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Abstract

This paper studies the classical and the quantum mechanics in a non-
abelian gauge field on the basis of the symplectic geometry and the theory
of representation of Lie groups. As a classical-quantum correspondence
we present a conjecture on the quasi-mode corresponding to a certain
classical energy level.
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Introduction

Let (M, m) be a d dimensional smooth Riemannian manifold without bound-
ary, and let 7 : P — M be a principal G-bundle, where G is a compact semisim-
ple Lie group with dim G = r. Suppose P is endowed with a connection V. The
connection V is defined by a g-valued one form (called the connection form) 6
on P with certain properties, where g is the Lie algebra of G._The g-valued
two form © :=df + 6 A6 on P is called the curvature form of V. (See [4], for
example.)

Take an open covering {U, } of M with {¢ag} being the transition functions
of P. Then the curvature form © is regarded as a family of g-valued two forms
©,, defined on U, such that

Op = Ad(¢5)00 (0.1)

on Uy N Upg(# ¢), where Ad(-) denotes the adjoint action of G on g. Such a
family of g-valued two forms {©,} on M satisfying (0.1) is called a gauge field,
while the connection form 0 is called a gauge potential. If G is the abelian group
U(1), then ©, = 4 holds, and accordingly we have a two form © globally
defined on M, which is called a magnetic field.

In this paper we study the classical and the quantum mechanics in the
non-abelian gauge field {©,} on the basis of the symplectic geometry and the
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theory of representation of Lie groups. Section 1 is devoted to reviewing a
geometrical formulation for the classical mechanics in the gauge field, which is
essentially the same as that in the previous paper [6] (see also [7]). In Section 2
we introduce the space of quantum states corresponding to the classical system
with an integral “charge”. (Related arguments are found in [8], [9].) Finally in
Section 3 we present a conjecture on the quasi-mode corresponding to a certain
classical energy level. This conjecture is a generalization of the eigenvalue
theorem given in [5] for the abelian gauge field (the magnetic field).

1 Classical mechanics in a gauge field

1.1 The Kaluza-Klein metric

Let (, )g denote the inner product given by (—1) x (the Killing form) on
the compact semisimple Lie algebra g(= T.G), and let mg be the metric on
the Lie group G induced from ( , )g. Note that m¢ is invariant under left- and
right-translations on G.

The connection V on the principal bundle 7 : P — M defines the direct
decomposition of each tangent space T, P (p € P) as

T,P = H,®V,, (1.1)

where V), is tangent to the fiber, and H, is linearly isomorphic with T, M
through 7. |g,. Note that the tangent space V,, to the fiber is linearly isomorphic
with g by the correspondence g 3 A — A = a‘-iz(p-exp tA)|t=0 € Vp. The inner
product on g induces the inner product (, )y, on V, (p € P) as (AP, BY )y, =
(A,B)g (A, B € g). On the other hand, we have the inner product (, )z, on
H,, from the metric m on M such that 7|y, is an isometry. Finally, we define
an inner product m in each T, P(p € P) by defining H), and V}, to be orthogonal
each other. The metric m on P (which is induced from the metric m on M,
the metric mg on G, and the connection 6) is called the Kaluza-Klein metric
(cf. [3]). Note that m is invariant under the G-action on P.

Let Qp = dwp be the standard symplectic structure on the cotangent
bundleT™ P of P, where wp is called the canonical one form on T*P. We
have the natural Hamiltonian function H on T*P defined by the Kaluza-Klein
metric m, i.e., H(q) = ||q||* (¢ € T*P). Thus, we have the Hamiltonian system
(T*P,Qp, H ), which is just the system of geodesic flow on T*P.

1.2 Reduction of the system (cf. {1, Ch.4])

The action p— p-g = Ry(p) (p € P, g € G) of G on P is naturally lifted
to the action R}, := (Ry-:)" on T*P (so that R;_, : T; P — T P for each
p € P), which preserves wp (and accordingly p), i.e., R;_le = wp holds for
every g € G. (We call such action a symplectic action.) Moreover, we notice
that the Hamiltonian H is also invariant under the action R;_l.



