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Abstract
In this note we derive some identities concerning the binomial coeffi-
cients by considering a certain n-th order symmetric differential operator
on R™ associated to the function p(z,£)(z € R™) which is a homogeneous
polynomial in €.

2000 Mathematics Subject Classification. 05A10

Introduction

Let (Z) denote the binomial coefficients, namely

(1+2)" = i <Z>mk

k=0

1)

Various formulas for the binomial coefficients are well known (see e.g. [1], [2]).

For example we have

£0) -+
;}(—1)’“(2) = o,
S (B)(7) =0 wzn,

k=r

which are easily obtained from (1). (The last one is obtained by differentiating

(1) r times relative to z, dividing by r!, and putting z = —1.)

In this note we consider a certain linear symmetric differential operator,
and derive some identities concerning the binomial coefficients (Corollaries 5

and 6).
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1. Symmetric differential operators

Let C§°(R™) denote the space of complex-valued C* functions on R™ with
compact support. Suppose the space C§°(R™) is endowed with the inner prod-
uct (-,-) defined by

(f,9) = A f(@)g() day - -dam (9 € C°(R™)).
Let D; (j =1,...,m) denote the differential operator %ai (¢ :=+/=1). Then,
D; is a symmetric operator, namely,
(Dsf,9) = (f,Dig)  (f,9€ C(R™))

holds.
Let us consider a function p(z, ) of variables (z1,...,@m,&1,. .., &) which
is a polynomial in &;’s

n

p(z, &)=Y | > aF @), 6,

p=0 | j1,j2,....dp

where @772 (z)’s are symmetric with respect to the indeces ji, ja, - - . , jp-

The function p(z, £) is regarded as an “observable” in the phase space T*R™
of classical mechanics. In theory of quantum mechanics the classical observ-
able p(z,£) corresponds to a self-adjoint operator on the Hilbert space L?(R™)
according to the corresponding rule of variables:

fjHDj, Tjr—= T X

We consider the symmetric (formally self-adjoint) operator corresponding
to the homogeneous polynomial of degree n given by

pn(xvé) = Z a7tz (m)gjdgjz e gjn'
J1,J2,50n
By applying the corresponding rule directly to p,(z, &) we get the n-th order
differential operator
Po= Y " (a)D; Dy, D;

J1,325--0n

ne

Lemma 1 The adjoint operator P of P, is given by

P’r:.( = Z D]l Jn a/jl In ("'L) : )

= Z( ) Z Z D]l"'D]'pahm]n(x)>Djp+1"'Djny
p=0 p jp+1,--v,] 1s- 7]]2

where @/t In(z) denotes the complex conjugate of a?tJn(z).
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Remark The property (P;)* = P, (formally) derives the formula (4). In
fact, by virtue of Lemma 1 we have

(Pr)" =
. n
i (7)
2!
The (n — r)-th order differential term of (P})* is given by

Z (_1)p< > < p> Z (Djlyn-;j'r‘a]l ]T(J;))D%H Dy,
pr+q=r p q Jisendn

n

n— .
< q p) Z <DJl e D.7’1)+41aj1 J'L(m))Djp+11+L e Dj,L}'

—p
q=0 Jlyeensdn

Hence, for 1 < r < n we have

-zl

ptg=r
- 5200 -5l GE)
= n—p/\r-p) = n—p)\n—r
that is nothing but the formula (4). 0

In order to obtain the symmetric operator P corresponding to p,(z,&) we
put

P = > a"in(z)Dy, - Dy,

Jiseendn
n
) oD gdrIn (g . oD 5
+ E Cn—p E (Dj, -+ Dj,a” () Dy, ., Dj. |, (5)
p=1 J1seesdn
where a7!"97 (z)’s are real-valued functions, and ¢,_,’s are complex constants.

Proposition 2 The operator P is symmetric, i.e., P* = P if and only if the
coefficients cn—p (p = 1,2,...1) satisfy

_ _i/m—=p+1\_
oy = WPy + (0 (T o

_ofn—p+2\_
(P

)
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Proof. The assertion is directly derived by comparing the coefficients of
(n — p)-th order differential terms in P and P*. O

As examples of symmetric operators of the form (5) we have the following:

Zaﬂ )D; + = ZD o (z
Zajk )D; Dk+z ZD :a’*(2)) Dy,
Zaﬂkl(;p)DjDle + — Z ZD aﬂvl Dle . ZD Dlea””l( )

Jiksl j k,l

Observing these examples we assume the coefficients ¢,—, (p = 1,2,...,n) to
be

(7)

| areal number (p:odd)
r=p = (p: even)

Theorem 3 For any n € N, and any real valued functions a/*"In(x) there
exists an unique n-th order symmetric differential operator P of the form (5)
satisfying the condition (7).

Proof. First we show the existence of P (cf. [3, Lemma 4.2]). Let Qo :=
2.a? (@) Dy, - Dy, (= Pn). Put

Q1= 5(Qo + Q)

Then, by means of Lemma 1 ()7 is a symmetric operator with the n-th order
term being equal to Qp, and the coefficients

§<p> Z Dj, ."Djpa]‘ Jpredn ()
J1500p

of the (n — p)-th order term of @)y are real if p is even. Let P,_o denote the
(n — 2)-th order term of (), and put

Q2= Q1 — (n2+P;2)

Then, Q2 is a symmetric operator of the form (5) with ¢,_, being real and
Cp—9 = 0.
Next, let P,_4 be the (n — 4)-th order term of ()2, and put

Qq:=Q2— = ( n—a + P _y).

Then, @4 is a symmetric operator of the form (5) with ¢,—, being real and
Cn—g = Cp_q = 0. Thus by continuing this process we get @2, Q4, s, .. ., and
we obtain the required operator P as Q,_1 if n is odd, or @, if n is even.
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Next, we show that the coefficients c,_, is uniquely determined by the

condition (6) under the assumption (7).
Suppose n is odd. The condition (6) for p = 1,2
equations for ¢,_1,Cn_3,...,C,co as follows:

")
. <n; 1)
(e ()
(Bew (s oos (172

2c+2c+4c+
0 9)¢2 4)C

,... gives a system of linear

Il

It is easy to see that the rank of the (n x (n+41)/2)-matrix of the coefficients of
the above linear equations is equal to (n+ 1)/2. Hence, the solution (if exists)

is unique.
If n is even, the linear equations for ¢,_1,cn—3,

2Cn—1
n—1
1 Cn—1
n—1
2Cn—3+< 9 >Cn—1
n—3 + n—1
1 Cn—3 3 Cn—1
2+ () es + (7!
C1 9 C3 n—9 Cn—1

(

This system similarly derives the uniqueness of the

(1)
2
(5
(&)
(
(

I

b
)
)
)

n

n—l)7

W)

solution.
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2. Properties of binomial coefficients

From the system of linear equations for ¢,_1,¢n_3, ... in the preceding section
we have the following.

