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Abstract

In our previous papers, we have generalized Goggins’s formula
given in [1] into two different directions [2] and [3]. In this paper,
we shall give a more generalized formula which combine the results
in [2] and those in [3]. Our formula (6) involves our previous results
(4), (5) and also Goggins’s formula (1) as its special cases. Further-
more we shall give another formula (8) which is a generalization of
a formula obtained in [2] too.
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Introduction
In [1], J. G. Goggins has shown the following formula

=3 tan ™ (1/Fonr), (1)

4 3
n=1
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where F,, is the nth Fibonacci number. Since F; = 1 and 7/4 = tan='(1/F),
(1) is equivalent to the following formula

— = Ztan_l(l/an_H). (2)

n=0

From the fact F_op_1 = Fory1, (2) is also equivalent to the following formula

Z tan"(1/Fopi1). (3)

n=—oQ

In our previous paper [2], we have generalized this formula (3) to the following
formula which holds for any integer k,

Z tan— ng/F2n+1> (4)

n=m-—0oC

In our previous paper [3], we gave the following formula which is another gen-
eralization of (2) for Lucas sequences

— = Ztan t/u2n+1) (5)

where u,, is the Lucas sequences associated to the parameter (¢, —1). Namely
t is a positive integer with initial terms ug = 0,u; = 1 satisfying the binary
recurrence sequence u, = {Up_1 + Up—2 for any n € Z.

In this paper, we shall combine the formulas (4) and (5). Actually we shall
prove the following formula which holds for any integer k,

Z tan™! (uog /uonL1). (6)

n=-—oo

In our paper [3], we have also proved the following formula,

Z tan ™" (t/vay). (7

n=-—00

Let k be any odd integer. In the last section, we shall generalize this formula
(7) to the following formula

Z tan™! (vg /van). (8)

n=—oo

Here we note that one can verify (7) is the special case t = vy, i.e., k = 1 of
this formula (8).
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1 Formulas for Lucas sequences

Let t be a positive integer and {G, } be a binary recurrence sequence which
satisfies

Gn+2 =tGpi1 + Gy

Using the induction on m, one can easily show the following addition theorem
of G¢. Though one can see the proofs of this addition formula in [2] or [4], we
will give a following simple proof for the sake of completeness of this paper.

Addition Theorem.

Gmie = umGer1+um—1Gy, for any integer m.

Proof. Since ug =0, u_; = u; = 1, one can easily see that this formula is true
for the cases m = 0 and m = 1. Assume the formula is true for the cases m
and m — 1. Then we have

Gmt14t = tGmyr + Gm-14¢

= t(umGer1 + Um—-1Ge) + (Um—-1Goq1 + Um—2Gr)

= (tum + Umn—1)Gop1 + (tum—1 + Um—2)Ge. = Umy1Geq1 + U Gy
Thus we have verified that the formula is true for the case m + 1.
Conversely, we know

Gm—2+€ = Gm-HZ - tGm——H—Z

= (umGes1 + Um—1Ge) — t(um—1Gry1 + Um—2Ge)

= (Um — tUum—1)Ges1 + (Um—1 — tm—2)Gr. = Um—2Grr1 + Um—3Ge.
Thus we have verified that the formula is also true for the case m — 2, which
completes the proof of the addition theorem.

Substituting Gy+1 — Ge—1 for tGy, we have
tGrmit = tum Gyt +um—1(Geg1 — Go-1) = (btm +Um—1)Ger1—Um-1Ge-1
= Um+1Grp1 — Um—1Gr-1.

Thus we have obtained a modified version of this addition theorem.

Corollary 1. tGuis = Um+t1Go41—Um—1Gy—1, for any integer m.

Let us consider the special case when G = u and £ is even and m is odd in
Corollary 1. Put £ = 2n and m = 2k — 1. Then we can write tugniok—1 =
UgkUant1 — Ugk—2U2n—1. Lhus we have shown:

Corollary 2. tuopyop—1+tUsg_2Usn—1 = UgpU2n41-

Let us consider the special case when G = u, £ =2nand m = —2n — 2k + 2 in
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Corollary 1. Then we can show

U242 = U—2n—2k+3U2n+1 — U—2n—2k+1U2n—1,
which is equivalent to

—lUugp—2 = Uzn42k—3U2n+1 — U2n+2k—1U2n—1-
Thus we have shown the following corollary.

Corollary 3.  uzniok—1U2n—1 — tUok—2 = Uop42k—3U2n+1-
Using these corollaries, we can show the following proposition.
Proposition 1.
tan™! (——quﬁQ ) +tan™? < t ) = tan~! <-—————~—u2k ) .
U2n+2k—1 U2n~1 U2n+2k—3

Proof. From Corollaries 2 and 3, we have

Ut t
2k—2 +

Ugn42k—1  Ugn—1 _ Ugk—2Usn—1 +lUoniok—1 UgkpUanti
1— tuak—2 U2n+2k~1U2n—1 ~ PUok—2  Uzn42k—3U2n+1
U2n42k—1U2n~1
o uy
- 3
U2n+2k—3

which completes the proof.