Classical-Quantum Correspondence 35

A momentum map for the symplectic G-action R;_l isamap J:T*P — g*
(the dual space of g) given by

(J(q),A) = (g, A)) (@€ T*P, g € TP (p€ P)), (1.2)
for all A € g. The momentum map J is Ad*-equivariant, i.e.,
JoR, 1= Ad*(gHoJ (1.3)

holds for g € G, where Ad*(g) := (Ad(g~"))* (the adjoint of Ad(g~')). Fur-
thermore, J is invariant under the flow of (TP, Qp, H).

Note that J is a surjective map with any p € g* to be a regular value,
and J~1(u) is a submanifold of 7*P. Put G, = {9 € G; Ad*(g)p = u},
which is a closed subgroup of G. Then, J~1(x) is G -invariant because of
(1.3). The quotient manifold P, := J~(u)/G, is naturally endowed with a
symplectic structure Q,, induced from Qp, and endowed with a Hamiltonian
function H, induced from H. Thus we have a (reduced) Hamiltonian system
Hy = (P, Qyu, Hy), which we regard as the dynamical system of classical par-
ticle of “charge” p in the gauge field given by the connection v (the gauge
potential). We remark that the reduced phase space P, is also given as the
quotient manifold J~1(0,,)/G for the coadjoint orbit O, = {Ad*(g)y; g € G}

in g*.
1.3 A formulation by using the connection form

Suppose G, g G. Consider the quotient manifold M, := P/G,, and the
natural projection n’ : M,, — M(= P/G) gives a bundle structure with the
fiber G/Gu(2 O,). Let 7, : M}* — M, be the vector bundle obtained by

m
pulling back the cotangent bundle T* M over M through the map 7’ : M, — M,
ie.,
M ={(y,€) € My x T*M; n'(y) = mm(€)}-

We note that Mf is regarded as a subbundle of T*M, by the immersion
(y,&) — 1'*(§) € Ty M,,. ~

Let 6 be the connection form (which is a g-valued one form on P) of V, and
put 6, = (u,6), which is an R-valued one form on P.

Lemma 1 Let g, be the Lie algebra of G,. An element A in g belongs to g,
if and only if dép(AP, X) =0 for any vector field X on P.

Proof. We have
d6,.(AF, X) = (i(A7)d8,)(X) = (Lar0,)(X) — d(i(AT)6,)(X),

where i(AT) and £ 4» denote the interior product and the Lie derivative, respec-
tively. Since i(AP)8, = 6,(AF) = (u, A) = constant, we have df,(AF,X) =
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Figure 1: Reduction of the system

M

(L£470,)(X). Note that R30 = Ad(g~')é for g € G, and we get

d d *
(Lar6,)(X) = 7 {n Ad(exp(=tA)) (6(X)) | = 7 (Ad"(exptA), 8(X))| -
This formula implies the assertion of the lemma. |

By virtue of this lemma df), is regarded as a closed two form on M,. We
introduce a two form

QFf = (7Y Qs + (why.)"(d8,)

on M, where @' : M# — T*M is the natural lift of 7/ : M, — M, and
Qs is the standard symplectic form on 7* M. The two form Qﬁ’ is closed and
non-degenerate, and accordingly defines a symplectic structure on Mf.

Remark The symplectic structure Q# is just the restriction of the twisted
symplectic form Qus, + (mar,)*(d6,) on T*M,, to the subbundle M, where
T, + T* M, — M, is the natural projection.

Let H be the Hamiltonian function on T*M defined by the Riemannian
metric m on M, and put H# := (7')*H+||us||?, where the norm ||| is naturally

defined by the inner product mg on g. Thus we obtain the Hamiltonian system
(MF#,Q%, H¥) (see Figure 1).

Proposition 2 The Hamiltonian system H,, is isomorphic with (M#, Q% H¥),
that is, there exists a diffeomorphism x, : P, — M} such that

Q=x:9F, H,=x,HF. (1.4a,b)
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Proof. For each p € P we put

VY, = {qeT;P|(g,Af) =0forVA e g} (CT,P),
(Vi)y = {qe€T;P|(g,A4;)=0forVAeg.} (CT;P),

and define the subbundles V* := U e p(V+)p and V- := Upep(Vi")p of T*P
which are invariant under the G ,-action. Moreover we see that

M#=V+/G,, T*M,=V;}/G,.
For each g € T; P we define the map
Xu(q) :=q—(0u)p € T, P.