Theorem 4 Let 1 < k < (n + 1)/2.
equations for ¢,_1,Cn_3, ..

The following two systems of linear
.yCn—2k+1 are equivalent each other :

Cn—1
Cn—3

Cn—2k+3
|Cn—2k+1

Cn-—-1
Cn—3

Cn—2k+3

LCn—2k+1 |

(o)

[ (52
9)

Proof. The system (8) of linear equations is obtained from (6) in Proposition
2 for odd p = 1,3,...,2k — 1. On the other hand, the system (9) is obtained
from (6) for even p = 2,4,...,2k. These two systems of linear equation have
the same solution associated to the unique symmetric differential operator P

(Theorem 3).

[m]

Note Cramer’s formulas for the solution ¢,—2r+1 of (8) and (9), and we have

the following.

Corollary 5 For n,k € N with 1 < k < (n + 1)/2 we have the following
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identity, which is equal to (—=1)* e, _opiy ¢
12
RN 0
SOOI
; 2
() (i) (G "5
() (7))
S @ %) ) 0
n— 2k — 1! _ _
= Tmonn G ) (50 (10)
N ; : : (n2h3)
: : : 1
(0)  (3cy) () ("5
Remark If & =1, (10) means
1/n 1 n
§<1> Tl <2> (= en-1)
Table for c¢,_,
n | Ch-1 Cp-2 Cn—3 Cn—4a Cpn—5 Cn—6 Cn—7 Ch—8 Cp—9 Cn—-10
L3
2 1 0
3| 2 0 -1
4 2 0 -1 0
510 2 0 -2 0 5
6 3 0 -5 0 3 0
7| 1 o =% 0o & 0 S
8 4 0 —14 0 28 0 —-17
9| 2 o -21 0 63 0 1 3
10 ) 0 -30 0 126 0 —255 15 0
nls@ 0 =) 0 3G o —FE) o () o
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Finally, by considering the case n = 2k we have the following from the last
equation in (9).

Corollary 6 For even n (€ N) we have

n/2

g Cn—2k+1
k=1

1

n/2 e
- ;“21 @Y

Y (2 — 1) X
- el E ) 6
k=1 . (n—21k+3)
k) Gio) Gezs) o (7F)
- 1.
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Abstract

In his paper [1], J.G. Goggins has shown a simple formula which
relates m and Fibonacci numbers. In this note, we shall prove a
generalized formula (4) with some integer parameter k. Then Gog-
gins’s formula can be regarded as the special case k = 1 of our new
formula (4).

2000 Mathematics Subject Classification. Primary 11B39;
Secondary 40A05, 11A99

Introduction

In [1], J.G. Goggins has shown the following simple but very interesting
formula

T= > tan N1/ Fan), (1)
n=1

where F), is the nth Fibonacci number. This formula is also given as the
formula (f) in the text [5] chapter 3. Firstly, we shall rewrite this formula to
the following two forms. Since F; = 1 and 7/4 = tan™!(1/F}), (1) is equivalent
to the following formula

'72[ = Ztanvl(l/anH)- (2)
n=0
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From the facts F_o, = —Foy and F_og—1 = Fok11, (2) is also equivalent to the
following formula

m= > tan"'(1/Fan41). (3)

n=-—0o0

The purpose of this short note is to generalize this formula to the following
formula which holds for any integer parameter k,

km = Z tan_l(ng/F2n+1). (4)

n=-—o0

Remark. We note that, from the fact F» = 1, the above formula (3) is exactly
the case k = 1 of this formula (4).

Let {G,} be generalized Fibonacci sequences which satisfy
Gn+2 = Gn+1 + Gn

Using the induction on m, we can show the following addition theorem of G,.

Addition Theorem. (See for example [3]).

Gyt = FnGop1+Fn-1Ge,  for any integer m.

Substituting Gyt — Ge—1 for Gy, we have

Gmye = FrGop1 + Froc1(Ge1 — Geo1) = (Fin+ Fine1)Goer1 — Frnm1Ge—1
= m+1G£+1 - Fm—1G£—1-

Thus we have obtained a modified version of this addition theorem.
Corollary 1.

Gmye = Frii1Gp1—F—1Go_1, for any integer m.

Let us consider the special case when G = F and £ = 2n is even and m = 2k~ 1

is odd in Corollary 1. Then we have Fopyop—1 = ForpFony1—Fog_2Fo,_ 1. Hence
we have:

Corollary 2.

Fop_oFon 14 Fonyok—1 = ForFongq.
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Let us consider the special case when G = F and ¢ = 2n is even and m =

—2n — 2k + 2 in Corollary 1. Then we have F_or 0 = F_on_opi3Fony1 —
F_on—2k+1F2n-1, which is equivalent to —Far_o = Foniox—3Fon+1—Fontok—1Fon—1.
Thus we have shown:

Corollary 3.

Fonyor—1Fon—1 — Fop—2 = Fopyor—3Fony1.

Using these corollaries, we can show the following proposition.

Proposition.

_ Fop_» ) -1 < 1 > 1 ( Fyy >
tan 1 _— + tan = tan —_— .
<F2n+2k—1 Fony Fopyor_3

Proof. From Corollaries 2 and 3, we have

Fop_o 1
Fongor—1 Fon—1  Fok—2Fon—1+ Fonjok—1  FopFong
1_ Fok—2  Fongok—1Fon—1— Foro Fapiop—3Fony1
Fonyor—1Fon_1
Foy

= , which completes the proof.
Foniok-3

This proposition and the fact
lim tan™!(Fyn/Fony1) =0
n—+oo

for any fixed m imply that

Z tan™ < z:Jrj) Z tan~! <F2 _1) Z tan ‘1< Fo )

n=-—00 n=-—00 n=—00 2n+1
Put A(k Z tan~1 ( Fax ) Then this relation can be written as
n——oco 2n+1
Ak — 1)+ AQQ) = A(k). (5)

We note that A(1) = 7 from the formula (3). Then, from this relation (5) and
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the induction on k, we can show the infinite series A(k) is convergent for any
integer k. Using the same relation (5), we can also verify that A(k) satisfies
the formula (4). Now we have completed the proof of the following theorem.

