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Abstract

We study decay properties of solutions to the Cauchy problem
for the collision-less Vlasov—Poisson system which appears Vlasov
plasma physics and stems from Liouville’s equation coupled with
Poisson’s equation for the determining the self-consistent electro-
statics or gravitational forces.
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1 Introduction

We consider the Cauchy problem for the following kinetic system

Of+v - Vof +E-Vyuf =0  in RY xRY x (0,00) (1.1)
E(z,t) = -V U(z,t) in RY x (0, 00) (1.2)
£(@,v,0) = ¢(z,) 2 0, (1.3)

where U = U(z,t) is a potential which generates the force field E = E(z,t).
Then, the system (1.1)—(1.3) describes the evolution of a microscopic density
f = f(z,v,t) > 0 of particles subject to the action of the force field E. We
will be mainly interested in the Vlasov-Poisson system where the force field is
self-consistent and given by

- AU(z,t) = vp(z,t), U(z,t) —0as|z|— o0, (1.4)
ple,t) = [ fav,t)dv.
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where V, = (g, ,0zn)s Vo = (Opys+ -+ ,0uy ), Az is the Laplacian in the
z variable, and 7 is a constant. The sign v = +1 represents to electrostatic
(repulsive) interaction between the particles of the same species, while v = —1
represents gravitational (attractive) interaction (see Risken [11], Glassy [5] for
physical interpretations).

From (1.2) and (1.4), we have

Yy oz
E(.’L‘,t) - SN—l |£E|N *p(IE,t), (15)
where Sy_1 is (N — 1)-dimensional volume of the N-dimensional unit sphere,
and the symbol * is the convolution in the x variable.

The existence of local solutions of the system is known for every N € N
(e.g. [3], [4], [6], [8]). The Global existence problem has been studied by several
authors under suitable restrictions (see [1], (2], [6], [7], [12], [14]).

In this paper we study decay properties of solutions to the Cauchy problem
for the Vlasov—Poisson system.

Let f = f(z,v,t) > 0 be a strong solution of the Vlasov—Poisson system
with non-negative initial datum ¢(z,v) € C}(RY x RN), where C3(RY x RY)
denotes the space of compactly supported, continuously differentiable functions
(see [9], [10]).

Our main result is as follows.

Theorem 1.1 Let N > 4 and v > 0. Then the solution f = f(z,v,t) > 0 of
the Viasov-Poisson system satisfies that

e/t = v flpy, <Cit™%, >0, (1.6)
and for1<¢<1+2/N,
lo®)llzg < Crit=NO=YO ¢ >0, 1.7)

and for N/(N —1) <p< N(N +2)/(N* - N -2),

IE(®)| gz < Cot=NO-UN=1/p) = 450, (1.8)

where C1 = C1(||(1 + |w|2)¢!|L;)v s 1¢llze,) s a constant depending on ||(1 +
z*)¢lls, and [[6]lLe, -

Finally we fix some notation. The function spaces L , and L% mean

LP(RY x RN) and LP(R") with usual norms || ||z , and || - ||z for 1 < p < oo,
respectively. Positive constants will be denoted by C and will change from line
to line. :
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2 Proof
We first state the well-known convolution inequality (see for instance [13]).

Lemma 2.1 (Hardy-Littlewood—Sobolev inequality)
Let 0 <A< Nand1l <g<p<oo. Then

2= * f(@)llzg < Cliflles  for f € L]
with1+1/p=\/N+1/q.

The following proposition plays an important role in the proof of Theorem
1.1.

