A Note on Symmetric Differential Operators and

Binomial Coefficients

By

Ruishi Kuwabara

Faculty of Integrated Arts and Sciences, The University of Tokushima, Minami-Josanjima, Tokushima 770-8502, JAPAN e-mail: kuwabara@ias.tokushima-u.ac.jp

(Received September 30, 2008)

Abstract

In this note we derive some identities concerning the binomial coefficients by considering a certain n-th order symmetric differential operator on \mathbb{R}^m associated to the function $p(x,\xi)(x\in\mathbb{R}^m)$ which is a homogeneous polynomial in ξ .

2000 Mathematics Subject Classification. 05A10

Introduction

Let $\binom{n}{k}$ denote the binomial coefficients, namely

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k.$$
 (1)

Various formulas for the binomial coefficients are well known (see e.g. [1], [2]). For example we have

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}, \tag{2}$$

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0, \tag{3}$$

$$\sum_{k=r}^{n} (-1)^{k-r} \binom{k}{r} \binom{n}{k} = 0 \qquad (n \ge r), \tag{4}$$

which are easily obtained from (1). (The last one is obtained by differentiating (1) r times relative to x, dividing by r!, and putting x = -1.)

In this note we consider a certain linear symmetric differential operator, and derive some identities concerning the binomial coefficients (Corollaries 5 and 6).

1. Symmetric differential operators

Let $C_0^{\infty}(\mathbb{R}^m)$ denote the space of complex-valued C^{∞} functions on \mathbb{R}^m with compact support. Suppose the space $C_0^{\infty}(\mathbb{R}^m)$ is endowed with the inner product (\cdot,\cdot) defined by

$$(f,g) := \int_{\mathbb{R}^m} f(x)\overline{g(x)} \, dx_1 \cdots dx_m \qquad (f,g \in C_0^{\infty}(\mathbb{R}^m)).$$

Let D_j $(j=1,\ldots,m)$ denote the differential operator $\frac{1}{i}\frac{\partial}{\partial x_j}$ $(i:=\sqrt{-1})$. Then, D_j is a *symmetric* operator, namely,

$$(D_j f, g) = (f, D_j g)$$
 $(f, g \in C_0^{\infty}(\mathbb{R}^m))$

holds.

Let us consider a function $p(x,\xi)$ of variables $(x_1,\ldots,x_m,\xi_1,\ldots,\xi_m)$ which is a polynomial in ξ_j 's:

$$p(x,\xi) = \sum_{p=0}^{n} \left[\sum_{j_1,j_2,\dots,j_p} a^{j_1 j_2 \dots j_p}(x) \xi_{j_1} \xi_{j_2} \dots \xi_{j_p} \right],$$

where $a^{j_1j_2\cdots j_p}(x)$'s are symmetric with respect to the indeces j_1, j_2, \ldots, j_p .

The function $p(x,\xi)$ is regarded as an "observable" in the phase space $T^*\mathbb{R}^m$ of classical mechanics. In theory of quantum mechanics the classical observable $p(x,\xi)$ corresponds to a self-adjoint operator on the Hilbert space $L^2(\mathbb{R}^m)$ according to the corresponding rule of variables:

$$\xi_i \mapsto D_i, \qquad x_i \mapsto x_i \times .$$

We consider the symmetric (formally self-adjoint) operator corresponding to the homogeneous polynomial of degree n given by

$$p_n(x,\xi) = \sum_{j_1,j_2,\dots,j_n} a^{j_1j_2\dots j_n}(x)\xi_{j_1}\xi_{j_2}\dots\xi_{j_n}.$$

By applying the corresponding rule directly to $p_n(x,\xi)$ we get the *n*-th order differential operator

$$P_n = \sum_{j_1, j_2, \dots, j_n} a^{j_1 j_2 \dots j_n} (x) D_{j_1} D_{j_2} \dots D_{j_n}.$$

Lemma 1 The adjoint operator P_n^* of P_n is given by

$$P_n^* = \sum_{j_1, \dots, j_n} D_{j_1} \cdots D_{j_n} (\bar{a}^{j_1 \cdots j_n}(x) \cdot)$$

$$= \sum_{p=0}^n \binom{n}{p} \sum_{j_{p+1}, \dots, j_n} (\sum_{j_1, \dots, j_p} D_{j_1} \cdots D_{j_p} \bar{a}^{j_1 \cdots j_n}(x)) D_{j_{p+1}} \cdots D_{j_n},$$

where $\bar{a}^{j_1\cdots j_n}(x)$ denotes the complex conjugate of $a^{j_1\cdots j_n}(x)$.