Theorem. With the above notations, we have

> tan~ (Far/Fani1) = ki,

n=-—0oo

or equivalently

o0

k
Z tan™ ! (For /Fapy1) = % for any integer k.
n=0
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Abstract

In his paper [1], J.G. Goggins has shown a formula which re-
lates m and Fibonacci numbers. In our paper [2], we have proved
a generalized version of this formula. In this note, we shall prove
formulas which generalize Fibonacci number to certain binary re-
currence sequences.

2000 Mathematics Subject Classification. Primary 11B39;
Secondary 40A05, 11A99

Introduction

In [1], J.G. Goggins has shown the following simple but very interesting
formula

g =3 tan"(1/Fonta), (1)

where F, is the nth Fibonacci number. We note this formula is also given as
the formula (f) in the text [5] chapter 3. Since F} = 1, we see % =tan"'(1/F).

Thus (1) is equivalent to the following formula

g =" tan"(1/Fons1). (2)
n=0

The purpose of this short note is to generalize this formula on Fibonacci
number to two formulas on binary recurrence sequences, that is, to the following
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two formulas

== > tan~!(t/uns), 3)
n=0
g = Y tan~'(t/van). (4)

n=-—oo

Here {u,} is the Lucas sequences associated to the parameter (¢, —1) and
{vn} is the companion Lucas sequences associated to the parameter (t,—1),
respectively.

First of all, let us recall the fundamental properties of u,, and v,,. Let t be a
positive integer and {u,} and {v,} be the binary recurrence sequences defined
by putting

Upt2 = tUni1 + Unp,
Un42 = tUng1 + Un,

with initial terms ug = 0,u; = 1 and vy = 2,v; = t.
Put ¢ = (t + Vt?+4)/2 and € = (t — Vvt +4)/2. Then one knows the
following Binet’s formula

{ Un = (" — &) VI + 4,

Uy =™+ &7,

Put ag, = tan™'(1/ua,) and ag,—1 = tan™!(t/ug,_;) for any positive index
n. Then we can show the following proposition.

Proposition 1. For any integer n > 1, gy = Qoni1 + Qanyo.
Proof. We have

tan(a a =
(02n+1 + Q2n42) 1 —t/(Uan+1U2n+2)  UoniiUonio —t

t/Usni1 + 1/Usnio  tusnin + Ugngr

U2n+3

Ugp+1U2py2 — T

By virtue of the Binet’s formula, we see

Up41U2n 42 —t = (52n+1 _ §2n+1)(£2n+2 _ 52n+2)/(t2 + 4) —t
— (64n+3 +E_4n+3 +e _l__&:)/(tQ _|__ 4) —t = (E4TL-|-3 _+_&:4TL+3 _ t3 _ 3t)/(t2 +4)
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On the other hand, we also have

UonUsni3 = (6271 _ E—.Qn)(62n+3 _ §2n+3)/(t2 + 4)
— (€4n+3 + gin+3 _ 3 _ 5_3)/(t2 + 4) — (54n+3 +€—4n+3 R 3t)/(t2 + 4).

Thus we have shown

1
tan(a2n+1 + Qiopt2) = ;1/_2— = tan(agn),
n

which completes the proof.

From this proposition, we have ag, — ont2 = agpy1 for any n > 1. Then
we have

o0 oo o0
Z tan™ ! (t/uony1) = za2n+1 = Z(C’Qn — Q2n+2)
n=1 n=1

n=1
= (a2 —aq) + (g —ag) + -+ + (a2n — Q2n42) + - = aa.

Since az = tan~1(1/t) = g — tan™!(t/u;), we have shown the formula (3).
Now we shall show the formula (4) similarly. Put 35, = tan™!(t/vs,) and

Bon—1 = tan~1(2/va,_1) for any positive index n. Then we can show the
following proposition.

Proposition 2. For any integer n > 1, 205, = fopn—1 — Bon+1-
Proof. We have

2/van-1 — 2/Von+1 2(Von+1 — Von—1)
tan -1 — = =
(Ban—1 = Bant1) 1+ 4/(van—1v2n+1) Von—1V2n+1 + 4

2t112n

U2n_1V2n41 +4

By virtue of the Binet’s formula, we see

Von—1Vant1 + 4 = (e20H1 4 22ntly(g2n=1 4 g2n=1y 4 4
= (e 4ty — (2482 +4 = (e +En) - (2 +2) +4
= (2 + 822 — 2 =03 —t%
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On the other hand, we have

t/von + t/von 2tvay
tan(20s,) = 1= (/0n)? = o

Thus we have shown

tan(Ban—1 — Bant1) = tan(20n),

which completes the proof.

From this proposition, we have fa,_1 — Ban41 = 2082, for any n > 1.
Then we have

ZQtan_l(t/vgn) = Z 209, = Z(/BQn—l — Bans1) = B1 = tan”(2/t).
n=1 n=1 n=1

Since v_y, = vy, one knows that tan=1(t/v_q,) = tan~1(t/va,).
Hence we have

Z tan " (t/vo,) = 2 (Z tan_l(t/vgn)> + tan~(t/vo)

n=-00 n=1
T

= tan™'(2/t) + tan~!(t/2) 5"

which completes the proof of (4).

Now we have completely proved two formulas of (4), which we shall state as
the following theorem.

Theorem. With the above notations, we have the following formulas,

o0

™ _

5= E tan™ 1 (t /uont1),
n=0

Z tan_l(t/vgn).

n=-—00

TR
I
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Abstract

We study the initial-boundary value problem for the sublinear
wave equations with a linear dampping : u” — Au — wAU' + du' =
y|uP~2u with the homogeneous Dirichlet boundary condition and
Hi () x L?(Q)-data condition under w > 0 and § > —w);. When
1 < p < 2, we show that the (local) weak solutions are global and
uniformly bounded in time ¢ > 0.

2000 Mathematics Subject Classification. 35L70
1 Introduction

We consider the initial-boundary value problem for the following semilinear
wave equation :

u' — Au—wAu' +0u' = f(u), u=u(z,t), inQx][0,0c0) (1)
with homogeneous Dirichlet boundary condition
u=0 on N
and initial conditions
u(z,0) = up(z) and u'(z,0) =u;(z),

where © is a bounded domain in RY with smooth boundary 89, ' = 9/0t,
A=V-V = Zj\;l 8?/8z? is Laplacian, w and § are constants such that w > 0

*This work was in part supported by Grant-in-Aid for Scientific Research (C) of JSPS
(Japan Society for the Promotion of Science).
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and d > —wA; with A\; being the first eigenvalue of the operator —A under the
homogeneous Direchlet boundary condition, that is,

_ [V
weH @\{0} [lul?>

and
f@) =AW, ¥>0, p>1. 2)

In the supperlinear case (p > 2), it is well known that the so-called potential
well method is useful to the analysis of global existence for problem (1). (see
Sattinger [21], Tsutsumi [23], Payne-Sattinger [20], and also, [8], [9], [14], [18]),
and moreover, the concavity method is applied to the analysis of finite time
blow-up phenomena (see Tsutsumi [23], Levine [10], [11], and also, [1], [2], [3],
(7], [13], [15], [16], [22]).

