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Abstract

Games of Nimstring are deeply related to games of Dots and
Boxes. To understand Dots and Boxes, it is important to analyze
games of Nimstring. But only a few study on them has been done.
We get the Nimstring values for some 2 X n rectangular arrays in
this paper.
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Introduction

A dual form of Dots-and-Boxes is Strings-and-Coins, with strings, coins
and scissors. The ends of each piece of string are glued to two different coins
or to a coin and the ground. Each string has at most one end glued to the
ground, and each player in turn cuts a new string. If your cut completely
detaches a coin, you pocket it and must then cut another string if there are
still uncut strings. The game ends when all coins are detached, and the player
who pockets the greater number is the winner. The coins and strings form the
nodes and edges of a graph. The game of Nimstring is played on the same
kind of graphs as Strings-and-Coins, and you make exactly the same move by
cutting a string, which is a complimenting move whenever you detach a coin.
Nimstring is played according to the normal play rule, that is, you lose when
you detach the last coin, for then rules require you to make a further move
when it is impossible to do so. Nimstring games are impartial. Hence their
values must be nimbers. But, we need to notice the following. Let G be any




48 Toru Ishihara

Nimstring game with no capturable coins. Then its value |G| ie determined by
the mex(minimal excluded)rule, that is, it is the least number 0 or 1 or 2 or
-+ - that is not among the numbers of the values of the graphs left after cutting
single strings. The value of a graph with a caputurable coin of one of the next
two types is the loony value " L”.

Figure 1

When adding the loony value, we have
”L” + *m = ”L” + 77L77 —_ 77L7)'
The value of a graph with capturable coins of other types is equal to that of
the subgraph obtained by removing the capturable coins and strings.

1 Rectangular arrays

In the present paper, the Nimstring values of 2 X n rectangular arrays of
the following two types are mainly studied. We use little arrows that run to
the ground.

BENNES RN SENES

Next, we give some simple examples of rectangular arrays.
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Figure 3

(a) () (©) (d)

In this paper, A rectangular like (a) or (b) in Figure 3 is called a boz. We
define the size of the box (a) as 1 and that of (b) as 3. The numbers of boxes
of rectangular arrays (a), (b),(c) and (d) are 1,1, 3 and 2 respectively. The
Nimstring values of a 2 x n rectangular arrays mainly depends on the number
of boxes contained in it. An ungrounded 2 x (m + 1) rectangular array with m
boxes is described as R,, and an grounded one with an arrow a is described as
Ra. Hence, (a) and (b) are R; , (c) is Rs and (d) is Rea. The main purpose
of the present paper is to obtain the Nimstring values of R,, and Rpa for
any positive integer m. In general, we obtain the Nimstring value of a graph
by removing its edge and using the mez rule. If we remove an edge of e of a
graph and get a subgraph, we describe the value of the subgraph as le| simply.
We should not remove a horizontal edge( simply, h-edge ) of a box whose size
is greater than 3, because if we do so, we get a loony position. By the same
reason, we should not remove any edges at the ends. A vertical edge is written
as a v-edge simply. A edge which is not at the end is said to be inner. Take a
a rectangular R,,. Let D be one of its boxes with size k(1 <k <3). Assume
D is not at the end. Remove a proper h-edge of D, we obtain the following.

Figure 4

e e liemme
e & 0 0 o o0
Ry, c R,

Let the left part of the above graph be R,,,, and the right part of that be Ry, .
The part ¢ connecting Ry, and R, is said to be its connection of Rn, and
R, . We define the size of ¢ to be the number of edges in c. We represent
above graph as Ry, cRp,,.

Proposition 1. The Nimstring value of Ry, is 0 (resp. ) if m is odd
(resp. even).
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Proof. By removing an inner h-edge, we get a subgraph H = R, cR,,,
where n; +ng =m — 1.

Assume m is odd. If we remove any inner v-edge, we get R,,_1 whose value
is * by induction. The value |c| in H, actually, the value of a proper edge of ¢ is
0, for if n; and no are odd (resp. even), we have 0+0 = 0 (resp. *+x = 0), by
induction. Hence the value |H| is not 0. Now R,, has some edges with value *
and the values of its all edges are not 0. Hence the value of R, is 0.

