On a Classical-Quantum Correspondence for Mechanics in a Gauge Field

By

Ruishi Kuwabara

Department of Mathematical Sciences, The University of Tokushima, Tokushima 770-8502, JAPAN

e-mail: kuwabara@ias.tokushima-u.ac.jp

(Received September 30, 2010)

Abstract

This paper studies the classical and the quantum mechanics in a non-abelian gauge field on the basis of the symplectic geometry and the theory of representation of Lie groups. As a classical-quantum correspondence we present a conjecture on the quasi-mode corresponding to a certain classical energy level.

2010 Mathematics Subject Classification. 58Z05, 53D20, 35P20

Introduction

Let (M,m) be a d dimensional smooth Riemannian manifold without boundary, and let $\pi: P \to M$ be a principal G-bundle, where G is a compact semisimple Lie group with dim G = r. Suppose P is endowed with a connection $\widetilde{\nabla}$. The connection $\widetilde{\nabla}$ is defined by a \mathfrak{g} -valued one form (called the *connection form*) θ on P with certain properties, where \mathfrak{g} is the Lie algebra of G. The \mathfrak{g} -valued two form $\Theta := d\theta + \theta \wedge \theta$ on P is called the *curvature form* of $\widetilde{\nabla}$. (See [4], for example.)

Take an open covering $\{U_{\alpha}\}$ of M with $\{\varphi_{\alpha\beta}\}$ being the transition functions of P. Then the curvature form Θ is regarded as a family of \mathfrak{g} -valued two forms $\bar{\Theta}_{\alpha}$ defined on U_{α} such that

$$\bar{\Theta}_{\beta} = \mathrm{Ad}(\varphi_{\alpha\beta}^{-1})\bar{\Theta}_{\alpha} \tag{0.1}$$

on $U_{\alpha} \cap U_{\beta}(\neq \phi)$, where $\mathrm{Ad}(\cdot)$ denotes the adjoint action of G on \mathfrak{g} . Such a family of \mathfrak{g} -valued two forms $\{\bar{\Theta}_{\alpha}\}$ on M satisfying (0.1) is called a gauge field, while the connection form θ is called a gauge potential. If G is the abelian group U(1), then $\bar{\Theta}_{\alpha} = \bar{\Theta}_{\beta}$ holds, and accordingly we have a two form $\bar{\Theta}$ globally defined on M, which is called a magnetic field.

In this paper we study the classical and the quantum mechanics in the non-abelian gauge field $\{\bar{\Theta}_{\alpha}\}$ on the basis of the symplectic geometry and the

theory of representation of Lie groups. Section 1 is devoted to reviewing a geometrical formulation for the classical mechanics in the gauge field, which is essentially the same as that in the previous paper [6] (see also [7]). In Section 2 we introduce the space of quantum states corresponding to the classical system with an integral "charge". (Related arguments are found in [8], [9].) Finally in Section 3 we present a conjecture on the quasi-mode corresponding to a certain classical energy level. This conjecture is a generalization of the eigenvalue theorem given in [5] for the abelian gauge field (the magnetic field).

1 Classical mechanics in a gauge field

1.1 The Kaluza-Klein metric

Let $(\ ,\)_{\mathfrak g}$ denote the inner product given by $(-1)\times$ (the Killing form) on the compact semisimple Lie algebra ${\mathfrak g}(=T_eG)$, and let m_G be the metric on the Lie group G induced from $(\ ,\)_{\mathfrak g}$. Note that m_G is invariant under left- and right-translations on G.

The connection $\widetilde{\nabla}$ on the principal bundle $\pi: P \to M$ defines the direct decomposition of each tangent space T_pP $(p \in P)$ as

$$T_p P = H_p \oplus V_p, \tag{1.1}$$

where V_p is tangent to the fiber, and H_p is linearly isomorphic with $T_{\pi(p)}M$ through $\pi_*|_{H_p}$. Note that the tangent space V_p to the fiber is linearly isomorphic with $\mathfrak g$ by the correspondence $\mathfrak g\ni A\mapsto A_p^P:=\frac{d}{dt}(p\cdot \exp tA)|_{t=0}\in V_p$. The inner product on $\mathfrak g$ induces the inner product $(\ ,\)_{V,p}$ on $V_p(p\in P)$ as $(A^P,B^P)_{V,p}=(A,B)_{\mathfrak g}\ (A,B\in \mathfrak g)$. On the other hand, we have the inner product $(\ ,\)_{H,p}$ on H_p from the metric m on M such that $\pi_*|_{H_p}$ is an isometry. Finally, we define an inner product $\widetilde m$ in each $T_pP(p\in P)$ by defining H_p and V_p to be orthogonal each other. The metric $\widetilde m$ on P (which is induced from the metric m on M, the metric m_G on G, and the connection $\widetilde \nabla$) is called the Kaluza-Klein metric (cf. [3]). Note that $\widetilde m$ is invariant under the G-action on P.

Let $\Omega_P = d\omega_P$ be the standard symplectic structure on the cotangent bundle T^*P of P, where ω_P is called the canonical one form on T^*P . We have the natural Hamiltonian function \widetilde{H} on T^*P defined by the Kaluza-Klein metric \widetilde{m} , i.e., $\widetilde{H}(q) = ||q||^2$ $(q \in T^*P)$. Thus, we have the Hamiltonian system $(T^*P, \Omega_P, \widetilde{H})$, which is just the system of geodesic flow on T^*P .

1.2 Reduction of the system (cf. [1, Ch.4])

The action $p\mapsto p\cdot g=R_g(p)$ $(p\in P,\ g\in G)$ of G on P is naturally lifted to the action $R_{g^{-1}}^*:=(R_{g^{-1}})^*$ on T^*P (so that $R_{g^{-1}}^*:T_p^*P\to T_{p\cdot g}^*P$ for each $p\in P$), which preserves ω_P (and accordingly Ω_P), i.e., $R_{g^{-1}}^*\omega_P=\omega_P$ holds for every $g\in G$. (We call such action a *symplectic action*.) Moreover, we notice that the Hamiltonian \widetilde{H} is also invariant under the action $R_{g^{-1}}^*$.