In order to explain some known results for p > 2, we define the total energy
associated with (1) by

1
Blu,u') = /| + I (w)

where we put

1 Y
J(u) §I|Vull2 - ;IIUII,‘S

(3-3) 19ulP + 11w

with
I(u) = ||Vull* = yllull}

and we define the mountain pass level d (also known as the potential well depth)
by

d= sup J(/\u))

inf <
w€HG()\{0} \1>0

(see Sattinger [21], Tsutsumi [23], Payne-Sattinger [20]).

When the power p in (2) satisfies that p > 2and p < 2(N—-1)/(N-2)if N >
3, many authors have already studied on global existence or finite time blow-up
of (local) weak solutions in the class C([0,T); Hi (Q))NC*([0,T); L*()) for the
problem (1) with the initial data (ug,u;) € Hg(2) x L?(Q) satisfying suitable
conditions : (i) if E(ug,u1) < d and I(ug) > 0, then there exists a unique global
solution wu(t) satisfying ||u(t)||g + ||u'(¢)|| = 0 as t — oo ; (ii) if E(ug,u;) < d
and I(up) < 0, then the local solution u(t) blows up at some finite time, that



Solutions for Damped Sublinear Wave Equations 21

is, there exists a finite time 7™ < oo such that ||u(t)||g: — o0 as t — T* ;
moreover (iii) when w = 0, if E(ug,u1) > d, I(uo) < 0, {luo|l > sup{||¢] ! ¢ €
Hi(\{0} with (1/2—1/p)[IVe|* < E(uo,u1)}, and [, uuy dz > 0, then the
local solution u(t) blows up at some finite time (see Gazzola-Squassina [5]). We
note that if E(u(t),u'(t)) > d for all ¢ > 0, then lim;—, o, E(u(t),u'(t)) exists,
and when w =0,p>2,and p<2(N—=1)/(N=2)if N >30orp<6if N =2,
the local solution u(t) is global and bounded (see Esquivel-Avila [4]).

On the other hand, when the power p in (2) satisfies that 1 < p < 2, we see
that for the initial data (ug,u1) € HL(Q)x L2(£), the (local) weak solution u(t)
in the class C([0,7); H(Q)) N CH([0,T); L3(Q)) is global. In particular, from
Remark 3.10 in Gazzola and Squassina [5], we know that the global solution
u(t) satisfies

lu()llzs + ' (@) < C(L+ 8P4 if p < 2
lu(@llzr + [l ()] < Ce* if p=2

with some a > 0, for ¢ > 0, but we can not know boundedness of global
solutions.

The purpose of this paper is to show boundedness of global solutions of (1)
in the case 1 < p < 2 (i.e. sublinear case).

Our main result is as follows.

Theorem 1.1 Let1 <p <2, and let w > 0 and § > —wA;. Suppose that the
indtial data (uo,uy) belong to H () x L*(2). Then, the problem (1) admits
a unique global solution u(t) in the class C([0,00); HE(Q)) N C*([0, 00); L2(N))
satisfying

lu(®)llz: + ' O < C + Cloe™™
with some constants C > 0, k > 0, and Iy = ||[Vuol| + ||lu1||, for t > 0.

On the other hand, in the case p = 2 we have the following.

Theorem 1.2 Let p = 2, and let w > 0 and & > —w);. Suppose that the
indtial data (uo,u1) belong to H(Q) x L*>(2). Then, the problem (1) admits
a unique global solution u(t) in the class C([0,00); Hi(22)) N C([0,00); L*(Q))
satisfying that ||[u(t)|| g + |[u'(t)]| < Cloe®t, and moreover, if v < Ay,

lu()llg + [l (8)]] < Cloe™
with some constants C > 0, & > 0, k> 0, and Iy = ||Vuo|| + ||u1]|, for t > 0.

We use only familiar functional spaces and omit the definitions. We denote
LP(Q)-norm by || - ||, (we often write || - || = || - ||z for simplicity). Positive
constants will be denoted by C' and will change from line to line.
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2 Proofs

By applying the Banach contraction mapping theorem, we obtain the fol-
lowing local existence theorem (e.g. see [6], [12], [17], [19]).

Proposition 2.1 Letp>1 andp < 2(N —1)/(N —2) if N > 3. Suppose that
the initial data (ug,u;) belong to H} () x L*(Q). Then, there exists a unique
(local) weak solution u(t) in the class C([0,T); H(Q)) N CL([0,T); L3(Q)) of
problem (1), that is,

%/ ()wdx+/Vu( )dem—i—w/Vu t)Vw dx
Q

+ 5/ Hwdz = / flu(t)wde
a.e. in (0,T) for every w € H ().

Moreover, if supg<ycq (|[u()||mr + [[u'(£)]]) < oo, then the solution u(t) can
be continued to T + ¢ for some € > 0.

Proof of Theorem 1.1. Multiplying (1) by u' and integrating it over Q, we
have

d

B0+l @I + ol ()1 = /Q fu(®)u'(t) dz, (3)

where Ej (t) is defined by

Ey(t) = By (u(t),u'(t) = % (Il O + [IVu@®)?) -
And, multiplying (1) by u and integrating it over {2, we have
3 (GITuOP + o1l +2 [ wu')ae) (@
IV = WO = [ ful)ut) do.
Then, taking (3) 4+ ¢ x (4) for any small ¢ > 0, we have
%Fl )+ Gt / f(u t) +eu(t)) dz, (5)

where Fi(t) and G1(¢) are defined by

R0 = B0+ 5 (@lTuP + (ol +2 | ulon'0) o)
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and
G1(t) = (@lIVu' @O + ollw' BD)]17) + & (IVu@)® = lu' (D)) -

Here, it is easy to see from the Cauchy inequality and the Poincaré inequality
that

Fi(t) < Ol @)1 + IVu(®)]?) (6)
and
Gi(t) > (8 +wh — &)l (B)]1* + el Vu@)|*. (7)

Thus, if § + wA; > 0, choosing small € > 0, we have from (5)—(7) that

GRO+2HR0 < [ 1(u0) @) +eult) do (®)

with some constant k > 0. Moreover, we observe from the Young inequality
and the Poincaré inequality with p < 2 that