This proposition and the fact lirin tan™! (g, /unsy) = 0 for any fixed m
NnN—xIroc

imply that
o0 > o0
U2k — t U2k
Z tan“1< 2k 2) + Z tan_l( ) = Z tan_1< 2k )
n——o00 U2n+1 e — o U2n—1 R U2n+1

Put A(k) = Z tan ™! < 2k ) Then the above relation can be rewritten

o U2n—1

as
Ak — 1) + AQ1) = A(k).

Here we note that uy = ¢ by definition and A(1) = 7 from the formula (5).
Therefore, using the induction on k, we can obtain the first formula (6) as
follows.

Theorem 1. With the above notations, we have

o0
E tan™? (uar /usni1) = k,

n=-—00
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or equivalently

oo

k
Z tan™ ! (ugn/uon+1) = ;, for any fized integer k.
n=0

Remark 1. From the facts u_o, = —us, and tan™'(—z) = —tan~'(z), we
can see

oo
z tan™ ! (uax/u2sn) = 0, where n runs all the integers except 0.

n=—oo

Combining this fact and the above theorem, we have a modified version of the
above formula

o
Z tan™ ! (ugy /u,) = km, where n runs all integers # 0.

n=—0oo

2 A formula for companion Lucas sequences

In the following, we shall restrict ourselves to the special case when k is
an odd positive integer at first. Put B2n(k) = tan™'(vg/van) and fop—1 =
tan~!(2/va,_1) for any index n. Then we can show the following proposition.

Proposition 2. For any integer n > 1,
282, (k) = Ban—1 — Pant1, for the case 2n > k + 1,
and
2Bon (k) = T + Bon—1 — Bont1, for the case 2 < 2n <k — 1.

Proof. We have
2/Van—k — 2/Von+k _ 2(Vanik — Von—k)

ta k= = = .
B(Ban—r = o) 144/ (von—kVantk)  VzntkV2n—k +4

By virtue of Binet’s formula, we have

Vontk — Von—k = (€2n+k + &:Zn-l-k) _ (EZn—-—k + §2n—k) — (5271 + 5271)(619 +6—k)
= VgV2n,

where we used the elementary fact e¥&% = (—1)* = —1.
We also have
Vont kV2n—k + 4 = (27K 4 g2nth)(g2n—k 4 g2n=k) 4 4
— (8471 + £—4n) _ (&.Qk + é:Zk) 4+ 4 = (6471 4 5—471 + 2) _ (EQk + 52]@ _ 2)
= (e 4+ &%) — (eF +&F)? = 03, — v}
On the other hand, we }/1ave )
Vg /Van + Vi /V2n 2ugv2q
tan(2ﬁ2n(k)) 1 — ('Uk/v2n)2 U2n2 _ U}QC '

Thus we have shown tan(Ban - — Ban+k) = tan(202,(k)).
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Hence we have 2035, (k) = Bon_r — Bon+r + mm for some integer m.
Since 0 < Ba,(k) < 7/2 and |B2n—1| < 7/2 for any n, we have more precisely

2000 (k) = Bon—r — Bon+k, for the case 2n > k + 1,
and
2Ban (k) = 7 + Bon—x — Bonyr, for the case 2< 2n <k —1,

which completes the proof of the proposition.

Then, from the facts v_3, = v9, and v_s, 1 = —v9,,11, we have

Z tan™! (vg fv2,) = tan™ 1 (vg fvo) + Z 2tan™! (vy, /vay,)

n=—00 n=1

= tan" (v /2) + Z 282, (k)

n=1

= tan™ (v /2) + (k — 1)7m/2 + Z(ﬂzn—k — Bon+k)
n=1
=tan~!(v,/2) + (k — 1)7/2
HF(Be(hm2) F B(h—y + -+ B-1 + B4+ Br—a + Br—2) + B
H(Brt2 — Brr2) + (Brtra — Brga) + -+ + (Brran — Brton) + -+
=tan"(vg/2) + (k — V)7/2 + By
=tan" (v /2) + (k — 1)7/2 + tan=(2/vp) = km /2.
Thus we have shown the formula (8) for the case when k is an odd positive
integer.

Now we shall verify the case when k is an odd negative integer. We note that
v_x = —vg for any odd integer k. Hence, for any odd negative integer k, we
can also verify the formula (8) reduing the positive case —k as follows.

i tan™! (vg /vop) = i tan ™" (—v_x/v2n)

n=-—o0 n=-—0o0
[e 0]
_ —km km
(5 ) () -t
n=—oo
Theorem 2. With the above notations, we have
= k
Z tan™!(vy, /vop) = -?;, for any odd integer k.

n=—oo

Remark 2. From the fact v_s,_1 = —v9,41(3#% 0), we have the following
formula
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o0
Z tan™! (vg /van+1) = 0.

n=—co

Combining the above theorem and this result, we can give another modified
version of the formula (8) as follows

Z tan™ ! (vg fvp) = ]_6227 for any odd integer k. (9)

n=—0co
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