Proposition 2.2

d , .
) SIEGI =2 (B, i= [vfa
' N -2
(2) ““’—“E( )“%g =/$-Epda;, ,0=/fdv
Proof. (1) Using (1.2) and integrating by parts, we observe that

d d
21BN = 5 / IV, U2dz = —2 / UAU, da
= —27/U6tpda: =27/UV1 <jdz

=27/V$U-jdx=—2fy/E-jdx,

where we used the fact 8;p+V-j = 0, indeed, 8;p = [ f dv=— [(v-Vof +
E-V,f)dv=-V- [vfdv=-Vg].
(2) Using (1.2) and (1.4) and integrating by parts, we observe that

/m~Epdv = %/m -V UA U dz = %Z/mkkaijxj dz
k,j

-1y / B, kU, )Us, d
Y,
L /;v Ulzdx+12/x 9, (U2 ) dz
’Y T 2 - k i) mj
(nE(wuLz -3 e dw)
7¢7

=1 (1B -5 [ 19U o) = SR IEOl;

er—- ~2|>—*
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Proof of Theorem 1.1 Using the Vlasov—Poisson system and integrating by
parts, we observe that

d

E”lw —tv*fllzz

=—2//(x——tv)~vfdvd:v—/ |z~ tv|?(v- Vof + E -V, f) dudz
=—/ |x-—tv|2E-vad'udx=—Qt//(x—tv)-Efdvda:
=—2t/ac-Epd:c+2t2/E-jdx,

where p= [ fdvand j = [vfdv.
From Proposition 2.2, we have

d N-2 1.,d
alilx —tv*fllLs, = ——TtlIE(t)II%g - :YtzggllE(t)llig
or
d 1 N -4
& (e =0l sz, + 2B, | = -T2 0E0N,
When v > 0 and N > 4, we see
1
|z —tvl* flles, + :yt2HE(t)II%g <lle¢llLs
or

1 -
llz/t = v fllzy, + ;HE(t)H%g <llzfellzy t72, >0, (2.1)

which gives the estimate (1.6).
For a > 1 and R > 0, we observe

/fdv
-2 _ 12p\1/a f1-1/a
S/lﬂf/t—vlstdv—{H/lar:/t—v{zlf;:(R e/t =v"f)7*f dv
1/a 1-1/a
<ORNIflug, + e ([lofe-oPras) " ([rar) .

Optimizing the above estimate in R, that is, taking

s ) (e (1)
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we have that
f fdv
aN/(aN+2)

<cC (n,vn;%ﬂ </ |/t —-vlzfdv>l/a </fdv>1—1/a> Iflze, »

“and from the Hélder inequality,

I / 7 4| ensarsom

< Ol F 1N+ ( [ ([rate=vts du)”a (fsa) o dx>

) . 2 N/ (@ +2)
< (IR Nzt —wPAIEE ISIE ) .

Putting ¢ = (aN + 2)/(aN) (ie. a = 2/(N(g — 1))), we obtain that for
1<g¢g<1+2/N,

aN/(aN+2)

I [ sl < (118 Nt =P AIAS 01 F )

Here, we note that [|£]z, = I6]zz,,, indeed, &[fllzs, = JJ 04f dvde =
—[f(w-Vaf + E-V,f) dvdz = 0. And, f is a constant along characteristics,
indeed, since f is an integral of the system of ordinary differential equations

X=V, V=EXt), t>0,
f satisfies that .
f(X(ﬁ),V(t),t) = f(X(O),V(O)’O) = ¢(X(O))V(O)) , t20,

and hence, || f|ze, < [|6llzge, (see [9], [10]).
Thus, we have that for 1 < ¢ <1+ 2/N,

H/fdunLq < Ci||z/t =) f”z(1 1/a)
and from (2.1),
le®)lzz = | / fdvllge < CiE=NA-1D ¢ 50,

which implies the estimate (1.7), where C1 = C1(||(1 +|2[*)¢|lzz , » [8llzge,) Is
a constant depending on [|(1 + |z|?)¢|r1 , and [|¢]|Lg,-
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Moreover, using Lemma 2.1 with A = N — 1, we obtain

IE®)ze < C!{'l'ﬁ’ﬁ *p(t)lcz < Cllp®)llzs

< O NA-YN=1/p) = 5

with 1/p = 1/g—1/N, 1 < ¢ < (N +2)/N, ie. N/(N-1) <p < N(N +
2)/(N? — N — 2), which implies the estimate (1.8). O
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