A Lower Decay Estimate for a Degenerate Kirchhoff Type Wave Equation with Strong Dissipation

By

Kosuke Ono

Department of Mathematical Sciences
The University of Tokushima
Tokushima 770-8502, JAPAN
e-mail: ono@ias.tokushima-u.ac.jp
(Received September 30, 2010)

Abstract

Consider the initial-boundary value problem for the degenerate Kirchhoff type wave equation with strong dissipation :

$$\rho \frac{\partial^2 u}{\partial t^2} - \left(\int_{\Omega} |\nabla u(x,t)|^2 dx \right) \Delta u - \delta \Delta \frac{\partial u}{\partial t} = 0. \text{ For all } t \geq 0, \text{ a lower decay estimate of the solution } \|\nabla u(t)\|^2 \geq c (1+t)^{-1} \text{ is derived when either the coefficient } \rho \text{ or the initial data are appropriately smaller than the coefficient } \delta.$$

2000 Mathematics Subject Classification. 35L70, 35B35

1 Introduction

We consider the initial-boundary value problem for the following degenerate wave equation of Kirchhoff type with a strong dissipative term :

$$\rho \frac{\partial^2 u}{\partial t^2} - \left(\int_{\Omega} |\nabla u(x, t)|^2 dx \right) \Delta u - \delta \Delta \frac{\partial u}{\partial t} = 0 \quad \text{in} \quad \Omega \times [0, +\infty) \quad (1)$$

with the initial and boundary conditions

$$u(x,0) = u_0(x), \quad \frac{\partial u}{\partial t}(x,0) = u_1(x) \quad \text{in} \quad \Omega$$

and

$$u(x,t) = 0$$
 on $\partial \Omega \times [0, +\infty)$,

where Ω is a bounded domain in \mathbb{R}^N with smooth boundary $\partial\Omega$, $\Delta=\nabla\cdot\nabla=\sum_{j=1}^N\partial^2/\partial x_j^2$ is the Laplace operator, $\rho>0$ and $\delta>0$ are constants. Matos and Pereira [1] have shown the existence of a unique global so-

Matos and Pereira [1] have shown the existence of a unique global solution u(t) in the class $L^{\infty}(0,T;H_0^1(\Omega))\cap W^{1,\infty}(0,T;L^2(\Omega))$ with $u'(t)\in L^2(0,T;H_0^1(\Omega))$ for any T>0, under the assumption that the initial data $\{u_0,u_1\}$ belong to $H_0^1(\Omega)\times L^2(\Omega)$. Moreover, by using the energy method, the energy decay estimate has been derived:

$$E(t) \equiv \rho ||u_t||^2 + \frac{1}{2} ||\nabla u(t)||^4 \le C(1+t)^{-2}$$

for $t \geq 0$, where $u_t = \partial u/\partial t$ and $\|\cdot\|$ is the norm of $L^2(\Omega)$ (see [1, 3, 6]).

Concerning other upper decay estimates of the solution u(t), in previous paper [6], we have already derived that

$$\|\nabla u_t(t)\|^2 \le C(1+t)^{-3}$$
 and $\|u_{tt}(t)\|^2 \le C(1+t)^{-5}$

for $t \geq 0$, under the assumption that the initial data $\{u_0, u_1\}$ belong to $(H^2(\Omega) \cap H_0^1(\Omega)) \times (H^2(\Omega) \cap H_0^1(\Omega))$.

On the other hand, Nishihara [4] have derived a lower decay estimate of the solution u(t): If the initial data $\{u_0, u_1\}$ belong to $(H^3(\Omega) \cap H_0^1(\Omega)) \times (H^3(\Omega) \cap H_0^1(\Omega))$ and satisfy $\|\nabla u_0\|^2 + 2\rho(u_0, u_1) > 0$ and the initial energy $E(0) \equiv \rho \|u_1\|^2 + \frac{1}{2} \|\nabla u_0\|^4$ is sufficiently small, there exists a large time $T_* > 0$ such that

$$\|\nabla u(t)\|^2 \ge c (1+t)^{-1}$$
 for $t \ge T_*$ (2)

with c > 0 (also see [2, 5, 6]).