A momentum map for the symplectic G-action $R_{g^{-1}}^*$ is a map $J: T^*P \to \mathfrak{g}^*$ (the dual space of \mathfrak{g}) given by

$$\langle J(q), A \rangle = \langle q_p, A_p^P \rangle \quad (q \in T^*P, \ q_p \in T_p^*P \ (p \in P)), \tag{1.2}$$

for all $A \in \mathfrak{g}$. The momentum map J is Ad^* -equivariant, i.e.,

$$J \circ R_{g^{-1}}^* = \mathrm{Ad}^*(g^{-1}) \circ J$$
 (1.3)

holds for $g \in G$, where $\mathrm{Ad}^*(g) := (\mathrm{Ad}(g^{-1}))^*$ (the adjoint of $\mathrm{Ad}(g^{-1})$). Furthermore, J is invariant under the flow of $(T^*P, \Omega_P, \widetilde{H})$.

Note that J is a surjective map with any $\mu \in \mathfrak{g}^*$ to be a regular value, and $J^{-1}(\mu)$ is a submanifold of T^*P . Put $G_{\mu} := \{g \in G; \operatorname{Ad}^*(g)\mu = \mu\}$, which is a closed subgroup of G. Then, $J^{-1}(\mu)$ is G_{μ} -invariant because of (1.3). The quotient manifold $P_{\mu} := J^{-1}(\mu)/G_{\mu}$ is naturally endowed with a symplectic structure Ω_{μ} induced from Ω_P , and endowed with a Hamiltonian function H_{μ} induced from \widetilde{H} . Thus we have a (reduced) Hamiltonian system $\mathcal{H}_{\mu} = (P_{\mu}, \Omega_{\mu}, H_{\mu})$, which we regard as the dynamical system of classical particle of "charge" μ in the gauge field given by the connection $\widetilde{\nabla}$ (the gauge potential). We remark that the reduced phase space P_{μ} is also given as the quotient manifold $J^{-1}(\mathcal{O}_{\mu})/G$ for the coadjoint orbit $\mathcal{O}_{\mu} = \{\operatorname{Ad}^*(g)\mu; g \in G\}$ in \mathfrak{g}^* .

1.3 A formulation by using the connection form

Suppose $G_{\mu} \subsetneq G$. Consider the quotient manifold $M_{\mu} := P/G_{\mu}$, and the natural projection $\pi': M_{\mu} \to M (= P/G)$ gives a bundle structure with the fiber $G/G_{\mu} (\cong \mathcal{O}_{\mu})$. Let $\pi'_{M_{\mu}}: M_{\mu}^{\#} \to M_{\mu}$ be the vector bundle obtained by pulling back the cotangent bundle $T^{*}M$ over M through the map $\pi': M_{\mu} \to M$, i.e.,

$$M^{\#}_{\mu} = \{(y,\xi) \in M_{\mu} \times T^*M; \ \pi'(y) = \pi_M(\xi)\}.$$

We note that $M_{\mu}^{\#}$ is regarded as a subbundle of $T^{*}M_{\mu}$ by the immersion $(y,\xi)\mapsto \pi'^{*}(\xi)\in T_{y}^{*}M_{\mu}$.

Let θ be the connection form (which is a \mathfrak{g} -valued one form on P) of $\widetilde{\nabla}$, and put $\theta_{\mu} = \langle \mu, \theta \rangle$, which is an \mathbb{R} -valued one form on P.

Lemma 1 Let \mathfrak{g}_{μ} be the Lie algebra of G_{μ} . An element A in \mathfrak{g} belongs to \mathfrak{g}_{μ} if and only if $d\theta_{\mu}(A^{P}, X) = 0$ for any vector field X on P.

Proof. We have

$$d\theta_{\mu}(A^{P}, X) = (i(A^{P})d\theta_{\mu})(X) = (\mathcal{L}_{A^{P}}\theta_{\mu})(X) - d(i(A^{P})\theta_{\mu})(X),$$

where $i(A^P)$ and \mathcal{L}_{A^P} denote the interior product and the Lie derivative, respectively. Since $i(A^P)\theta_{\mu} = \theta_{\mu}(A^P) = \langle \mu, A \rangle = \text{constant}$, we have $d\theta_{\mu}(A^P, X) = d\theta_{\mu}(A^P)$

Figure 1: Reduction of the system

 $(\mathcal{L}_{A^P}\theta_\mu)(X).$ Note that $R_g^*\theta=\mathrm{Ad}(g^{-1})\theta$ for $g\in G,$ and we get

$$(\mathcal{L}_{A^P}\theta_{\mu})(X) = \frac{d}{dt} \langle \mu, \operatorname{Ad}(\exp(-tA))(\theta(X)) \rangle \big|_{t=0} = \frac{d}{dt} \langle \operatorname{Ad}^*(\exp tA)\mu, \theta(X) \rangle \big|_{t=0}.$$

This formula implies the assertion of the lemma.

By virtue of this lemma $d\theta_{\mu}$ is regarded as a closed two form on M_{μ} . We introduce a two form

$$\Omega_{\mu}^{\#} := (\tilde{\pi}')^* \Omega_M + (\pi'_{M_{\mu}})^* (d\theta_{\mu})$$

on $M_{\mu}^{\#}$, where $\tilde{\pi}': M_{\mu}^{\#} \to T^{*}M$ is the natural lift of $\pi': M_{\mu} \to M$, and Ω_{M} is the standard symplectic form on $T^{*}M$. The two form $\Omega_{\mu}^{\#}$ is closed and non-degenerate, and accordingly defines a symplectic structure on $M_{\mu}^{\#}$.

Remark The symplectic structure $\Omega_{\mu}^{\#}$ is just the restriction of the twisted symplectic form $\Omega_{M_{\mu}} + (\pi_{M_{\mu}})^*(d\theta_{\mu})$ on T^*M_{μ} to the subbundle $M_{\mu}^{\#}$, where $\pi_{M_{\mu}}: T^*M_{\mu} \to M_{\mu}$ is the natural projection.

