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Abstract

Consider the initial-boundary value problem for the degenerate
Klrchhoff type wave equation with strong dissipation :

2
P >
p8t2 (/ |Vu(z,t)]| dx> Au — 5A8 =0. For all t > 0, a lower

decay estimate of the solution |[Vu(t)||? > ¢(1 +¢)7! is derived
when either the coefficient p or the initial data are appropriately
smaller than the coefficient 4.
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1 Introduction

We consider the initial-boundary value problem for the following degenerate
wave equation of Kirchhoff type with a strong dissipative term :

ou
2 A OU .
pat2 </ Vu(z,t)| dm> pu-sa% =0 i 0x[0+e) (1)
with the initial and boundary conditions

Oou

8t(a: 0) = uy () in Q

u(z,0) = up(z),
and

u(z,t) =0 on 0 x [0,4+00),
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where € is a bounded domain in RV with smooth boundary 8Q, A =V .-V =
Zj.vzl 8?/8x% is the Laplace operator, p > 0 and § > 0 are constants.

Matos and Pereira [1] have shown the existence of a unique global so-
lution wu(t) in the class L>=(0,T; HE(Q)) N Whee(0,T; L3(Q)) with v/(¢) €
L?*(0,T; H}()) for any T > 0, under the assumption that the initial data
{ug,u1} belong to Hg(Q2) x L2(). Moreover, by using the energy method, the
energy decay estimate has been derived :

B(t) = plhull? + 5 IVu()]* < C(1 +)

for t > 0, where u; = u/9t and || - || is the norm of L?(Q) (see [1, 3, 6]).
Concerning other upper decay estimates of the solution u(¢), in previous
paper [6], we have already derived that

Vi) IP < CL+)"3 and |luu(t)|> <CQ+1t)7°
for ¢ > 0, under the assumption that the initial data {up,u;} belong to
(H2(9) 0 HY(Q) x (H2(@) N B} ().

On the other hand, Nishihara [4] have derived a lower decay estimate of
the solution u(t) : If the initial data {u,u1} belong to (H3(Q) N HF(Q)) x
(H3() N H} () and satisfy || Vuol? + 2p(ug,u1) > 0 and the initial energy
E(0) = pllug|®+ —;—HVUOH‘l is sufficiently small, there exists a large time T} > 0
such that

IVu@®)||? > c(1+1t)7? for t>T, (2)

with ¢ > 0 (also see [2, 5, 6]).
Our purpose in this paper is to derive the lower decay estimate (2) for all
t > 0 and to give a sufficient condition related to the size of the coefficient p
and the initial data {ug,u;} together with the coefficient 4.
We put
o]l

- 1
Cx _SUP{WWUH ] vEHH(Q),v #O} .

Our main result is as follows.

Theorem 1.1 Let the initial data {ug,u1} belong to H}(Q) x HE(Q) and
ug # 0. Suppose that

2 [Vuy|? 2> 2
e (Prol + [Vuol?) < 2. )
Then, the solution u(t) of (1) satisfies
c(l+) < IVu@®) > <CA+)"Y  for t>0 (4)

where ¢ and C' are positive constants depending on the initial data {ug,u;}.
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The proof of Theorem 1.1 is given by using Proposition 2.1 and Proposition

2.2 in the next section.
The notations we use in this paper are standard. The symbol (-, -) means
the inner product in L?(€2). Positive constants will be denoted by C and will

change from line to line.

2 Lower decay

Proposition 2.1 Let u(t) be a solution of (1) and M(t) = |[Vu(t)|? > 0 for
0<t<T. If ca(pH(0))*/? < 6, then it holds that

H(t) < H(0) for 0<t<T (5)
where

Ut 2
H() Ep% + M(t).

Proof. Multiplying (1) by 2u(t) and M(¢)~!, and integrating it over €, we
have that

Uy 2 ! )
2 a0+ 2L - T )
Juw (D122 Ve ()2
520*”( M(E) > M)
172 [V ()2
M)

< 2¢. (pH(1))

and from the Young inequality that

%H(t) +2 (6 - ca(pH()?)

[V (8)|1?
_T/I_(t—)— <0

for0<t<T.
If ¢, (pH(0))}/? < §, then we obtain

c(pH(t)/* <6

for some t > 0, and

%H(t)go or H(t) < H(0)

for some ¢ > 0. Thus we arrive at the desired estimate (5) for 0 <t <T. O
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Proposition 2.2 Let u(t) be a solution of (1) and M(t) >0 for0 <t < T.
If 3c.(pH(0))/2 < §, then

M(t) = [[Vu®)|? > 1+ (6)

for 0 <t < T, where c is a positive constant depending on {ug,u1} € H3(Q) x
H Q).

Proof. Multiplying (1) by 2u:(t) and M (t)~3, and integrating it over Q, we
g

have that
d ([ Jlus(t)]]? 1 [V (8)]]2
7 (p + b 20 S 3

M) M(t) Y0
B "3”15(2(551 e ()% — 2 M;())
e () S ()
c i S ()"

and from (5) that

d ( Ju®P | 1 Y IV )2
’d‘t(p M) +zv1(t)>+2(‘5”3c*("’H(O))/> M)
IVu ()22
< (i) "

for0<t<T.
If 3c.(pH(0))Y/2 < §, then we observe from (7) together with the Young

inequality that
d [ Jlu(®)*, 1
el <
dt (p M@ ) <S¢

and

Jus@> | 1
M() +—m‘)‘ C(1+t)

for 0 <t < T which gives the desired estimate (6). O
Proof of Theorem 1.1. Since M(0) = ||[Vup||? > 0, putting

T=sup{te0,+00) | M(s)>0 for 0<s<t},
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we see that 7 > 0 and M(t) > 0 for 0 < ¢t < T. If T < +oo, then it
holds that M(T) = 0. However, from the lower estimate (6) we observe that
limg_,7 M(t) > c(1+T)~! > 0, and hence, we obtain that T = +o00 and

M) >0 forall t>0.
Thus, from (6) we have
M(t) = |[Vu@®)|? > c(l+t)™"

for ¢t > 0. On the other hand, by the standard energy method, we have
1 _
E(t) = [lus ()] + ~2~1IVu(t)i[4 <C1+97?

for t > 0 where C is a positive constant depending on {ug,u1} € Hg(92)xL*(2).
O
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