_{|x| \ge (t+K)^{1/2} \log(1+t)^m} \left(|u_t|^2 + |\nabla u|^2 \right) dx \le I_1^2 (1+t)^{-m}$$

for $t \geq 0$, which implies the desired estimate (2.4). \Box

The following decay estimate means (1.8).

Theorem 2.3 Let m > 0. Suppose that the initial data $\{u_0, u_1\}$ satisfy the conditions (1.3) and (1.4). Then the solution u of (1.1)-(1.2) satisfies

$$\int_{|x|>(t+K)^{1/2}\log(1+t)^m} |u|^2 dx \le I_0^2 (1+t)^{-m}$$
(2.8)

for $t \geq 0$, where

$$I_0^2 \equiv \int_{\mathbb{R}^N} e^{2\psi(x,0)} u_0(x)^2 dx \le e^K \|u_0\|^2 \,.$$

Proof. Putting

$$w(x,t) = \int_0^t u(x,s) \, ds$$

for the solution u = u(x,t) of (1.1)–(1.2), we observe that $w_t = u$, w(x,0) = 0and

$$u_t + u - \Delta w = u_0 + u_1$$
 in $\mathbb{R}^N \times (0, \infty)$. (2.9)

Multiplying (1.1) by $2e^{2\psi}u$, we have

$$2e^{2\psi}(u_0 + u_1)u$$

$$= e^{2\psi} \left(\frac{d}{dt} u^2 + 2u^2 - 2\operatorname{div}(u\nabla w) + \frac{d}{dt} |\nabla w|^2 \right)$$

$$= \frac{d}{dt} \left(e^{2\psi} (u^2 + |\nabla w|^2) \right) - 2\operatorname{div}(e^{2\psi} u\nabla w) + \frac{2e^{2\psi}}{(-\psi_t)} Q(x, t)$$
(2.10)

where

$$Q(x,t) \equiv (\psi_t^2 - \psi_t)u^2 - 2\psi_t u \nabla \psi \cdot \nabla w + \psi_t^2 |\nabla w|^2, \quad \text{by (2.1)}$$

$$= u^2 |\nabla \psi|^2 - 2\psi_t u \nabla \psi \cdot \nabla w + \psi_t^2 |\nabla w|^2$$

$$= |u \nabla \psi - \psi_t \nabla w|^2 \quad (\geq 0).$$

When $x \neq 0$, we see $\psi_t < 0$ (by (2.1)) and hence $Q/(-\psi_t) \geq 0$. When x = 0, we see $\psi_t = 0$ and $|\nabla \psi| = 0$ and hence $Q/(-\psi_t) = u^2 \ge 0$. Moreover, we see from (1.5) that supp $Q(\cdot, t) \subset B(t + K)$ for $t \ge 0$.

Integrating (2.11) over \mathbb{R}^N , we have

$$\frac{d}{dt} \left(\|e^{\psi}u\|^2 + \|e^{\psi}\nabla w\|^2 \right) \le 2 \int_{\mathbb{R}^N} e^{2\psi} (u_0 + u_1) u \, dx$$

If $u_0 + u_1 = 0$, then we observe

$$||e^{\psi}u||^2 \le ||e^{\psi(\cdot,0)}u_0||^2 \quad (\equiv I_0^2)$$
 (2.12)

for $t \ge 0$. By (2.3), it is easy to see that $I_0^2 \le e^K ||u_0||^2$. On the other hand, we observe from (1.5) that for t > 0,

$$||e^{\psi}u||^{2} = \int_{|x|

$$\geq \int_{|x|

$$\geq \int_{|x|\geq(t+K)^{1/2}\log(1+t)^{m}} e^{\frac{1}{2}\frac{|x|^{2}}{t+K}}|u|^{2} dx$$

$$\geq (1+t)^{m} \int_{|x|>(t+K)^{1/2}\log(1+t)^{m}} |u|^{2} dx. \tag{2.13}$$$$$$

Therefore, we obtain from (2.12) and (2.13) that

$$\int_{|x| \ge (t+K)^{1/2} \log(1+t)^m} |u|^2 dx \le I_0^2 (1+t)^{-m}$$

for $t \geq 0$, which implies the desired estimate (2.8). \Box

Acknowledgment. This work was in part supported by Grant-in-Aid for Science Research (C) of JSPS (Japan Society for the Promotion of Science).

References

- [1] A. Haraux, Nonlinear evolution equations global behavior of solutions. Lecture Notes in Mathematics, 841. Springer-Verlag, Berlin-New York, 1981.
- [2] F. John, Nonlinear wave equations, formation of singularities. Seventh Annual Pitcher Lectures delivered at Lehigh University, Bethlehem, Pennsylvania, 1989.
- [3] V. Komornik, Exact controllability and stabilization. The multiplier method. RAM: Research in Applied Mathematics. Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994.

- [4] M. Nakao, Decay of solutions of some nonlinear evolution equations. J. Math. Anal. Appl. 60 (1977), 542–549.
- [5] W.A. Strauss, Nonlinear wave equations. CBMS Regional Conference Series in Mathematics, 73. American Mathematical Society, 1989.
- [6] G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping. J. Differential Equations 174 (2001), 464–489.