Let H be the Hamiltonian function on T^*M defined by the Riemannian metric m on M, and put $H^\#_\mu:=(\tilde\pi')^*H+\|\mu\|^2$, where the norm $\|\mu\|$ is naturally defined by the inner product $m_{\mathfrak g}$ on ${\mathfrak g}$. Thus we obtain the Hamiltonian system $(M^\#_\mu,\Omega^\#_\mu,H^\#_\mu)$ (see Figure 1).

Proposition 2 The Hamiltonian system \mathcal{H}_{μ} is isomorphic with $(M_{\mu}^{\#}, \Omega_{\mu}^{\#}, H_{\mu}^{\#})$, that is, there exists a diffeomorphism $\chi_{\mu} : P_{\mu} \to M_{\mu}^{\#}$ such that

$$\Omega_{\mu} = \chi_{\mu}^* \Omega_{\mu}^{\#}, \qquad H_{\mu} = \chi_{\mu}^* H_{\mu}^{\#}.$$
 (1.4 a, b)

Proof. For each $p \in P$ we put

$$\begin{split} (V^{\perp})_p &:= & \{q \in T_p^*P \mid \langle q, A_p^P \rangle = 0 \text{ for } \forall A \in \mathfrak{g}\} \; (\subset T_p^*P), \\ (V_{\mu}^{\perp})_p &:= & \{q \in T_p^*P \mid \langle q, A_p^P \rangle = 0 \text{ for } \forall A \in \mathfrak{g}_{\mu}\} \; (\subset T_p^*P), \end{split}$$

and define the subbundles $V^{\perp} := \bigcup_{p \in P} (V^{\perp})_p$ and $V^{\perp}_{\mu} := \bigcup_{p \in P} (V^{\perp}_{\mu})_p$ of T^*P , which are invariant under the G_{μ} -action. Moreover we see that

$$M_{\mu}^{\#} \cong V^{\perp}/G_{\mu}, \quad T^{*}M_{\mu} \cong V_{\mu}^{\perp}/G_{\mu}.$$

For each $q \in T_p^*P$ we define the map

$$\bar{\chi}_{\mu}(q) := q - (\theta_{\mu})_p \in T_p^* P.$$

Then, we see that

(i) $\bar{\chi}_{\mu}(q) \in (V^{\perp})_p$ if $q \in J^{-1}(\mu)$, and that

(ii) $\bar{\chi}_{\mu}(R_{q-1}^*(q)) = R_{q-1}^*(\bar{\chi}_{\mu}(q))$ for $q \in J^{-1}(\mu)$ and $g \in G_{\mu}$.

Indeed, (i) is shown as follows: $\langle q_p, A_p^P \rangle - \langle (\theta_\mu)_p, A_p^P \rangle = \langle J(q), A \rangle - \langle \mu, A \rangle = 0$ for $\forall A \in \mathfrak{g}$. The assertion (ii) follows from the formula $(\theta_\mu)_{p \cdot g} = R_{g^{-1}}^*((\theta_\mu)_p)$ $(g \in G_\mu)$, that is derived from the property $R_{g^{-1}}^*\theta = \operatorname{Ad}(g)\theta$ $(g \in G)$ for θ and the definition of G_μ . Noticing (i) and (ii), we can define the diffeomorphism $\chi_\mu: P_\mu \to M_\mu^\#$ from map $\bar{\chi}_\mu: T^*P \to T^*P$.

Now, we will prove (1.4 a). A vector $X \in T_q(T^*P)$ $(q \in T^*P, \pi_P(q) = p)$ is written as

$$X(q) = \bar{X}(q) + X^*(q)$$
 with $\bar{X}(q) \in T_p P$, $X^*(q) \in T_p^* P (= T_q(T_p^* P))$.

Then, $X^*(q) \in (V^{\perp})_p$ if $X \in T_q J^{-1}(\mu)$. Let us take two vector fields X = X(q) and Y = Y(q) on $J^{-1}(\mu)$ defined in a neighborhood of $q_0 \in J^{-1}(\mu)$ such that $\bar{X}(q)$ and $\bar{Y}(q)$ are constant along the each fibers of T^*P . Then we have

$$\begin{split} \Omega_P(X,Y) &= \frac{1}{2} \{ X \langle \omega_P, Y \rangle - Y \langle \omega_P, X \rangle - \langle \omega_P, [X,Y] \rangle \} \\ &= \frac{1}{2} \{ X \langle q, \bar{Y} \rangle - Y \langle q, \bar{X} \rangle - \langle q, \overline{[X,Y]} \rangle \}. \end{split}$$

Put $q'(=\bar{\chi}_{\mu}(q))=q-\theta_{\mu}(\in (V^{\perp})_p)$, and we have

$$\Omega_{P}(X,Y) = \frac{1}{2} \{ X \langle q', \bar{Y} \rangle - Y \langle q', \bar{X} \rangle - \langle q', \overline{[X,Y]} \rangle \}
+ \frac{1}{2} \{ \bar{X} \langle \theta_{\mu}, \bar{Y} \rangle - \bar{Y} \langle \theta_{\mu}, \bar{X} \rangle - \langle \theta_{\mu}, \overline{[X,Y]} \rangle \}.$$

Here we notice that $\bar{X}(p') = \bar{X}(p)$ and $\overline{[X,Y]} = [\bar{X},\bar{Y}]$ hold. Therefore we see that the first term of this formula is regarded as $\Omega_M((\tilde{\pi}' \circ \chi_\mu)_*([X]), (\tilde{\pi}' \circ \chi_\mu)_*([Y]))$, and the second is regarded as $d\theta_\mu((\pi'_{M_\mu} \circ \chi_\mu)_*([X]), (\pi'_{M_\mu} \circ \chi_\mu)_*([Y]))$.

Finally we prove $(1.4 \ b)$. Take $q \in T_p^*P \cap J^{-1}(\mu)$. Then, we have $q = \bar{\chi}_{\mu}(q) + (\theta_{\mu})_u$ with $\bar{\chi}_{\mu}(q) \in (V^{\perp})_p$, $(\theta_{\mu})_p \in (H^{\perp})_p$. Since $(V^{\perp})_p$ and $(H^{\perp})_p$ are orthogonal each other, we have

$$H_{\mu}([q]) = \|\bar{\chi}_{\mu}(q)\|^{2} + \|(\theta_{\mu})_{p}\|^{2} = H(\tilde{\pi}' \circ \chi_{\mu}([q])) + \|(\theta_{\mu})_{p}\|^{2}$$

Here, $(\theta_{\mu})_p(A_p^P) = \langle \mu, A \rangle$ for $\forall A \in \mathfrak{g}$, and accordingly $\|(\theta_{\mu})_p\| = \|\mu\|$ holds.