Then, we see that

(i) x.(q) € (V*), if g € J7!(p), and that

(i) Xu(Rp-1(q)) = R;—1(Xu(q) for g € T} (1) and g € G,..
Indeed, (i) is shown as follows: (gp, AF) — ((6,)p, Af:) = (J(q),A) = (u, A) =0
for VA € g. The assertion (ii) follows from the formula (0,)p.g = Rj-1((64)p)
(g € G,), that is derived from the property R;_,6 = Ad(g)f (g € G) for 6 and
the definition of G,,. Noticing (i) and (ii), we can define the diffeomorphism
Xp : Py — M from map X, : T*P — T*P.

Now, we will prove (1.4 a). A vector X € T,(T*P) (¢ € T*P,7p(q) = p) is
written as

X(q) =X(g)+ X"(q) with X(q) € TP, X*(q) € Ty P(=T(T; P)).

Then, X*(g) € (V*+), if X € T,J~*(n). Let us take two vector fields X = X(q)
and Y = Y(q) on J~*(u) deﬁned in a neighborhood of go € J~*(p) such that
X (g) and Y(gq) are constant along the each fibers of 7% P. Then we have

W(XY) = 5{X{wp,Y) = Ywp, X) - (wr, X, Y]}

= SX@V)-Y(eX) - T}

Put ¢'(= Xu(q)) = ¢ — 6u(€ (V*)p), and we have

Q(XY) = L{X(, V)Y, %)~ (¢, KT}

b X0 T) - T8, ) — (6, X VD).

Here we notice that X(p') = X(p) and [X,Y] = [X,¥] hold. Therefore we
see that the first term of this formula is regarded as Qu ((7 0 xpu)«([X]), (7' ©
Xu)+([Y])), and the second is regarded as df,.((m},ox, )« ([X]), (WM#OX#)*([YD).
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Finally we prove (1.4 b). Take ¢ € TP N J~*(u). Then, we have ¢ =
Xu(q) + (0u)u with X.(q) € (V’L)p’ (Bu)p € (HJ—):D' Since (Vi)p and (H-L)p
are orthogonal each other, we have

Hy([q]) = 1%u(@1* + [10)5l1* = H (7" 0 xu([a]) + [1(6,.)5 1%
Here, (6,)p(AL) = (u, A) for VA € g, and accordingly |[(6,.),/| = ||u|| holds. W

Wong’s equation on M,,. We represent the flow of the system (M7, ¥, H¥)

using local coordinates. Let (z,g) = (z!,...,2%,¢%,...,9") be local coordinates
of Ux G 7 Y(U) C Pfor U C M. Note that M, is locally diffeomorphic

with U x (G/G,.). Suppose the connection form 8 of V is represented as

d
20] a:gd:c3+29 (z,g)dg®™.
j=1 a=1
Then, the curvature form © = df + 0 A6 of V is locally written as
O(z,g9) = lz ©ij(z, g)dz" A da?
06; 06, ; ;
= = ’ 0. i J
Z{(W o) + [65,6;] d' A d.

Put ©, := (u,0), and it is shown similarly to df, that ©, is an R-valued
two form globally defined on M,. We get the following by straightforward
calculations.

Proposition 3 The motion of the particle in the system (M, Qi H¥) is
governed by the equation (called Wong’s equation [7]) on M, locally expressed

as
:‘zéi-}—ZI‘;k( il gk ~2Zm (”)xg)a':kzo

9+L9*<Zf’j($ag)ﬂb’> =0

where @fi‘,ﬁ)(az,g) i= (1, ©x(x, 9)), Th(x) denotes Christoffel’s symbol on the
Riemannian manifold (M,m), and Lgs : g(= T.G) — T,G is the left trans-

lation. (Note that @%)(3:, g) and the second equation is invariant under G-
action, namely they depend only on the equivalent class [g] € G/G,.)