Our purpose in this paper is to derive the lower decay estimate (2) for all $t \geq 0$ and to give a sufficient condition related to the size of the coefficient ρ and the initial data $\{u_0, u_1\}$ together with the coefficient δ .

We put

$$c_* \equiv \sup \left\{ \frac{\|v\|}{\|\nabla v\|} \; \middle| \; v \in H^1_0(\Omega), \, v \neq 0 \right\}.$$

Our main result is as follows.

Theorem 1.1 Let the initial data $\{u_0, u_1\}$ belong to $H_0^1(\Omega) \times H_0^1(\Omega)$ and $u_0 \neq 0$. Suppose that

$$(3c_*)^2 \rho \left(\rho \frac{\|\nabla u_1\|^2}{\|\nabla u_0\|^2} + \|\nabla u_0\|^2 \right) < \delta^2.$$
 (3)

Then, the solution u(t) of (1) satisfies

$$c(1+t)^{-1} \le \|\nabla u(t)\|^2 \le C(1+t)^{-1}$$
 for $t \ge 0$ (4)

where c and C are positive constants depending on the initial data $\{u_0, u_1\}$.

The proof of Theorem 1.1 is given by using Proposition 2.1 and Proposition 2.2 in the next section.

The notations we use in this paper are standard. The symbol (\cdot, \cdot) means the inner product in $L^2(\Omega)$. Positive constants will be denoted by C and will change from line to line.

2 Lower decay

Proposition 2.1 Let u(t) be a solution of (1) and $M(t) \equiv \|\nabla u(t)\|^2 > 0$ for $0 \le t < T$. If $c_*(\rho H(0))^{1/2} < \delta$, then it holds that

$$H(t) \le H(0) \qquad \text{for} \quad 0 \le t < T \tag{5}$$

where

$$H(t) \equiv
ho rac{\|u_t(t)\|^2}{M(t)} + M(t)$$
 .

Proof. Multiplying (1) by $2u_t(t)$ and $M(t)^{-1}$, and integrating it over Ω , we have that

$$\frac{d}{dt}H(t) + 2\delta \frac{\|\nabla u_t(t)\|^2}{M(t)} = -\rho \frac{M'(t)}{M(t)^2} \|u_t(t)\|^2
\leq 2c_*\rho \left(\frac{\|u_t(t)\|^2}{M(t)}\right)^{1/2} \frac{\|\nabla u_t(t)\|^2}{M(t)}
\leq 2c_* \left(\rho H(t)\right)^{1/2} \frac{\|\nabla u_t(t)\|^2}{M(t)}$$

and from the Young inequality that

$$\frac{d}{dt}H(t) + 2\left(\delta - c_*(\rho H(t))^{1/2}\right) \frac{\|\nabla u_t(t)\|^2}{M(t)} \le 0$$

for $0 \le t < T$.

If $c_*(\rho H(0))^{1/2} < \delta$, then we obtain

$$c_*(\rho H(t))^{1/2} \le \delta$$

for some t > 0, and

$$\frac{d}{dt}H(t) \le 0$$
 or $H(t) \le H(0)$

for some t > 0. Thus we arrive at the desired estimate (5) for $0 \le t < T$. \square

Proposition 2.2 Let u(t) be a solution of (1) and M(t) > 0 for $0 \le t < T$. If $3c_*(\rho H(0))^{1/2} < \delta$, then

$$M(t) \equiv \|\nabla u(t)\|^2 \ge c (1+t)^{-1} \tag{6}$$

for $0 \le t < T$, where c is a positive constant depending on $\{u_0, u_1\} \in H_0^1(\Omega) \times H_0^1(\Omega)$.