Wong's equation on M_{μ} . We represent the flow of the system $(M_{\mu}^{\#}, \Omega_{\mu}^{\#}, H_{\mu}^{\#})$ using local coordinates. Let $(x,g)=(x^1,\ldots,x^d,g^1,\ldots,g^r)$ be local coordinates of $U\times G\cong \pi^{-1}(U)\subset P$ for $U\subset M$. Note that M_{μ} is locally diffeomorphic with $U\times (G/G_{\mu})$. Suppose the connection form θ of $\widetilde{\nabla}$ is represented as

$$\theta(x,g) = \sum_{j=1}^{d} \theta_j(x,g) dx^j + \sum_{\alpha=1}^{r} \theta_\alpha(x,g) dg^\alpha.$$

Then, the curvature form $\Theta := d\theta + \theta \wedge \theta$ of $\widetilde{\nabla}$ is locally written as

$$\begin{array}{lcl} \Theta(x,g) & = & \frac{1}{2} \sum_{i,j} \Theta_{ij}(x,g) dx^i \wedge dx^j \\ & = & \frac{1}{2} \sum_{i,j} \Big\{ \Big(\frac{\partial \theta_j}{\partial x^i} - \frac{\partial \theta_i}{\partial x^j} \Big) + [\theta_i,\theta_j] \Big\} dx^i \wedge dx^j. \end{array}$$

Put $\Theta_{\mu} := \langle \mu, \Theta \rangle$, and it is shown similarly to $d\theta_{\mu}$ that Θ_{μ} is an \mathbb{R} -valued two form globally defined on M_{μ} . We get the following by straightforward calculations.

Proposition 3 The motion of the particle in the system $(M_{\mu}^{\#}, \Omega_{\mu}^{\#}, H_{\mu}^{\#})$ is governed by the equation (called Wong's equation [7]) on M_{μ} locally expressed as

the equation (called Wong's equation [7]) on
$$M_{\mu}$$
 locall
$$\ddot{x}^{i} + \sum_{j,k} \Gamma^{i}_{jk}(x)\dot{x}^{j}\dot{x}^{k} - 2\sum_{j,k} m^{ij}(x)\Theta^{(\mu)}_{jk}(x,g)\dot{x}^{k} = 0$$

$$\dot{g} + L_{g*}\left(\sum_{j} \theta_{j}(x,g)\dot{x}^{j}\right) = 0$$

where $\Theta_{jk}^{(\mu)}(x,g) := \langle \mu, \Theta_{jk}(x,g) \rangle$, $\Gamma_{jk}^i(x)$ denotes Christoffel's symbol on the Riemannian manifold (M,m), and $L_{g*}: \mathfrak{g}(=T_eG) \to T_gG$ is the left translation. (Note that $\Theta_{jk}^{(\mu)}(x,g)$ and the second equation is invariant under G_{μ} -action, namely they depend only on the equivalent class $[g] \in G/G_{\mu}$.)

2 Quantum systems in a gauge field

2.1 Unitary representations of G and the quantum states

Let $\mathfrak{g}_{\mathbb{C}}$ be the complexification of the Lie algebra \mathfrak{g} . Let \mathfrak{h} denote a Cartan subalgebra of $\mathfrak{g}_{\mathbb{C}}$, and let R be the root system for the pair $(\mathfrak{g}_{\mathbb{C}},\mathfrak{h})$. Put $\mathfrak{h}_{\mathbb{R}}:=\{H\in\mathfrak{h};\ \alpha(H)\in\mathbb{R}\ \text{for}\ \forall\alpha\in R\}$. Then, $\mathfrak{h}_{\mathbb{R}}=i\mathfrak{t}\subset\mathfrak{t}_{\mathbb{C}}=\mathfrak{h}\ \text{holds}$ for a Cartan subalgebra \mathfrak{t} of \mathfrak{g} . We notice that $\mathfrak{h}_{\mathbb{R}}$ is a $l(=\operatorname{rank} G)$ dimensional real vector space with the inner product $(iH,iH')_K=-(H,H')_K=(H,H')_{\mathfrak{g}}\ (H,H'\in\mathfrak{t}),$ where $(\cdot,\cdot)_K$ denotes the Killing form on $\mathfrak{g}_{\mathbb{C}}$ (or \mathfrak{g}). By identifying \mathfrak{g} to \mathfrak{g}^* with respect to the inner product $(\cdot,\cdot)_{\mathfrak{g}}$ we have $\mathfrak{h}_{\mathbb{R}}^*=i\mathfrak{t}^*\subset i\mathfrak{g}^*$. Put $\Gamma:=\mathfrak{t}\cap\exp^{-1}(e)$ for $\exp:\mathfrak{g}_{\mathbb{C}}\to G_{\mathbb{C}}$, where $G_{\mathbb{C}}$ is the simply connected Lie group whose Lie algebra is $\mathfrak{g}_{\mathbb{C}}$. Then, Γ is a lattice in $\mathfrak{t}\cong\mathbb{R}^l$. Let Γ^* be the dual lattice of Γ , namely

$$\Gamma^* = \{ \tau \in \mathfrak{t}^* \mid \langle \tau, H \rangle \in 2\pi \mathbb{Z} \text{ for } \forall H \in \Gamma \}.$$

Then, $i\Gamma^*$ is a lattice in $it^* = \mathfrak{h}_{\mathbb{R}}^*$, whose element is called an integral form. Let C be a Weyl chamber in $\mathfrak{h}_{\mathbb{R}}^*$. Then C defines the set R^+ of positive roots and the ordering in $\mathfrak{h}_{\mathbb{R}}^*$. The set \hat{G} of irreducible unitary representations is labeled by the set $C \cap i\Gamma^*$ (whose element is called a dominant integral form).