2 Quantum systems in a gauge field

2.1 Unitary representations of G and the quantum states
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Let gc be the complexification of the Lie algebra g. Let f denote a Cartan
subalgebra of gc, and let R be the root system for the pair (gc,b). Put bg :=
{H € b; a(H) € R for Yo € R}. Then, hr = it C t¢c = b holds for a Cartan
subalgebra t of g. We notice that hg is a {(= rank G) dimensional real vector
space with the inner product (iH,iH')x = —(H,H')x = (H,H')y (H,H' € 1),
where (-, -)x denotes the Killing form on gc (or g). By identifying g to g* with
respect to the inner product (-, -)4 we have b = it* C ig*. Put T := tNexp™(e)
for exp : gc — G, where Gg¢ is the simply connected Lie group whose Lie
algebra is gc. Then, I' is a lattice in t & R, Let I'™* be the dual lattice of T,
namely

I*={ret'|(r,H) € 2rZ for VH € T'}.

Then, i['* is a lattice in it* = b, whose element is called an integral form. Let
C be a Weyl chamber in h%. Then C defines the set R™ of positive roots and
the ordering in hg. The set G of irreducible unitary representations is labeled
by the set C Nil* (whose element is called a dominant integral form).

For a “charge” u € g* the coadjoint orbit O, in g* intersects the set iC
in exactly one point i\ (A € C). We assume that A lies on iI'*\{0}, ie., A
is integral. We call such p a quantized charge. Let (px, V) be the irreducible
unitary representation of G with highest weight A. We introduce the associated
vector bundle £y = Px,,Vy — M of P through the representation (pr, V). We
regard the Hilbert space L2(M, &,) of L2-sections of £y as the space of quantum
states corresponding to the classical system 7, for the quantized charge p.

The connection V on P induces the covariant derivative VO : C>®(M,&Ey\) —
C=(M,T*M @ £) on ,, and we obtain the Laplacian AP := (VN)* Y ;
L?*(M,E\) — L?*(M,£,), which is a non-negative, (formally) self-adjoint, sec-
ond order elliptic differential operator.

Let s : U(C M) — P be a local section of P, and set fy := s*6 for the
connection form 6 of V. Suppose 6y is expressed as 3 A;(z)dz? (4;(z) € g).
Then, the covariant derivative VA is given by

VS =i+ AV @ (€ 0N 1A)
with AP (z) = (p2)«(4;(x)) € u(V3), and

AW = = 3" mi*(2)(V; + AV (@) (Vi + ALY ()
7.k

where V is the Levi-Civita connection on (M,m).

2.2 Spaces of L? functions on P and L? sections of &,
Let L3(P,Vy) be the space of Vy-valued L? functions f’s on P satisfying

fo-9)=pa(g)fp) (peP)
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for any g € G. Then, we have the natural unitary isomorphism (by taking
suitable inner products):

LA(M,E)\) = L3(P,V3).

Let x» denote the character of the representation py, and define the map
Pa: LA(P) — L*(P); f = fa by

A(p) = da /G g o 9)dg (pe P),

where d := dim V), and dg is the Haar measure on G. Let L2(P) be the image
of Py. Using local coordinates, P D n=1(U) 3 p = (z,g) € U x G, we can see
that L2 (P) consists of functions locally expressed as

) = Iz, 9) = [oa(@) fola)] (21)

3k

for some functions fo(z)] on U, where [pA(g)]i denotes the matrix-components
of the representation py. By virtue of the Peter-Weyl theorem we have

L*(P)= Y ®L}(P).

PAEG

Define the map Fy : L2(P) — L*(P,Vy¥ @ V3); f — F\ by

Fy(p) = dy /G fo-9)org)dg (v € P).

Here px(g) is regarded as a element of V¥ ® Vi = Endc(Vh), and we have a
local expression

Fx(p) = Fa(z,9) = pa(g™") Fo(z)

for a matrix-valued function Fy(z) on U. We denote by Li(P,Vy¥ ® V3) the
image of the map F,. Then, we have the following.

Lemma 4 The function F € L?(P,Vy @ V) belongs to L3 (P, Vy ® V) if and
only if
F(p-g)=pxg~")F(p) (peP) (2.2)

holds for any g € G.
Proof. The “only if’-part of the statement is shown by directly checking
(2.2). Suppose F satisfies (2.2). Then, F is locally expressed as F(z,g) =

pr(g~ 1)K (z) for some matrix-valued function K(z). Take the L? function f
on P (locally) defined by

flz, g) = Trace[pa(g™") *K(z)].
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Then, we have F,(f) = F. E

