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Abstract

We study the initial-boundary value problem for the sublinear
wave equations with a linear dampping : u” — Au — wAU' + du' =
y|uP~2u with the homogeneous Dirichlet boundary condition and
Hi () x L?(Q)-data condition under w > 0 and § > —w);. When
1 < p < 2, we show that the (local) weak solutions are global and
uniformly bounded in time ¢ > 0.
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1 Introduction

We consider the initial-boundary value problem for the following semilinear
wave equation :

u' — Au—wAu' +0u' = f(u), u=u(z,t), inQx][0,0c0) (1)
with homogeneous Dirichlet boundary condition
u=0 on N
and initial conditions
u(z,0) = up(z) and u'(z,0) =u;(z),

where © is a bounded domain in RY with smooth boundary 89, ' = 9/0t,
A=V-V = Zj\;l 8?/8z? is Laplacian, w and § are constants such that w > 0
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and d > —wA; with A\; being the first eigenvalue of the operator —A under the
homogeneous Direchlet boundary condition, that is,

_ [V
weH @\{0} [lul?>

and
f@) =AW, ¥>0, p>1. 2)

In the supperlinear case (p > 2), it is well known that the so-called potential
well method is useful to the analysis of global existence for problem (1). (see
Sattinger [21], Tsutsumi [23], Payne-Sattinger [20], and also, [8], [9], [14], [18]),
and moreover, the concavity method is applied to the analysis of finite time
blow-up phenomena (see Tsutsumi [23], Levine [10], [11], and also, [1], [2], [3],
(7], [13], [15], [16], [22]).

In order to explain some known results for p > 2, we define the total energy
associated with (1) by

1
Blu,u') = /| + I (w)

where we put

1 Y
J(u) §I|Vull2 - ;IIUII,‘S

(3-3) 19ulP + 11w

with
I(u) = ||Vull* = yllull}

and we define the mountain pass level d (also known as the potential well depth)
by

d= sup J(/\u))

inf <
w€HG()\{0} \1>0

(see Sattinger [21], Tsutsumi [23], Payne-Sattinger [20]).

When the power p in (2) satisfies that p > 2and p < 2(N—-1)/(N-2)if N >
3, many authors have already studied on global existence or finite time blow-up
of (local) weak solutions in the class C([0,T); Hi (Q))NC*([0,T); L*()) for the
problem (1) with the initial data (ug,u;) € Hg(2) x L?(Q) satisfying suitable
conditions : (i) if E(ug,u1) < d and I(ug) > 0, then there exists a unique global
solution wu(t) satisfying ||u(t)||g + ||u'(¢)|| = 0 as t — oo ; (ii) if E(ug,u;) < d
and I(up) < 0, then the local solution u(t) blows up at some finite time, that
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is, there exists a finite time 7™ < oo such that ||u(t)||g: — o0 as t — T* ;
moreover (iii) when w = 0, if E(ug,u1) > d, I(uo) < 0, {luo|l > sup{||¢] ! ¢ €
Hi(\{0} with (1/2—1/p)[IVe|* < E(uo,u1)}, and [, uuy dz > 0, then the
local solution u(t) blows up at some finite time (see Gazzola-Squassina [5]). We
note that if E(u(t),u'(t)) > d for all ¢ > 0, then lim;—, o, E(u(t),u'(t)) exists,
and when w =0,p>2,and p<2(N—=1)/(N=2)if N >30orp<6if N =2,
the local solution u(t) is global and bounded (see Esquivel-Avila [4]).

On the other hand, when the power p in (2) satisfies that 1 < p < 2, we see
that for the initial data (ug,u1) € HL(Q)x L2(£), the (local) weak solution u(t)
in the class C([0,7); H(Q)) N CH([0,T); L3(Q)) is global. In particular, from
Remark 3.10 in Gazzola and Squassina [5], we know that the global solution
u(t) satisfies

lu()llzs + ' (@) < C(L+ 8P4 if p < 2
lu(@llzr + [l ()] < Ce* if p=2

with some a > 0, for ¢ > 0, but we can not know boundedness of global
solutions.

The purpose of this paper is to show boundedness of global solutions of (1)
in the case 1 < p < 2 (i.e. sublinear case).

Our main result is as follows.

Theorem 1.1 Let1 <p <2, and let w > 0 and § > —wA;. Suppose that the
indtial data (uo,uy) belong to H () x L*(2). Then, the problem (1) admits
a unique global solution u(t) in the class C([0,00); HE(Q)) N C*([0, 00); L2(N))
satisfying

lu(®)llz: + ' O < C + Cloe™™
with some constants C > 0, k > 0, and Iy = ||[Vuol| + ||lu1||, for t > 0.

On the other hand, in the case p = 2 we have the following.

Theorem 1.2 Let p = 2, and let w > 0 and & > —w);. Suppose that the
indtial data (uo,u1) belong to H(Q) x L*>(2). Then, the problem (1) admits
a unique global solution u(t) in the class C([0,00); Hi(22)) N C([0,00); L*(Q))
satisfying that ||[u(t)|| g + |[u'(t)]| < Cloe®t, and moreover, if v < Ay,

lu()llg + [l (8)]] < Cloe™
with some constants C > 0, & > 0, k> 0, and Iy = ||Vuo|| + ||u1]|, for t > 0.