by the set $C \cap i\Gamma^*$ (whose element is called a dominant integral form). For a "charge" $\mu \in \mathfrak{g}^*$ the coadjoint orbit \mathcal{O}_{μ} in \mathfrak{g}^* intersects the set iC in exactly one point $i\lambda$ ($\lambda \in C$). We assume that λ lies on $i\Gamma^*\setminus\{0\}$, i.e., λ is integral. We call such μ a quantized charge. Let $(\rho_{\lambda}, V_{\lambda})$ be the irreducible unitary representation of G with highest weight λ . We introduce the associated vector bundle $\mathcal{E}_{\lambda} = P \times_{\rho_{\lambda}} V_{\lambda} \to M$ of P through the representation $(\rho_{\lambda}, V_{\lambda})$. We regard the Hilbert space $L^2(M, \mathcal{E}_{\lambda})$ of L^2 -sections of \mathcal{E}_{λ} as the space of quantum states corresponding to the classical system \mathcal{H}_{μ} for the quantized charge μ .

The connection $\widetilde{\nabla}$ on P induces the covariant derivative $\widetilde{\nabla}^{(\lambda)}: C^{\infty}(M, \mathcal{E}_{\lambda}) \to C^{\infty}(M, T^*M \otimes \mathcal{E}_{\lambda})$ on \mathcal{E}_{λ} , and we obtain the Laplacian $\Delta^{(\lambda)}:=(\widetilde{\nabla}^{(\lambda)})^* \widetilde{\nabla}^{(\lambda)}: L^2(M, \mathcal{E}_{\lambda}) \to L^2(M, \mathcal{E}_{\lambda})$, which is a non-negative, (formally) self-adjoint, second order elliptic differential operator.

Let $s: U(\subset M) \to P$ be a local section of P, and set $\theta_U := s^*\theta$ for the connection form θ of $\widetilde{\nabla}$. Suppose θ_U is expressed as $\sum A_j(x)dx^j$ $(A_j(x) \in \mathfrak{g})$. Then, the covariant derivative $\widetilde{\nabla}^{(\lambda)}$ is given by

$$\widetilde{\nabla}_{i}^{(\lambda)} f = \nabla_{j} f + A_{i}^{(\lambda)}(x) f \quad (f \in C^{\infty}(U, V_{\lambda}))$$

with $A_i^{(\lambda)}(x) = (\rho_{\lambda})_*(A_j(x)) \in \mathfrak{u}(V_{\lambda})$, and

$$\Delta^{(\lambda)} = -\sum_{j,k} m^{jk}(x) \left(\nabla_j + A_j^{(\lambda)}(x) \right) \left(\nabla_k + A_k^{(\lambda)}(x) \right)$$

where ∇ is the Levi-Civita connection on (M, m).

2.2 Spaces of L^2 functions on P and L^2 sections of \mathcal{E}_{λ}

Let $L^2_{\lambda}(P,V_{\lambda})$ be the space of V_{λ} -valued L^2 functions f's on P satisfying

$$f(p \cdot g) = \rho_{\lambda}(g^{-1})f(p) \quad (p \in P)$$

for any $g \in G$. Then, we have the natural unitary isomorphism (by taking suitable inner products):

$$L^2(M, \mathcal{E}_{\lambda}) \cong L^2_{\lambda}(P, V_{\lambda}).$$

Let χ_{λ} denote the character of the representation ρ_{λ} , and define the map $\mathcal{P}_{\lambda}: L^2(P) \to L^2(P); f \mapsto f_{\lambda}$ by

$$f_{\lambda}(p) := d_{\lambda} \int_{G} \chi_{\lambda}(g^{-1}) \overline{f(p \cdot g)} \, dg \quad (p \in P),$$

where $d_{\lambda} := \dim V_{\lambda}$, and dg is the Haar measure on G. Let $L_{\lambda}^{2}(P)$ be the image of \mathcal{P}_{λ} . Using local coordinates, $P \supset \pi^{-1}(U) \ni p = (x,g) \in U \times G$, we can see that $L_{\lambda}^{2}(P)$ consists of functions locally expressed as

$$f_{\lambda}(p) = f_{\lambda}(x, g) = \sum_{j,k} [\rho_{\lambda}(g)]_{k}^{j} f_{0}(x)_{k}^{j}$$
 (2.1)

for some functions $f_0(x)_k^j$ on U, where $[\rho_{\lambda}(g)]_k^j$ denotes the matrix-components of the representation ρ_{λ} . By virtue of the Peter-Weyl theorem we have

$$L^{2}(P) = \sum_{\rho_{\lambda} \in \hat{G}} {}^{\oplus} L^{2}_{\lambda}(P).$$

Define the map $\mathcal{F}_{\lambda}: L^2(P) \to L^2(P, V_{\lambda}^* \otimes V_{\lambda}); f \mapsto F_{\lambda}$ by

$$F_{\lambda}(p) := d_{\lambda} \int_{G} f(p \cdot g) \rho_{\lambda}(g) dg \quad (p \in P).$$

Here $\rho_{\lambda}(g)$ is regarded as a element of $V_{\lambda}^* \otimes V_{\lambda} = \operatorname{End}_{\mathbb{C}}(V_{\lambda})$, and we have a local expression

$$F_{\lambda}(p) = F_{\lambda}(x,g) = \rho_{\lambda}(g^{-1})F_0(x)$$

for a matrix-valued function $F_0(x)$ on U. We denote by $L^2_{\lambda}(P, V_{\lambda}^* \otimes V_{\lambda})$ the image of the map \mathcal{F}_{λ} . Then, we have the following.

Lemma 4 The function $F \in L^2(P, V_{\lambda}^* \otimes V_{\lambda})$ belongs to $L_{\lambda}^2(P, V_{\lambda}^* \otimes V_{\lambda})$ if and only if

$$F(p \cdot g) = \rho_{\lambda}(g^{-1})F(p) \quad (p \in P)$$
(2.2)

holds for any $g \in G$.