/Qf(U(t)) (W' (t) +eu(t)) dz < Cll' Ollplu@®IE™ + Cllu)ll}
< Cld ONIVu@®IP= + ClIvu@dlr  (9)

and by 0 +wA; > 0,

(1= Co)llu' O)II* + %IIVU(t)II2 : (10)

Thus, choosing small € > 0, we have from (8)—(10) that

%Fl(t) + 2kF1(t) < CFl(t)p/Z < kFl(t) +C,,

where we used the Young inequality together with the fact that 1/2 < p/2 < 1
at the last inequality, and hence,

Fi(t) < % + F(0)e~kt, (11)

Therefore, we obtain from (10) and (11) that
lu' @)* + [[Vu@)|* < CFi(t) < C + CIie™

fort>0. 0
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Proof of Theorem 1.2.  Since p = 2 in (2), we have from (3) and the
Poincaré inequality that

d !
ZE1(®) < vll@llll’ @Ol < a B (2)
with some constant a > 0, and hence, we have

[l O + [[Vu@)]* < 2E1(0)e™

for t > 0.
Next, let v < A\;. Since p = 2 in (2), we have from (3) and (4) that
d
ZE®) + VU @I + ol (4)]* = 0 (12)
and
d1l
—= (w]qu(t)H2 + 6||u(t)||® + 2/ u(t)u'(t) dx> (13)
dt 2 Q

+IVu@®ll? = Allu@)® I’ @)I1* = 0,
respectively, where we write
B(t) = By(9) = 2@l = 5 (WO + 17 ~7lu()]?)

for simplicity. Then, taking (12) + € x (13) for any small € > 0, we have

d
ZF®+GH) =0 (14)

where F'(t) and G(t) are defined by

F(t) = E(t) + % <w||Vu(t)||2 + 8)|u(®)])® + Z/Qu(t)u’(t) dw)
and
G(t) = (Ve AN + dllu' O11P) + e (IVu@®I® = yllu@®]® = lu' @) -

Here, it is easy to see from the Cauchy inequality and the Poincaré inequality
that

F(t) < C(l' 0N + IVu@)]*) (15)
and

G(t) > (6 +wh —e)llu' ()] +e(1 = v/A) | Vu(®)]. (16)
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Thus, if 6 + wA; > 0, choosing small € > 0, we have from (14)-(16) that

d
ZF(t) + kF(t) <0 (17)

with some constant & > 0. Moreover, we observe from the Young inequality
and the Poincaré inequality that

F(E) 2 5 (I @I + (1= 2/ 2 I Vu(e)P)
5 (6 + o)l = 2 1w ()]
> 2= C @I + 51 =1/ M)IVu@I (18)

Thus, choosing small € > 0, we have from (17) and (18) that

llu' @I + [IVu(t)|* < CF(t) < CF(0)e™*

fort>0.0
References

[1] S. Alinhac, Blowup for Nonlinear Hyperbolic Equations, Progress in Nonlinear Differ-
ential Equations and Their Applications, 17 1995.

[2] J.M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution
equations, Quart. J. Math. Oxford Ser. (2), 28 (1977), 473-486.

[3] Y. Ebihara, S. Kawashima, and H.A. Levine, On solutions to ust — |z|*Au = f(u)
(a > 0), Funkcial. Ekvac., 38 (1995), 539-544.

[4] J.A. Esquivel-Avila, The dynamics of a nonlinear wave equation, J. Math. Anal. Appl.,
279 (2003), 135-150.

[5] F. Gazzola and M. Squassina, Global solutions and finite time blow up for damped
semilinear wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 185-
207.

[6] V. Georgiev and G. Todorova, Global solution for three-dimensional weak viscosity, C.
R. Acad. Bulgare Sci., 47 (1994), 17-20.

[7] R.T. Glassey, Blow-up theorems for nonlinear wave equations, Math. Z., 132 (1973),
183-203.

[8] R.Ikehata and T. Suzuki, Stable and unstable sets for evolution equations of parabolic
and hyperbolic type., Hiroshima Math. J., 26 (1996), 475-491.

[9] H. Ishii, Asymptotic stability and blowing up of solutions of some nonlinear equations,
J. Differential Equations, 26 (1977), 291-319.

[10] H.A. Levine, Instability and nonexistence of global solutions to nonlinear wave equa-

tions of the form Putt = —Au + F(u), Trans. Amer. Math. Soc., 192 (1974), 1-21.



26

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

Kosuke Ono

H.A. Levine, Some additional remarks on the nonexistence of global solutions to non-
linear wave equations, SIAM J. Math. Anal., 5 (1974), 138-146.

H.A. Levine and J. Serrin, Global nonexistence theorems for quasilinear evolution equa-
tions with' dissipation, Arch. Rational Mech. Anal, 137 (1997), 341-361.

H.A. Levine and G. Todorova, Blow up of solutions of the Cauchy problem for a wave
equation with nonlinear damping and source terms and positive initial energy, Proc.
Amer. Math. Soc., 129 (2001), 793-805.

M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for the
semilinear dissipative wave equations, Math. Z., 214 (1993), 325-342.

M. Ohta, Remarks on blowup of solutions for nonlinear evolution equations of second
order, Adv. Math. Sci. Appl, 8 (1998), 901-910.

K. Ono, Blowup phenomena for nonlinear dissipative wave equations, J. Math.
Tokushima Univ., 30 (1996), 19-43.

K. Ono, Global existence and decay properties of solutions for some mildly degenerate
nonlinear dissipative Kirchhoff strings, Funkcial. Ekvac., 40 (1997), 255-270.

K. Ono, On global solutions and blow-up solutions of nonlinear Kirchhoff strings with
nonlinear dissipation, J. Math. Anal. Appl., 216 (1997), 321-342.

K. Ono, On global existence, asymptotic stability and blowing up of solutions for some
degenerate non-linear wave equations of Kirchhoff type with a strong dissipation, Math.
Methods Appl. Sci., 20 (1997), 151-177.

L.E. Payne and D.H. Sattinger, Saddle points and instability of nonlinear hyperbolic
equations, Israel J. Math., 22 (1975), 273-303.

D.H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rational
Mech. Anal., 30 (1968), 148-172.

P. Souplet, Nonexistence of global solutions to some differential inequalities of the
second order and applications, Portugal. Math., 52 (1995), 289-299.