Next, assume m is even. If we remove an inner v-edge, we get R,,_1 whose
value is 0. As the value || in H is *, the value |H| is not *. Hence, R,, has
some edges with value 0 and the values of its all edges are not . Thus, the
value of R, is *.

Proposition 2. Let G be a graph Ry,,cRm,. Let the rightmost boz of Ry, be
A with size a and the leftmost boz of R, be B with size b. Let the size of ¢ be
k(1 <k<3).

(1) In the following cases, the value |G| is 0 (resp. x) if m1 + mg is odd
(resp. even).

(mi =mg =1),(m1 =b=k%k = 1),(
yme=1l,a>24),(a=b=k=1),(a >
1),(a > 4,b>4).

(2) In the other case, the value |G| is %2 (resp. *3), if my+maq is odd (resp.
even,).

my =1b24),(m2=
4,

, a==%k
b=1Fk=1),(a =1,b> 4k

Proof. By removing an inner h-edge of R,,,, we get a subgraph G; =
R, dR,,cRn, , where ny +ns = my and d is a connection of R,, and R,,. As-
sume we remove & proper inner h-edge and get a subgraph G = R, cRy eRy,,
where ¢; + {3 = my — 1 and e is a connection of Ry, and Ry,.

(1) Assume that m; + mg is odd. We may assume m; is odd and mg is
even. The value |c| is *. In the other cases than the case (a > 4,b > 4), we
can remove some edges of A and B, and the values of the edges are * or *3.
The values of the inner v-edges are also * or *3. The value |d| in G; is 0, for
if n1 and ng are odd (resp. even), the value of R,,cR,, and that of R, are
0 (resp. ). Hence the value |G;] is not 0. The value |e| in Gy is 0, for if 41 is
odd (resp. even) and ¢ is even (resp. odd), the both values of R,,,cRs, ant
Ry, are x (resp. 0). Hence, the value |G| is not 0. In G, the values of all edges
are not 0. Thus, when m; + mq is odd, the value |G| is 0.

Assume both m; and my have the same parity. Then the value |c| is 0.
The values of inner v-edges are 0 or *2. In the other cases than the case
(a > 4,b > 4), we can remove some edges of A and B and their values are 0
or *2. In this case, we show the value |d| is x. Firstly, let m; and msy be odd.
The value |R,,cRpm, | is * (resp. 0) and |R,,| is O (resp. ), if n; and ng are
odd (resp.if n; and ny are even). Next, let m; and mg be even. The value
|Rn,CRm,| is * (resp. 0) and |R,,| is O (resp. *), if ny is odd and ny is even
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(resp. if ny is even and ny is odd). Hence, the value |G| is not . Thus, since
G has some edges with value 0 and the values of its all edges are not *, the
value |G] is *.

(2) Assume m; is odd and my is even. The value |c| is *. Suppose we remove
a proper edge of A (resp. B) and get a subgraph Gs = Ry, —1¢ R, (resp.
G4 = R, ¢’ Rim,—1). If the size of ¢ (resp. ¢”) is less than 4, the value |G|
(resp. |G4|) is x or *3. But, we always have G3 (resp. G4) in which the size
of ¢’ (resp. ¢”) is greater than 3. In this case, the values of G3| and G4 are 0.
The value of any inner edges of Ry, or Ry, are *3. We show the value |d| in
G, is *2. If both n; and ny are odd (resp. even), the value |Rn,cRpm,| is *2
(resp. *3) and |Rp,,| is O (resp. *). The value |G| is not *2. We show the
value |e| in Go is *2. If £; is odd (resp. even) and 45 is even (resp. odd), the
value |Rp,, cRy, | is *3 (resp. *2) and |Ry,| is * (resp. 0). Hence, the value |G2|
is not *2. In G, there are edges with value 0 and edges with value *, and the
values of all its edges are not *2. Thus, the value |G| is *2.