Proof. The "only if"-part of the statement is shown by directly checking (2.2). Suppose F satisfies (2.2). Then, F is locally expressed as $F(x,g) = \rho_{\lambda}(g^{-1})K(x)$ for some matrix-valued function K(x). Take the L^2 function f on P (locally) defined by

$$f(x,g) = \operatorname{Trace} \left[\rho_{\lambda}(g^{-1})^{t} K(x) \right].$$

Then, we have $\mathcal{F}_{\lambda}(f) = F$.

Let $\{v_j\}_{j=1}^{d_{\lambda}}$ be a orthonormal basis of V_{λ} . It follow from the above lemma that the V_{λ} -valued functions $f_{\lambda}^{j}(p) := F_{\lambda}(p)v_{j}$ $(j = 1, \ldots, d_{\lambda})$ belong to $L_{\lambda}^{2}(P, V_{\lambda})$. As a result we have the following isomorphism:

$$L^2_{\lambda}(P, V_{\lambda}^* \otimes V_{\lambda}) \cong \overbrace{L^2_{\lambda}(P, V_{\lambda}) \oplus \cdots \oplus L^2_{\lambda}(P, V_{\lambda})}^{d_{\lambda} \text{ times}}.$$

Finally, for $F_{\lambda} \in L^2_{\lambda}(P, V_{\lambda}^* \otimes V_{\lambda})$ (which is a matrix-valued function) we define

$$[\Phi_{\lambda}(F_{\lambda})](p) := \operatorname{Trace}[{}^{t}\overline{F_{\lambda}(p)}] \quad (p \in P).$$

Then, $\mathcal{P}_{\lambda} = \Phi_{\lambda} \circ \mathcal{F}_{\lambda}$ holds, and Φ_{λ} is a bijection from $L_{\lambda}^{2}(P, V_{\lambda}^{*} \otimes V_{\lambda})$ onto $L_{\lambda}^{2}(P)$. In fact, for $f(x,g) = \sum_{i,k} [\rho_{\lambda}(g)]_{k}^{j} f(x)_{k}^{j} \in L_{\lambda}^{2}(P)$ (locally), we have

$$[\Phi_{\lambda}^{-1}f](x,g) = \rho_{\lambda}(g^{-1}) \, \overline{F(x)}$$

for the $(d_{\lambda} \times d_{\lambda})$ matrix $F(x) := [f(x)_{k}^{j}].$

As a consequence, we get the following one-to-one correspondences:

$$L^{2}_{\lambda}(P) \cong L^{2}_{\lambda}(P, V_{\lambda}^{*} \otimes V_{\lambda})$$

$$\cong L^{2}_{\lambda}(P, V_{\lambda}) \oplus \cdots \oplus L^{2}_{\lambda}(P, V_{\lambda})$$

$$\cong L^{2}(M, \mathcal{E}_{\lambda}) \oplus \cdots \oplus L^{2}(M, \mathcal{E}_{\lambda}),$$

that is, more explicitly

Let Δ_P be the Laplace-Beltrami operator on (P, \widetilde{m}) . Then, Δ_P leaves $L^2_{\lambda}(P)$ invariant. Notice that the Laplace-Beltrami operator Δ_G on (G, m_G) satisfies

$$\Delta_{G}[\rho_{\lambda}(g)]_{k}^{j} = (\|\lambda + \delta\|_{K}^{2} - \|\delta\|_{K}^{2})[\rho_{\lambda}(g)]_{k}^{j},$$

where $\delta = \frac{1}{2} \sum_{\alpha \in \mathbb{R}^+} \alpha \in \mathfrak{h}_{\mathbb{R}}^*$, and the norm $\|\cdot\|_K$ (and the inner product $(\cdot, \cdot)_K$) on $\mathfrak{h}_{\mathbb{R}}^*$ is naturally induced one from that on $\mathfrak{h}_{\mathbb{R}}$, and we have the following lemma by the formula (2.1).

Lemma 5 Suppose $L^2_{\lambda}(P) \ni \psi_P \mapsto \psi_j \in L^2(M, \mathcal{E}_{\lambda}) (j = 1, \dots, d_{\lambda})$ is the above correspondence. Then, we have

$$(\Delta_P \psi_P)_i = \Delta^{(\lambda)} \psi_i + (\|\lambda + \delta\|_K^2 - \|\delta\|_K^2) \psi_i.$$

We assume that M is compact. Then, the spectrum of $\Delta^{(\lambda)}$ consists of non-negative eigenvalues

$$\nu_1^{(\lambda)} \le \nu_2^{(\lambda)} \le \dots \le \nu_k^{(\lambda)} \le \dots \uparrow +\infty.$$

If $\psi_P \in L^2_{\lambda}(P)$ satisfies $\Delta_P \psi_P = \kappa \psi_P$, then

$$\Delta^{(\lambda)} \psi_j = (\kappa - \|\lambda + \delta\|_K^2 + \|\delta\|_K^2) \psi \quad (j = 1, \dots, d_{\lambda}).$$

Conversely, suppose $\psi \in L^2(M, \mathcal{E}_{\lambda})$ satisfies $\Delta^{(\lambda)}\psi = \nu \psi$. Put

$$\Psi^{(j)} = (0, \dots, 0, \stackrel{(j)}{\psi}, 0, \dots, 0) \quad (j = 1, \dots, d_{\lambda}).$$

Then, $\psi_P^{(j)} = \operatorname{Trace}[^t \overline{\Psi^{(j)}}] \in L^2_{\lambda}(P)$ satisfies

$$\Delta_P \psi_P^{(j)} = (\nu + \|\lambda + \delta\|_K^2 - \|\delta\|_K^2) \psi_P^{(j)}.$$

Thus, we have the following for the spectrum $\{\nu_j^{(\lambda)}\}\$ of $\Delta^{(\lambda)}$ and that of Δ_P .