We use only familiar functional spaces and omit the definitions. We denote
LP(Q)-norm by || - ||, (we often write || - || = || - ||z for simplicity). Positive
constants will be denoted by C' and will change from line to line.



22 Kosuke Ono

2 Proofs

By applying the Banach contraction mapping theorem, we obtain the fol-
lowing local existence theorem (e.g. see [6], [12], [17], [19]).

Proposition 2.1 Letp>1 andp < 2(N —1)/(N —2) if N > 3. Suppose that
the initial data (ug,u;) belong to H} () x L*(Q). Then, there exists a unique
(local) weak solution u(t) in the class C([0,T); H(Q)) N CL([0,T); L3(Q)) of
problem (1), that is,

%/ ()wdx+/Vu( )dem—i—w/Vu t)Vw dx
Q

+ 5/ Hwdz = / flu(t)wde
a.e. in (0,T) for every w € H ().

Moreover, if supg<ycq (|[u()||mr + [[u'(£)]]) < oo, then the solution u(t) can
be continued to T + ¢ for some € > 0.

Proof of Theorem 1.1. Multiplying (1) by u' and integrating it over Q, we
have

d

B0+l @I + ol ()1 = /Q fu(®)u'(t) dz, (3)

where Ej (t) is defined by

Ey(t) = By (u(t),u'(t) = % (Il O + [IVu@®)?) -
And, multiplying (1) by u and integrating it over {2, we have
3 (GITuOP + o1l +2 [ wu')ae) (@
IV = WO = [ ful)ut) do.
Then, taking (3) 4+ ¢ x (4) for any small ¢ > 0, we have
%Fl )+ Gt / f(u t) +eu(t)) dz, (5)

where Fi(t) and G1(¢) are defined by

R0 = B0+ 5 (@lTuP + (ol +2 | ulon'0) o)
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and
G1(t) = (@lIVu' @O + ollw' BD)]17) + & (IVu@)® = lu' (D)) -

Here, it is easy to see from the Cauchy inequality and the Poincaré inequality
that

Fi(t) < Ol @)1 + IVu(®)]?) (6)
and
Gi(t) > (8 +wh — &)l (B)]1* + el Vu@)|*. (7)

Thus, if § + wA; > 0, choosing small € > 0, we have from (5)—(7) that

GRO+2HR0 < [ 1(u0) @) +eult) do (®)

with some constant k > 0. Moreover, we observe from the Young inequality
and the Poincaré inequality with p < 2 that

/Qf(U(t)) (W' (t) +eu(t)) dz < Cll' Ollplu@®IE™ + Cllu)ll}
< Cld ONIVu@®IP= + ClIvu@dlr  (9)

and by 0 +wA; > 0,

(1= Co)llu' O)II* + %IIVU(t)II2 : (10)

Thus, choosing small € > 0, we have from (8)—(10) that

%Fl(t) + 2kF1(t) < CFl(t)p/Z < kFl(t) +C,,

where we used the Young inequality together with the fact that 1/2 < p/2 < 1
at the last inequality, and hence,

Fi(t) < % + F(0)e~kt, (11)

Therefore, we obtain from (10) and (11) that
lu' @)* + [[Vu@)|* < CFi(t) < C + CIie™

fort>0. 0



24 Kosuke Ono

Proof of Theorem 1.2.  Since p = 2 in (2), we have from (3) and the
Poincaré inequality that

d !
ZE1(®) < vll@llll’ @Ol < a B (2)
with some constant a > 0, and hence, we have

[l O + [[Vu@)]* < 2E1(0)e™

for t > 0.
Next, let v < A\;. Since p = 2 in (2), we have from (3) and (4) that
d
ZE®) + VU @I + ol (4)]* = 0 (12)
and
d1l
—= (w]qu(t)H2 + 6||u(t)||® + 2/ u(t)u'(t) dx> (13)
dt 2 Q

+IVu@®ll? = Allu@)® I’ @)I1* = 0,
respectively, where we write
B(t) = By(9) = 2@l = 5 (WO + 17 ~7lu()]?)

for simplicity. Then, taking (12) + € x (13) for any small € > 0, we have

d
ZF®+GH) =0 (14)

where F'(t) and G(t) are defined by

F(t) = E(t) + % <w||Vu(t)||2 + 8)|u(®)])® + Z/Qu(t)u’(t) dw)
and
G(t) = (Ve AN + dllu' O11P) + e (IVu@®I® = yllu@®]® = lu' @) -

Here, it is easy to see from the Cauchy inequality and the Poincaré inequality
that

F(t) < C(l' 0N + IVu@)]*) (15)
and

G(t) > (6 +wh —e)llu' ()] +e(1 = v/A) | Vu(®)]. (16)
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Thus, if 6 + wA; > 0, choosing small € > 0, we have from (14)-(16) that

d
ZF(t) + kF(t) <0 (17)

with some constant & > 0. Moreover, we observe from the Young inequality
and the Poincaré inequality that

F(E) 2 5 (I @I + (1= 2/ 2 I Vu(e)P)
5 (6 + o)l = 2 1w ()]
> 2= C @I + 51 =1/ M)IVu@I (18)

Thus, choosing small € > 0, we have from (17) and (18) that

llu' @I + [IVu(t)|* < CF(t) < CF(0)e™*

fort>0.0
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