Proof. Multiplying (1) by $2u_t(t)$ and $M(t)^{-3}$, and integrating it over Ω , we have that

$$\begin{split} \frac{d}{dt} \left(\rho \frac{\|u_t(t)\|^2}{M(t)^3} + \frac{1}{M(t)} \right) + 2\delta \frac{\|\nabla u_t(t)\|^2}{M(t)^3} \\ &= -3\rho \frac{M'(t)}{M(t)^4} \|u_t(t)\|^2 - 2\frac{M'(t)}{M(t)^2} \\ &\leq 6c_* \rho \left(\frac{\|u_t(t)\|^2}{M(t)} \right)^{1/2} \frac{\|\nabla u_t(t)\|^2}{M(t)^3} + 4\left(\frac{\|\nabla u_t(t)\|^2}{M(t)^3} \right)^{1/2} \\ &\leq 6c_* \left(\rho H(t) \right)^{1/2} \frac{\|\nabla u_t(t)\|^2}{M(t)^3} + 4\left(\frac{\|\nabla u_t(t)\|^2}{M(t)^3} \right)^{1/2} \end{split}$$

and from (5) that

$$\frac{d}{dt} \left(\rho \frac{\|u_t(t)\|^2}{M(t)^3} + \frac{1}{M(t)} \right) + 2 \left(\delta - 3c_*(\rho H(0))^{1/2} \right) \frac{\|\nabla u_t(t)\|^2}{M(t)^3} \\
\leq 4 \left(\frac{\|\nabla u_t(t)\|^2}{M(t)^3} \right)^{1/2} \tag{7}$$

for $0 \le t < T$.

If $3c_*(\rho H(0))^{1/2} < \delta$, then we observe from (7) together with the Young inequality that

$$\frac{d}{dt} \left(\rho \frac{\|u_t(t)\|^2}{M(t)^3} + \frac{1}{M(t)} \right) \le C$$

and

$$\rho \frac{\|u_t(t)\|^2}{M(t)^3} + \frac{1}{M(t)} \le C(1+t)$$

for $0 \le t < T$ which gives the desired estimate (6). \square

Proof of Theorem 1.1. Since $M(0) \equiv ||\nabla u_0||^2 > 0$, putting

$$T \equiv \sup \left\{ t \in [0, +\infty) \mid M(s) > 0 \text{ for } 0 \le s < t \right\},\,$$

we see that T>0 and M(t)>0 for $0 \le t < T$. If $T<+\infty$, then it holds that M(T)=0. However, from the lower estimate (6) we observe that $\lim_{t\to T} M(t) > c(1+T)^{-1} > 0$, and hence, we obtain that $T=+\infty$ and

$$M(t) > 0$$
 for all $t \ge 0$.

Thus, from (6) we have

$$M(t) \equiv \|\nabla u(t)\|^2 \ge c (1+t)^{-1}$$

for $t \geq 0$. On the other hand, by the standard energy method, we have

$$E(t) \equiv ||u_t(t)||^2 + \frac{1}{2} ||\nabla u(t)||^4 \le C(1+t)^{-2}$$

for $t \geq 0$ where C is a positive constant depending on $\{u_0, u_1\} \in H_0^1(\Omega) \times L^2(\Omega)$.

Acknowledgment. This work was in part supported by Grant-in-Aid for Science Research (C) of JSPS (Japan Society for the Promotion of Science).

References

- [1] M. P. Matos and D. C. Pereira, On a hyperbolic equation with strong damping. Funkcial. Ekvac. 34 (1991), no. 2, 303–311.
- [2] T. Mizumachi, The asymptotic behavior of solutions to the Kirchhoff equation with a viscous damping term. J. Dynam. Differential Equations 9 (1997), no. 2, 211–247.
- [3] M. Nakao, Decay of solutions of some nonlinear evolution equations. J. Math. Anal. Appl. 60 (1977), no. 2, 542–549.
- [4] K. Nishihara, Decay properties of solutions of some quasilinear hyperbolic equations with strong damping. Nonlinear Anal. 21 (1993), no. 1, 17–21.
- [5] K. Nishihara and K. Ono, Asymptotic behaviors of solutions of some nonlinear oscillation equations with strong damping. Adv. Math. Sci. Appl. 4 (1994), no. 2, 285–295.
- [6] K. Ono, Global existence and decay properties of solutions for some degenerate nonlinear wave equation with a strong dissipation. J. Math. Tokushima Univ. 29 (1995), 43–54.