M. Tsutsumi, On solutions of semilinear differential equations in a Hilbert space, Math.
Japon., 17 (1972), 173-193.



J. Math. Univ. Tokushima 27
Vol. 42 (2008), 27—44

A Numerical Method for Distinction between
Blow-up and Global Solutions of the Nonlinear

Heat Equation
By

Hideo Sakaguchi and Hitoshi Imai

Institute of Technology and Science, The University of Tokushima
Minami-josanjima, Tokushima 770-8506, JAPAN
e-mail address:  saka@pm.tokushima-u.ac.jp
1mait@pm.tokushima-u.ac.jp
(Received September 30, 2008)

Abstract

The famous one-dimensional nonlinear heat equation is considered.
To this equation a numerical method for distinction between blow-up
and global solutions is proposed. Difficulty is in the treatment of the
global solution which is defined in the infinite interval. The bounding
transform is used to overcome this difficulty. Numerical experiments
show the validity of our method.

2000 Mathematics Subject Classification. 65-05, 65M70

Introduction

Following the unique paper|7] there have been a lot of preceding researches
on blow-up solutions for nonlinear heat equations. In the paper, the initial and
boundary value problem governed by the famous one-dimensional nonlinear
heat equation as follows:

Problem 1 For two parameters a 2 0, and T > 0, find u(¢, z) such that

Ut = Ugy + U2, O<t<T, O0<x<1,
u(t,0) =0, 0<t<T,
u(t,1) =0, 0st<T,
u(0,x) = asin7z, 0<zx<l.

Numerical methods have been proposed to such a problem with the blow-up
solution [14, 3, 9, 4]. They adopt the adaptive control on the time increment, i.e.
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the time increment varies depending on the solution. This technique is useful
for the computation of the blow-up time. The blow-up time 7T} in Problem 1
with a = 100 was computed to be approximately 0.01098[9].

By the way, it is well-known that Problem 1 has global solutions for small
initial data and blow-up solutions for large initial data[7, 5, 6, 12, 13]. Numer-
ical results by FDM@EE mentioned in §1 shows these situations(Fig.1).

12000
U 10000 }
800 06

70

(b) No blow-up (a = 1).

Fig. 1. Solution profiles.

For oo = 100 overflow easily occurs beyond ¢ = 0.0109, so Fig.1(a) is recog-
nized to show the profile of the blow-up solution. On the other hand, without
any theoretical results it is vague that Fig.1(b) show the profile of the global
decreasing solution because numerical computation is local.

In the paper a numerical method for distinction between blow-up and global
solutions is proposed. Difficulty is global computation in time. To overcome
this difficulty the bounding transform[10] is adopted. For precise numerical
computation spectral collocation method is adopted. This method may offer
new possibility of computation of the blow-up time.

1 Owur numerical method

We consider the more complicated problem which is derived from Problem
1 by using the following transformations:

T=t/8, 4(r,z)=Pu(t,)

where [ is a positive constant. Then, Problem 2 is obtained.
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Problem 2  For three parameters « 2 0, 8 > 0, and T > 0, find 4(7, z) such
that

ﬂ7=ﬁﬂm+ﬁ2, 0<7<T/B, 0<z<1,
u(r,0) = 0=7<T/B,

u(r, 1) = 0s7<T/B,

4(0,z) = Basinnz, 0<z<l1.

If 8 = 1 Problem 2 is equivalent to Problem 1. For small 4 the blow-up time
To(= Tp/B) becomes large. In this case numerical distinction that the solution
is the global one or the blow-up one becomes difficult. For example, T, = 0.11
in Problem 1 corresponds to 7, = 0.11 x 108 in Problem 2 with 3 = 10~8. The
following bounding transform on 7 is introduced for the treatment of the global
solution[10].

s <() 27 )
T = S(7) = ————} .
1— s 1+ V1 + 472

The interval [0,00) on 7 is mapped onto the interval [0,1) on s. From this
transform Problem 2 becomes the following Problem 3.

Problem 3  For three parameters & 2 0, 8 > 0, and T > 0, find @(7,x) such
that

. 1482 Y

uS:(l—_SQ—)E(,Bum+u), 0<s<s(T/B), 0<z<1,
u(s,0) =0, 0= s<s(T/B),

u(s,1) =0, 0 < s<s(T/B),

(0,z) = Basinwz, 0<zx<l1.

This problem is defined in the bounded domain and s(7/3) = 1 means T' = oo.
Thus, the global solution in Problem 2 can be computed by solving Problem 3.

Our method for distinction between blow-up and global solutions is as fol-
lows.

Numerical computation is carried out by two types of discretization. One
is FDM@EE(second order finite difference method in space and first order ex-
plicit Euler method in time) and another is SCM(spectral collocation method)
which is easily applicable to nonlinear problems|[2]. In SCM Chebyshev-Gauss-
Lobatto(CGL) collocation points are used in space, and Chebyshev-Gauss-
Radau(CGR) collocation points or CGL points are used in time. Discretized
equations by SCM are nonlinear, so Newton method is used for solving them. If
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exponential convergence of numerical solutions by SCM is obtained, then (con-
verged) numerical solutions are very accurate and reliable[2, 11]. In FDM®EE
the adaptive control on the time increment is not used for global computing.
FDM@EE is so simple that it is firstly applied for rough numerical computa-
tion.

Concrete procedure is as follows:
0) Set s; = 0 and choose the time increment As(> 0) for EE adequately.

1) For s; £ s compute the solution profile by using FDM@EE. If necessary
As may be varied or multiple precision is adopted. (If overflow occurs at
5 = S¢(< 1) then the solution is probably of the blow-up type. If numerical
computation works well until s = s, = 1 then the solution is probably of
the global type.)

2) Referring the solution profile obtained for s; < s < s, in the above step 1),

choose the interval [s;, s.](s, £ s.) where the profile seems to be smooth

and carry out numerical computation by SCM in this interval. s,.(< s.)
should be chosen for realizing exponential convergence. In this interval
there is no blow-up solution. In the case where s, < 1 and Newton method
does not converge determination of the blow-up solution is done referring

the solution profile.

3) If distinction between blow-up and global solutions can not be clear in the
above step 2), set s; = s, and go to the step 1) with the initial data at
s = s, that is computed in the step 2).

The above procedure is not rigorous. In the practical situation trial and error
is inevitable.

We should remark that our method is not perfect. For example, the grow-up
solution in Problem 2 becomes the discontinuous solution at s = 1 in Problem
3. Numerical computation to such a solution is very difficult[16]. However, our
method can realize global numerical computation and it may offer a new field
of numerical analysis.

2 Numerical results

Numerical computation is basicly carried out in double precision. However,
some results are computed in multiple precision[8].