Let {vj};l;l be a orthonormal basis of V. It follow from the above lemma

that the V)-valued functions fi(p) = Fx(p)v; (j = 1,...,dy) belong to
L2(P,Vy). As a result we have the following isomorphism:

d» times

Finally, for F\ € L2(P,Vy ® V)) (which is a matrix-valued function) we
define o
[@A(F))](p) := Trace['Fx(p)] (€ P).
Then, P = @) o F) holds, and @, is a bijection from L2(P,Vy ® Vy) onto
L3(P). In fact, for f(z,9) = X_; x[oa(9)]1.f(x); € L3(P) (locally), we have

(@3 fl(z,9) = palg™") Flz)

for the (dx x dy) matrix F(z) := [f(z)]].
As a consequence, we get the following one-to-one correspondences:

1R

L3(P) LY (P,Vy @ Vy)
LE(P,Vy) @ - ©Li(P,V))

LA(M,E) @ ® LA (M,E)),

(4

1R

that is, more explicitly

S OL*(M, &) SOL(P,VA) L3(P, VY ® Va) L3(P)
) w w W

(wl,,_,,qu/\) s (1,[11,...,’(/)‘1)‘) — \Pz(wlr":"#@) — L/)p:TraCe[t-\Ij].

Let Ap be the Laplace-Beltrami operator on (P,7). Then, Ap leaves
L3(P) invariant. Notice that the Laplace-Beltrami operator Ag on (G,mg)
satisfies

Aclpra(@)l = (1A +8l1% — 1011%) [oa ()1,

where § = 23" _p+ o € b, and the norm || || x (and the inner product (-, ) k)
on b is naturally induced one from that on hg, and we have the following
lemma by the formula (2.1).

Lemma 5 Suppose L2(P) > ¢p — ¢; € L*(M,E))(j = 1,...,d)) is the above
correspondence. Then, we have

(Aptp); = AN + (A + 8l — 10]15)v;-
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We assume that M is compact. Then, the spectrum of A®) consists of
non-negative eigenvalues

V§A)SV§)\)SSV]£)\)ST+OO

Ifyp € Li(P) satisfies ApyYp = kiyp, then
ANy; = (k= A+ 8ll% + [6F)¢ (G=1,....dx).
Conversely, suppose ¥ € L?(M, &,) satisfies ANy = vip. Put

, (3
Nz =(0,...,0,%,0,...,0) (j=1,...,d)).

Then, ¢’ = Trace['U()] € L2(P) satisfies
Apv) = (v + A+ 8l — 18lFuE.
Thus, we have the following for the spectrum {vj(’\)} of A® and that of Ap.

Proposition 6 The spectrum of Ap is the set of eigenvalues given by

U da- {o +Ir+ 8% — 8% | s e N},
reG

where dy - { } denotes the set of dy copies of { }, and

dy = H (/\+oz,a)K.

agE R+ (67 a)K

3 Quasi-mode for the mechanics in a gauge field

3.1 Quantum energies associated to a Lagrangian manifold

Suppose p € g* is a quantized charge, namely, iA = O, N iC belongs to
iT'*\{0}. We have a quantum system associated to H, = (M#,Q¥, H¥), that
is a quantum Hamiltonian given by

A

B o= AP+ a+o)%
= =Y m*@)(V;+ AV @) (Vi + AD (@) + 1A+ 0%
7.k

acting on L?(M, E,). For the element A € C N T* let us consider the “ladder”
of representations with the highest weights {n); n € N} and the associated
family of quantum systems (Hpx, L?(M, Eny)).
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In the case of abelian gauge group U(1) we established in [5] a eigenvalue
theorem for the magnetic Schrodinger operator, which asserts the existence
of an approximate quantum energy associated to a certain classical energy
level. We here present the following conjecture which is a generalization of the
eigenvalue theorem to the case of non-abelian gauge group G.

Conjecture Suppose there exrists a compact Lagrangian submanifold Lp of
(T*P,Qp) contained in J~*(0,). Let L = x, oo, (Lp), which is a submani-
fold of M, f Assume the following conditions:

(i) H¥ = e on L for a real constant e,

(ii) Lp is invariant under the Hamiltonian flow ¢z on (T*P, Qp, H), and
the restricted flow |, leaves invariant a non-zero half-density on Lp, and

(iii) (quantization condition) for every closed curve vy on Lp,

1 1

wp = mrp(M]) € Z (3.1)

2r J,
holds, where my, € H*(Lp,Z) is the Maslov class of Lp.
Let d be the smallest element of the set {1,2,4} for which d - myp([v])
0 (mod 4) for all [y] € m(Lp), and set

I

- 1 ||nk)\ +5”K
== +1 = — LA L1
ng = dk , Ng 5 (nk -+ T )

for k € NU{0}. (Note that fix, ~ ni, as k — c0.)