Proposition 6 The spectrum of Δ_P is the set of eigenvalues given by

$$\bigcup_{\lambda \in \hat{G}} d_{\lambda} \cdot \Big\{ \nu_{j}^{(\lambda)} + \|\lambda + \delta\|_{K}^{2} - \|\delta\|_{K}^{2} \mid j \in \mathbb{N} \Big\},\,$$

where $d_{\lambda} \cdot \{ \}$ denotes the set of d_{λ} copies of $\{ \}$, and

$$d_{\lambda} = \prod_{\alpha \in R_{+}} \frac{(\lambda + \alpha, \alpha)_{K}}{(\delta, \alpha)_{K}}.$$

3 Quasi-mode for the mechanics in a gauge field

3.1 Quantum energies associated to a Lagrangian manifold

Suppose $\mu \in \mathfrak{g}^*$ is a quantized charge, namely, $i\lambda = \mathcal{O}_{\mu} \cap iC$ belongs to $i\Gamma^*\setminus\{0\}$. We have a quantum system associated to $\mathcal{H}_{\mu} = (M_{\mu}^{\#}, \Omega_{\mu}^{\#}, H_{\mu}^{\#})$, that is a quantum Hamiltonian given by

$$\hat{H}_{\lambda} = \Delta^{(\lambda)} + \|\lambda + \delta\|_{K}^{2}$$

$$= -\sum_{j,k} m^{jk}(x) \left(\nabla_{j} + A_{j}^{(\lambda)}(x)\right) \left(\nabla_{k} + A_{k}^{(\lambda)}(x)\right) + \|\lambda + \delta\|_{K}^{2}$$

acting on $L^2(M, \mathcal{E}_{\lambda})$. For the element $\lambda \in C \cap \Gamma^*$ let us consider the "ladder" of representations with the highest weights $\{n\lambda; n \in \mathbb{N}\}$ and the associated family of quantum systems $(\hat{H}_{n\lambda}, L^2(M, \mathcal{E}_{n\lambda}))$.

In the case of abelian gauge group U(1) we established in [5] a eigenvalue theorem for the magnetic Schrödinger operator, which asserts the existence of an approximate quantum energy associated to a certain classical energy level. We here present the following conjecture which is a generalization of the eigenvalue theorem to the case of non-abelian gauge group G.

Conjecture Suppose there exists a compact Lagrangian submanifold L_P of (T^*P,Ω_P) contained in $J^{-1}(\mathcal{O}_{\mu})$. Let $L=\chi_{\mu}\circ\pi_{\mathcal{O}_{\mu}}(L_P)$, which is a submanifold of $M_{\mu}^{\#}$. Assume the following conditions:

(i) $H_{\mu}^{\#} \equiv e$ on L for a real constant e,

(ii) L_P is invariant under the Hamiltonian flow φ_t on $(T^*P, \Omega_P, \widetilde{H})$, and the restricted flow $\varphi|_{L_P}$ leaves invariant a non-zero half-density on L_P , and (iii)(quantization condition) for every closed curve γ on L_P ,

$$\frac{1}{2\pi} \int_{\gamma} \omega_P - \frac{1}{4} m_{L_P}([\gamma]) \in \mathbb{Z}$$
 (3.1)

holds, where $m_{L_P} \in H^1(L_P, \mathbb{Z})$ is the Maslov class of L_P .

Let d be the smallest element of the set $\{1,2,4\}$ for which $d \cdot m_{L_P}([\gamma]) \equiv$ $0 \pmod{4}$ for all $[\gamma] \in \pi_1(L_P)$, and set

$$n_k := dk + 1, \quad \tilde{n}_k := \frac{1}{2} \left(n_k + \frac{\|n_k \lambda + \delta\|_K}{\|\lambda\|_K} \right)$$

for $k \in \mathbb{N} \cup \{0\}$. (Note that $\tilde{n}_k \sim n_k$ as $k \to \infty$.) Then, there is a sequence $\{E_{j_k}^{(n_k \lambda)}\}_{k=0}^{\infty}$ of eigenvalues of $\hat{H}_{n_k \lambda}$ such that

$$E_{j_k}^{(n_k\lambda)} = e\tilde{n}_k^2 + O(1) \quad (k \to \infty).$$
 (3.2)

Observation Put $\hbar = 1/\tilde{n}_k$, and consider the Schrödinger operator

$$\hat{H}(\hbar) := \frac{1}{\tilde{n}_k^2} \hat{H}_{n_k \lambda}$$

depending on the Planck constant \hbar . Then, $E(\hbar) := E_{i_k}^{(n_k \lambda)} / \tilde{n}_k^2$ is an eigenvalue of $\hat{H}(\hbar)$, and the formula (3.2) means that

$$E(\hbar) = e + O(\hbar^2)$$

as $\hbar \to 0$. Thus, we see that the classical energy e obtained by the quantization condition gives an approximation of a quantum energy of order \hbar^2 in a semiclassical sense.

3.2 Plan to prove the conjecture

Let

$$\widetilde{G} := S^1 \times G = \{(e^{it}, g); 0 \le t < 2\pi, g \in G\}.$$

The strategy to prove the conjecture is to construct a suitable operator $A: \mathcal{D}'(\widetilde{G}) \to \mathcal{D}'(P)$ (where $\mathcal{D}'(\cdot)$ denotes the space of distributions). The idea is essentially due to [11] by Weinstein, and applied in [5] in the case of magnetic flow, i.e., G = U(1).

By virtue of the Peter-Weyl each element u(t,g) in $L^2(\widetilde{G})$ is written as

$$u(t,g) = \sum_{\ell \in \mathbb{Z}} \sum_{\rho \in \hat{G}} \sum_{j,k} \hat{u}_{\ell\rho}^{jk} e^{i\ell t} [\rho(g)]_k^j.$$
 (3.3)

For the sequence $\{n_k\}_{k=0}^{\infty}$ $(n_k = dk+1)$ we define the subspace $L^2(\widetilde{G}; \{n_k\lambda\})$ of $L^2(\widetilde{G})$ as follows: A function $u \in L^2(\widetilde{G})$ written as (3.3) belongs to $L^2(\widetilde{G}; \{n_k\lambda\})$ if and only if $\hat{u}_{\ell\rho} = 0$ holds for every $(\ell, \rho) \notin \{(n_k, n_k\lambda)\}_{k=0}^{\infty}$.