In SCM N;, N, denote approximation orders on the time and space vari-
ables, respectively. In FDM@®EE N,, N, denote devision numbers on the time
and space variables, respectively. As =2/N,;, Az = 2/N,. Moreover, N, = 20
in FDM®EE because FDM®&EE is used only for rough computation of the
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solution profile. The following Erry is used for checking the convergence of
solutions by SCM.

oSAX lun (85, 2i) — vN+10(85, Ti)]

Erry =

b
ognz‘l,?gso luN+10(85, Ti)|

11:2/50, s = (se—sl)j/50+s[’ Z,]:O, 750

where vy (s;, ;) is the interpolant for the data 4(s;,z;) which is computed in
0<z=1, s; £s< s, by SCM with N = N, = N,. s; is the CGL or CGR
points. z; is the CGL points. In SCM discretized equations are nonlinear, so
Newton method is used. The convergence of Newton method is determined
whether the absolute relative difference of numerical solutions is smaller than
£(e = 10713 in double precision, € = 10747 in 50 digits) or not in 20 iterations.

(i) In the case of 8 = 1.
Numerical results for « = 1 by FDM@&EE are shown in Fig.2 and Table 1.

1.6e+120
11 1.2e+120
8e+119
4e+119

Table 1. Overflow time
(B=1, a=1, N, = 20).
As time
5x 1074 | 0.6235
10~4 0.8269
107° 0.94328

10-© 0.981787

Fig. 2. Solution profile by FDM®EE
(B=1, a=1, N, =20, As =5 x 107%).

Table 1 shows that the overflow time approaches to 1 as As becomes small.
So, the solution profile in Fig.2 seems not to be one of the blow-up solution.
Then, numerical computation by SCM with CGL points on z and CGR points
on s is carried out for 0 < s < 1(Fig.3).
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le-005
2,
~
LS 1¢-006
1e-007
le-008
20 30 40 50 60 70
N
(a) Solution profile(N = 80). (b) Behavior of Erry.
oy 1e-005
g
= 1e-006
z
=2
Z;, 1e-007
x
c\S\LH
E\/” 1e-008
[=]

Le-009
20 30 40 50 60 70 80

(c) Behavior of max lun(1,z:)], x;: CGL points.
0o

=t1=INVg

Fig. 3. Numerical results by SCM with CGL&CGR(8 =1, a = 1).

Fig.3(b) shows exponential convergence of numerical solutions. So, the con-
verged numerical solution is recognized to be reliable. Fig.3(c) shows that
values of numerical solutions at s = 1(T = oo in Problem 1 or 2) converge to 0,
then it suggests the existence of the global decreasing solution for 3 =1, a = 1.

Numerical results for @ = 100 by FDM@&EE are shown in Fig.4 and Table
2. From Table 2 the overflow time approaches to a constant s, < 1 as As
becomes small. This suggests the existence of the blow-up solution with the
blow-up time sp. Thus, numerical computation by SCM with CGL points is
carried out for 0 < s < 0.0109(Fig.5). The interval on s is divided in numerical
computation for realizing exponential convergence(Figs.5(a-2),(b-2)). Fig.5(c)
is obtained by joining Figs.5(a) and (b).
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Table 2. Overflow time
4e+279 (ﬂ = 17 = 1005 NI = 20)
i j‘”izz As time
1er279 5x 1074 0.0175
0 10-4 0.0124
. 107° 0.01113
1076 0.010983
1077 0.0109666
Fig. 4. Solution profile by FDM®EE
(=1, a =100, N, =20, As =5 x 107%).
oo
Z 1e-005
N 16-006
€3} 1e-007
1e-008
1e-009
le-010
le-011
ey 30 s 50 ) 7
N
(a-1) Solution profile(N = 80) (a-2) Behavior of Erry
(a) 0 £ s<0.01.
0.1
14000
12000
10000
8000 2, 001
6000 «
_ &
- S
0.011 0.001
0.0108
0.0106
104 g
T 08 77001 0.0001
20 30 40 50 60 70
N
(b-1) Solution profile(N = 80) (b-2) Behavior of Erry

(b) 0.01 < s < 0.0109.
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(c-1) Solution profile(N = 80)
(c) 0 < s £0.0109.
Fig. 5. Numerical results by SCM(8 =1, a = 100).

(ii) In the case of 3 = 1078,
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(a)
001
0.0001

1e-006
1e-008

1e-010

le-012

20 30 40 50 60 70

N
(c-2) Behavior of Erry

Numerical results for & = 1 by FDM®EE are shown in Fig.6. Fig.6(a) with
As =5 x 107 suggests the global solution. From Fig.6(b) values of solutions
at s = 1(T = oo) converge to 0 as As becomes small. Thus, the solution profile
in Fig.6(a) is not precise. The solution profile with As = 10~7 in Fig.6(c) may
be precise and it suggests the existence of the global decreasing solution. In
Fig.6(c) the view angle is different from that in Fig.6(a).

7
Y

1 A2e-88§

~ ICA
U 8e-009
6¢-009
4¢-009
26-000
0

0
’/x

7
7
7
7
.
%
///,

7,
7
.

N
\\N
N
NNt
A\

%,
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(a) Solution profile(As = 5 x 1074).

1e-008
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0SiSN;

1e-009
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(b) Behavior of max |u(1, ;)]
0<SiSN,

Ty = 1Az,
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(c) Solution profile(As = 10~7).
Fig. 6. Solution profiles by FDM@EE(8 =108 a=1, 0<s <1).

For more precise numerical computation SCM is applied in divided intervals for
0 £ s < 1 referring rough numerical results by FDM®EE in Fig.6. Numerical
results are shown in Fig.7. Solution profiles for 0 £ s < 0.9999 by SCM in
Figs.7(a-1),(a-3) are reliable because Figs.7(a-2),(a-4) show exponential con-
vergence in each interval. For patching data across the interval CGL points are
used on s. Fig.7(b-1) shows the rough solution profile for 0.9999 < s < 1 by
FDM@®EE. From Fig.7(b-1) the solution is smooth for 0.9999 < s < 0.999999.
Then, SCM is applied in this interval and it gives the solution profile in Fig.7(b-
2) which is reliable due to exponential convergence in this interval(Fig.7(b-3)).
Rough numerical computation for 0.999999 < s < 1 by FDM®EE is shown in
Fig.7(c-1). Multiple precision is used because double precision induces oscil-
lation. Referring this solution profile SCM in multiple precision is applied in
divided intervals for 0.999999 < s < 1(Figs.7(c-2)~(c-5)). Values of solutions
at s = 1 in Fig.7(c-6) show the existence of the global decreasing solution for
B =10"8, a = 1. Fig.7(d) is obtained by joining Figs.7(a)~(c).
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(a-1) Solution profile by SCM (a-2) Behavior of Erry
(0<5<0.99, N = 80). (0 < s <0.99).