Then, there is a sequence {EJ<-:’°’\)},§‘;O of eigenvalues of Hy, » such that

EM™Y = ei2 +0(1)  (k — o0). (3.2)

Observation Put i = 1/7ik, and consider the Schrédinger operator
N 1 -
H(R) = ?HM A
k

depending on the Planck constant A. Then, E(h) = EJ(.k"")‘) /72 is an eigenvalue
of H(h), and the formula (3.2) means that

E(h) = e + O(?)

as i — 0. Thus, we see that the classical energy e obtained by the quantization
condition gives an approximation of a quantum energy of order 7% in a semi-
classical sense.

3.2 Plan to prove the conjecture
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Let _ .
G:=8"xG={(e"g);0<t<2mgeqG}

The strategy to prove the conjecture is to construct a suitable operator A :

D'(G) — D'(P) (where D'(-) denotes the space of distributions). The idea is
essentially due to [11] by Weinstein, and applied in [5] in the case of magnetic
flow, i.e.,, G =U(1).

By virtue of the Peter-Weyl each element u(t, g) in LZ(CNJ) is written as

ult,g) =Y > i e“p(g)lL (3.3)

€L pely ik

For the sequence {n;}32, (nx = dk+1) we define the subspace L2(G; {nxA}) of
L%(G) as follows: A function u € L2(G) written as (3.3) belongs to L2(G; {nxA})
if and only if 4,, = 0 holds for every (¢, p) ¢ {(rk, nkA)}520-
Put Dg = (Ag+||6]|x)/?, which is a first order pseudodifferential operator
satisfying ‘ ‘
Delpnr(9)l; = (InA + dllx)lonr(9)li  (n €N).

Let us consider a continuous linear operator A : D'(G) — D’(P) which satisfies
the following conditions:

(A-) e"'ApA — ADg induces a bounded operator from L?(G) to L%(P),
where L9 i )
i
Dyi=—(Z 4 1 D)
e=—7(m+ x )

(A-ii) A : L*(G; {nx\}) — L3(P) is an isometry.
(A-iii) Take

(o) (t,g) = \/721{; e [ppa(@l]  (di = dim Vi,

in L2(G; {nxA}). Then, i = (x)] = A[(uy)]] belongs to L2, (P)
L2 \(P, Vi, ® Vier)-

T

IR

Suppose we have the above operator A. Note that
Déuk = ﬁiuk
By virtue of (A-i) we have

(e"*Ap — Akl 2Py

I

H(e_lApA — ADé)ukHLz(p)
MI'IUkHLz(é) =M, (3.4)

IA
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M being a constant. Let {wgk)} be the orthonormal basis of eigenfunction of
Ap|p2 ,(P)- By means of Lemma 5 we have
nk

k - A k
Appl®) = BN

with ) \
BN = B 5] (3.5)

i
Using the expansion: ¢ =3, J)jgog.k), we have
- _ - 5 Bned) (k L9 (k
I Ap = )nldeey = e Do wsB Ve = D ke e
J J

1 F(neA ~ N
= SO B — el
J

v

1 = - .
s min{ B — enf}? Y |7
J

1 = -
= 3 J;n{Ej(."k ) en2)?.
Note 3_; 14| = 1 by means of (A-ii). Combining this inequality with (3.4),

we have N
mjin{EJ(."’“ ) —ei2}? < €M,

that is } i
‘EJ(':M\) — enf| = min |EJ(~nkA) — efiz| < Const. (3.6)
M

We obtain the formula (3.2) from (3.5) and (3.6). The sequence {(vx, efi}) Yoz
in this argument is called a quasi-mode of Ap (cf. [2]).

Thus, a proof of the conjecture is carried out if we can construct the operator
A and check the properties (A-i)-(A-iii). We expect that this procedure will be
similarly performed as [5] (see also [10], [11]) by constructing the operator A
as a Fourier integral operator under the quantization condition (3.1).
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