Assume m; and my have the same parity. Then, the value |c| is 0. There
exist a proper edge of A or B whose value is x. The values of edges of A and
B are 0, * or 2. The values of inner v-edges of R, or R, are *2. We show
the value of |d| in G is *3 in this case. Firstly, Let m; and mg be odd. If n;
and ny are odd (resp. even), the value |Rp,cRpy,| is *3 (resp. *2) [Rp, | is 0
(resp. *). Next, let m; and mq be even. If ny is odd (resp. even) and ng is
even (resp. odd), the value |Rp,cRm,| is *3 (resp. *2) and |Rp,, | is O (resp. *).
Hence, the value |G| is not =3 in this case. In G, there are edges with value
0, ones with value % and ones with value %2, and the values of all its edges are
not 3. Thus, the value |G| is *3.

2 Arrays with one arrow

We study the value of an array with one arrow Rpa. It has m boxes and
one arrow denoted by a. Denote the rightmost box by A. Let the size of a be
the number z of edges and a unit arrow. Let the size of A be y and that of the
box next to A(if m > 2) be z.

Proposition 3. Put G = Ra.

(1) Ifx=1y=1o0rz=1,23,y >4, the value |[Rma| is x (resp. 0) when
m is odd (resp. even).

(2) Ifr=1,2,3 andy = 2,3 or z = 2,3 and y = 1, the value |[Rna| is *3
(resp. *2), when m is odd (resp. even).

Proof. By removing a proper inner h-edge, we get a subgraph H = Ry, cRn,a
where n; +ng = m — 1 and ¢ is a connection of R,, and R, a.

(1) Let m be odd. The value |a|(correctly, the value of a proper edge of
a) is 0, by Proposition 1. If £ = 1 and y = 1, the value of a edge of A is
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*2 by induction. The value of the rightmost inner v-edge is %2 (resp. 0) if
z=y=1,2=12(tesp. =y =1,2>30rz=1,23,y > 4). The value
of any other inner v-edge is 0. We show the value |d| in H is *. If ny and ng
are odd (resp. even), the value |R,,| is 0 (resp. x) and |Ry,al is = (resp. 0).
Hence, the value |H| is not *. Thus G has edges with value 0 and the values
of all its edges are not *. Now we get the value |G| is =.

Let m be even. Then, the value |a| is *. If z = 1 and y = 1, the value of
a edge of A is %3 by induction. The value of the rightmost inner v-edge is *3
(resp. x)ifz=y=1,2=1,2 (resp. =y =1,2>3orz=1,2,3,y > 4).
The values of any other edges are x. We show the value |¢| in H is 0 in this
case. If n; is odd (resp. even) and ng is even (resp. odd), the values |Ry, |
and |R,-2a| are 0 (resp. *). Hence the value |H| is not 0. The value |G| is 0,
because the values of all its edges are not 0,

(2) Let m be odd. Then, the value |a| is 0 and that of a upper h-edge of
A is . The value of a lower h-edge is x2 if z = 1,2,3 and z = 1,y = 2 or
z=2,y=1,0ifz>4dandz =1,y =2o0r z =2,y = 1, and * in the other
cases. The value of the rightmost inner v-edge is %2 if z = 1,2,3,y = 2,2 =1
orz = 2,3,y =1,2=1,2, and 0 in the other cases. The values of the other
inner v-edges are always x2. We show the value |c| in H is %3 in this case. The
value |Rn,| is 0 (resp. *) and |Rp,al is *3 (resp. *2), if ny and ny are odd
(resp. even). Hence, the value |H| is not *3. In G, there are some edges with
value 0, ones with value x and ones with 2. Thus, the value |G| is x3, because
the values of all its edges are not *3.

Let m be even. The value |a| is * and that of a upper h-edge of A is 0. The
value of a lower h-edge of Ais x3ifz=1,2,3andz=1,y=20rz =2,y =1,
xifz>4andz=1,y=2o0rz =2,y =1 and 0 in other cases. The value of
the rightmost inner v-edge is *x3 if x = 1,2,y =2andz=1lorz =2,3,y =1
and z = 1,2, and * in the other cases. We prove the value |c| in H is 2. The
value |Ry,| is O (resp. *) and |Ry,,a| is *2 (resp. %3), if n; is odd (resp. even)
and ng is even (resp. odd). Hence, the value |H| is not #2. In G, there are some
edges with value 0 and ones with value x. Thus, the value |G| is %2, because
the values of all its edges are not *2.
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