36 Hideo Sakaguchi and Hitoshi Imai

0.0001
- éeggg 1¢-005
U oo 2,
4e-009 55: 1e-006
26-009 S
0 le-008
le-009
20 30 40 50 60 70
N
(a-3) Solution profile by SCM (a-4) Behavior of Erry
(0.99 < s <0.9999, N = 80). (0.99 < s < 0.9999).

R \\\\\\\\\\\\\
nnikk
nNink
NnNnimnhinmil
AN
AR

(b-1) Solution profile by FDM&EE(0.9999 < s <1, As =5 x 1078).

0.001

0.0001

Erry

le-005

1e-006

1e-007
el 30 40 50 60 70

N

(b-2) Solution profile by SCM (b-3) Behavior of Erry
(0.9999 < s < 0.999999, N = 80). (0.9999 < s < 0.999999).



Distinction between Blow-up and Global Solutions 37

]
Ik
7

7

%

////

///
Y
7

I
7
7

7

l
//////

\
N\
N

2,
///

7
1,
2

7
W
7

’///

7

iy
'I/';I
7
)
W
7
2

%

7
qy
7

[

N
\\i\
NK
N

Il
y

17
%,
o,
1AL
M,
55
2

(c-1) Solution profile by FDM®EE(0.999999 < s <1, As =5 x 10710,

200digits).
0.0001
1e-005
gf 1e-006
| 2, le-007
gf & 1e-008
< €3] le-009
0.999999 o010
le-011
1 le-012
1le-013
.2
o 0257099999995 o
20 30 40 50 60 70
N
(c-2) Solution profile by SCM (c-3) Behavior of Erry
(0.999999 < s < 0.99999995, (0.999999 < s < 0.99999995).
N = 80, 50digits).
0.0001
g 7 ,‘33:31:1:';’:’;‘:’;:,‘. 1e-005
< s 5:2 o
€~
- i R e
0.99999995  1e009
0 1e-010
le-011
x 081 1e-012
20 30 40 50 60 70
N
(c-4) Solution profile by SCM (c-5) Behavior of Erry

(0.99999995 < s < 1, N = 80, 50digits). (0.99999995 < s < 1).



38 Hideo Sakaguchi and Hitoshi Imai

le-013

T le-014
8
- le-015
~—~
3 le-016
& 1e-017
Z
é\/“ le-018
VIt le-019
=]

1e-020

le-021
20 30 40 50 60 70 80

N
(c-6) Behavior of max |u(1,z;)|, z;; CGL points.
0<iSN,

0.0001

A
\ R SRR
R Y
R R R e
N \t‘\\\‘t\k“\

N le-006
S X
R
W

N
R

SR

Erry

le-008
0 1e-010

fe-012

xr 0! le-014
20

(d-1) Solution profile by SCM (d-2) Behavior of Erry
(0<s<1). (0Ss<1).
Fig. 7. Numerical results(3 = 1078, a = 1).

Numerical results for @ = 100 by FDM@EE are shown in Fig.8. Fig.8(a) is
obtained with As(= 5 x 10™%) which is not so small and it suggests that the
solution is global. However, Fig.8(b) shows that the value of the solution at
s = 1{T = oo) grows as As becomes small. Fig.8(c) shows the solution profile
with As = 107 and it suggests the existence of the blow-up solution.
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Fig. 8. Solution profiles by FDM@&EE(3 = 1078, a =100, 0 <5 < 1).

For more precise numerical computation SCM is applied in divided intervals for
0 < s < 1 referring rough numerical results by FDM®EE in Fig.8. Numerical
results are shown in Fig.9. The procedure is same as in Fig.7. Solution profiles
for 0 £ s £ 0.99999954 by SCM in Figs.9(a-1, 3, 5, 7, 9) are reliable because
Figs.9(a-2, 4, 6, 8, 10) show exponential convergence in each interval. Fig.9(b)
is obtained by joining Fig.9(a). Here, s = 0.99999954 corresponds to 7 =
0.10869563 x 107. This means that numerical computation about the blow-up
time is satisfactory.
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(a-7) Solution profile by SCM
(0.999995 < s < 0.9999995, N = 80).

(a-9) Solution profile by SCM

(0.9999995 < s < 0.99999954, N = 80).

(b-1) Solution profile by SCM
(0 £ 5 £0.99999954).
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Fig. 9. Numerical results(3 = 1078, a = 100).
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(iii) Blow-up time and complex Newton method

Former numerical methods([9, 14] for computing the blow-up time used the
adaptive control on the time increment depending on the solution. From the
view point of the solution profile we may propose the different idea for com-
puting the blow-up time as follows. The profile of the blow-up solution has
singularity in the bounded domain. On the other hand, the numerical method
SCM determines the solution profile and it is very sensitive to singularity even if
singularity exists outside the domain[15]. These suggest that SCM can feel the
blow-up time as singularity. Together with numerical continuation[11]. SCM
may offer a new approach for computing the blow-up time.

The solutions of problems considered here do not exist beyond the blow-up
time[1]. This suggests that SCM fails in the time-space domain including the
blow-up time. Problem 2 with 8 = 1, a = 100 has the blow-up time 7, ~
0.0109(9]. In the time-space domain as 0 < 7 < 0.013 discretized equations by
low order SCM(N, = N, = 4) can be solved by Newton method. The solution
profile is shown in Fig.10(a). On the other hand, discretized equations by higher
order SCM cannot be solved by Newton method. If Newton method does not
converge it gives apprehension rather than no information. Thus, application of
complex Newton method is considered. It works well and it gives the solution
profiles as Fig.10(b). From these numerical results and Fig.5(c) the blow-up
time 7 of Problem 2 with 8 = 1, a = 100 is estimated as 0.010901 --- < 7, <
0.013. Tt is interesting that estimation from above is numerically obtained.

(a) Real Newton method, N, = N, = 4.
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(b) Complex Newton method, N, = N, = 30.
Fig. 10. Solution profiles by SCM(8 =1, a = 100,0 < 7 £ 0.013).

3 conclusion

In the paper a numerical method for distinction between blow-up and global
solutions is proposed. It consists of finite difference method, explicit Euler
method, spectral collocation method, bounding transform, Newton method
and multiple precision arithmetic. Our method is applied to a famous one-
dimensional nonlinear heat equation. Numerical results are satisfactory. More-
over, the blow-up time is estimated from above in some case. In the paper
complex Newton method is also used. Its new applicability is our future work.
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