Put $D_G := (\Delta_G + ||\delta||_K)^{1/2}$, which is a first order pseudodifferential operator satisfying

$$D_G[\rho_{n\lambda}(g)]_k^j = (\|n\lambda + \delta\|_K)[\rho_{n\lambda}(g)]_k^j \quad (n \in \mathbb{N}).$$

Let us consider a continuous linear operator $A: \mathcal{D}'(\widetilde{G}) \to \mathcal{D}'(P)$ which satisfies the following conditions:

(A-i) $e^{-1}\Delta_P A - AD_{\widetilde{G}}$ induces a bounded operator from $L^2(\widetilde{G})$ to $L^2(P)$, where

$$D_{\widetilde{G}} := -\frac{1}{4} \left(\frac{\partial}{\partial t} + \frac{i}{\|\lambda\|_{\mathcal{K}}} D_G \right)^2.$$

(A-ii) $A: L^2(\widetilde{G}; \{n_k\lambda\}) \to L^2(P)$ is an isometry. (A-iii) Take

$$(u_k)_l^j(t,g) := \sqrt{\frac{d_k}{2\pi}} e^{in_k t} \left[\rho_{n_k \lambda}(g)\right]_l^j \quad (d_k := \dim V_{n_k \lambda})$$

in $L^2(\widetilde{G};\{n_k\lambda\})$. Then, $\psi_k=(\psi_k)_l^j:=A[(u_k)_l^j]$ belongs to $L^2_{n_k\lambda}(P)\cong L^2_{n_k\lambda}(P,V^*_{n_k\lambda}\otimes V_{n_k\lambda})$.

Suppose we have the above operator A. Note that

$$D_{\tilde{G}}u_k = \tilde{n}_k^2 u_k.$$

By virtue of (A-i) we have

$$||(e^{-1}\Delta_{P} - \tilde{n}_{k}^{2})\psi_{k}||_{L^{2}(P)} = ||(e^{-1}\Delta_{P}A - AD_{\tilde{G}})u_{k}||_{L^{2}(P)}$$

$$\leq M||u_{k}||_{L^{2}(\tilde{G})} = M, \tag{3.4}$$

M being a constant. Let $\{\varphi_j^{(k)}\}$ be the orthonormal basis of eigenfunction of $\Delta_P|_{L^2_{n_k\lambda}(P)}$. By means of Lemma 5 we have

$$\Delta_P \varphi_j^{(k)} = \tilde{E}_j^{(n_k \lambda)} \varphi_j^{(k)}$$

with

$$\tilde{E}_j^{(n_k\lambda)} = E_j^{(n_k\lambda)} - \|\delta\|_K^2. \tag{3.5}$$

Using the expansion: $\psi_k = \sum_j \hat{\psi}_j \varphi_j^{(k)}$, we have

$$\begin{split} \|(e^{-1}\Delta_P - \tilde{n}_k^2)\psi_k\|_{L^2(P)}^2 &= \|e^{-1}\sum_j \hat{\psi}_j \tilde{E}_j^{(n_k\lambda)} \varphi_j^{(k)} - \sum_j \tilde{n}_k^2 \hat{\psi}_j \varphi_j^{(k)}\|_{L^2(P)}^2 \\ &= \frac{1}{e^2}\sum_j \{\tilde{E}_j^{(n_k\lambda)} - e\tilde{n}_k^2\}^2 |\hat{\psi}_j|^2 \\ &\geq \frac{1}{e^2} \min_j \{\tilde{E}_j^{(n_k\lambda)} - e\tilde{n}_k^2\}^2 \sum_j |\hat{\psi}_j|^2 \\ &= \frac{1}{e^2} \min_j \{\tilde{E}_j^{(n_k\lambda)} - e\tilde{n}_k^2\}^2. \end{split}$$

Note $\sum_{j} |\hat{\psi}_{j}|^{2} = 1$ by means of (A-ii). Combining this inequality with (3.4), we have

$$\min_{j} \{ \tilde{E}_{j}^{(n_k \lambda)} - e \tilde{n}_k^2 \}^2 \le e^2 M,$$

that is

$$|\tilde{E}_{j_k}^{(n_k\lambda)} - e\tilde{n}_k^2| = \min_j |\tilde{E}_j^{(n_k\lambda)} - e\tilde{n}_k^2| \le \text{Const.}$$
(3.6)

We obtain the formula (3.2) from (3.5) and (3.6). The sequence $\{(\psi_k, e\tilde{n}_k^2)\}_{k=0}^{\infty}$ in this argument is called a quasi-mode of Δ_P (cf. [2]).

Thus, a proof of the conjecture is carried out if we can construct the operator A and check the properties (A-i)-(A-iii). We expect that this procedure will be similarly performed as [5] (see also [10], [11]) by constructing the operator A as a Fourier integral operator under the quantization condition (3.1).

References

- [1] R. Abraham and J.E. Marsden, Foundations of Mechanics, 2nd ed., Benjamin/Cummings, Reading MA, 1978
- [2] Y. Colin de Verdierè, Quasi-modes sur les variété riemanniennes, Invent. Math., 43(1977), 15-52.

- [3] R. Kerner, Generalization of the Kaluza-Klein theory for an arbitrary non-abelian gauge group, Ann. Inst. H. Poincaré Sect. A(N.S.), 9(1968), 143-152.
- [4] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol.I, John Wiley & Sons, Inc. (Interscience Devision), 1963.
- [5] R. Kuwabara, On Maslov's quantization condition for mechanics in a magnetic field, J. Math. Tokushima Univ., **33**(1999), 33-54.
- [6] R. Kuwabara, A geometrical formulation for classical mechanics in gauge fields, J. Math. Univ. Tokushima, **39**(2005), 23-46.
- [7] R. Montgomery, Canonical formulation of a classical particle in a Yang-Mills field and Wong's equations, Lett. Math. Phys. 8(1984), 59-67.
- [8] R. Schrader and M.E. Taylor, Semiclassical asymptotics, gauge fields, and quantum chaos, J. Funct. Anal. 83(1989), 258-316.
- [9] M.E. Taylor and A. Uribe, Semiclassical spectra of gauge fields, J. Funct. Anal. 110(1992), 1-46.
- [10] F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators, Vol.2, Plenum Press, New York, 1980.
- [11] A. Weinstein, On Maslov's quantization condition, Fourier Integral Operators and Partial Differential Equations, Springer Lect. Notes in Math. 459(1974), 341-372.