Remark The property $(P_n^*)^* = P_n$ (formally) derives the formula (4). In fact, by virtue of Lemma 1 we have

$$(P_n^*)^* = \sum_{p=0}^n (-1)^p \binom{n}{p} \Big\{ \sum_{q=0}^{n-p} \binom{n-p}{q} \sum_{j_1,\dots,j_n} (D_{j_1} \cdots D_{j_{p+q}} a^{j_1 \cdots j_n}(x)) D_{j_{p+q+1}} \cdots D_{j_n} \Big\}.$$

The (n-r)-th order differential term of $(P_n^*)^*$ is given by

$$\sum_{p+q=r} (-1)^p \binom{n}{p} \binom{n-p}{q} \sum_{j_1,\dots,j_n} \left(D_{j_1,\dots,j_r} a^{j_1\dots j_r}(x) \right) D_{j_{r+1}} \dots D_{j_n}.$$

Hence, for $1 \le r \le n$ we have

$$0 = \sum_{p+q=r} (-1)^p \binom{n}{p} \binom{n-p}{q}$$
$$= \sum_{p=0}^r (-1)^p \binom{n}{n-p} \binom{n-p}{r-p} = \sum_{p=0}^r (-1)^p \binom{n}{n-p} \binom{n-p}{n-r},$$

that is nothing but the formula (4).

In order to obtain the symmetric operator P corresponding to $p_n(x,\xi)$ we put

$$P = \sum_{j_1, \dots, j_n} a^{j_1 \dots j_n}(x) D_{j_1} \dots D_{j_n} + \sum_{p=1}^n c_{n-p} \left[\sum_{j_1, \dots, j_n} \left(D_{j_1} \dots D_{j_p} a^{j_1 \dots j_n}(x) \right) D_{j_{p+1}} \dots D_{j_n} \right], \quad (5)$$

where $a^{j_1 \cdots j_n}(x)$'s are real-valued functions, and c_{n-p} 's are complex constants.

Proposition 2 The operator P is symmetric, i.e., $P^* = P$ if and only if the coefficients c_{n-p} (p = 1, 2, ...n) satisfy

$$c_{n-p} = (-1)^{p} \bar{c}_{n-p} + (-1)^{p-1} \binom{n-p+1}{1} \bar{c}_{n-p+1} + (-1)^{p-2} \binom{n-p+2}{2} \bar{c}_{n-p+2} + \cdots + (-1)^{p-2} \binom{n-p+2}{2} \bar{c}_{n-p+2} + \cdots + (-1)^{p-2} \binom{n-p+2}{2} \bar{c}_{n-p+2} + \cdots$$

$$\cdots - \binom{n-1}{p-1} \bar{c}_{n-1} + \binom{n}{p}.$$
(6)

Proof. The assertion is directly derived by comparing the coefficients of (n-p)-th order differential terms in P and P^* .

As examples of symmetric operators of the form (5) we have the following:

$$\sum_{j} a^{j}(x)D_{j} + \frac{1}{2} \sum_{j} D_{j}a^{j}(x),$$

$$\sum_{j,k} a^{jk}(x)D_{j}D_{k} + \sum_{k} \left(\sum_{j} D_{j}a^{jk}(x)\right)D_{k},$$

$$\sum_{j,k,l} a^{jkl}(x)D_{j}D_{k}D_{l} + \frac{3}{2} \sum_{k,l} \left(\sum_{j} D_{j}a^{jkl}(x)\right)D_{k}D_{l} - \frac{1}{4} \sum_{j,k,l} D_{j}D_{k}D_{l}a^{jkl}(x).$$

Observing these examples we assume the coefficients c_{n-p} (p = 1, 2, ..., n) to be

$$c_{n-p} = \begin{cases} \text{a real number} & (p : \text{odd}) \\ 0 & (p : \text{even}) \end{cases}$$
 (7)

Theorem 3 For any $n \in \mathbb{N}$, and any real valued functions $a^{j_1 \cdots j_n}(x)$ there exists an unique n-th order symmetric differential operator P of the form (5) satisfying the condition (7).

Proof. First we show the existence of P (cf. [3, Lemma 4.2]). Let $Q_0 := \sum a^{j_1 \cdots j_n}(x) D_{j_1} \cdots D_{j_n} (= P_n)$. Put

$$Q_1 := \frac{1}{2}(Q_0 + Q_0^*).$$

Then, by means of Lemma 1 Q_1 is a symmetric operator with the *n*-th order term being equal to Q_0 , and the coefficients

$$\frac{1}{2} \binom{n}{p} \sum_{j_1,\dots,j_p} D_{j_1} \cdots D_{j_p} a^{j_1 \cdots j_p \cdots j_n}(x)$$

of the (n-p)-th order term of Q_1 are real if p is even. Let P_{n-2} denote the (n-2)-th order term of Q_1 , and put

$$Q_2 := Q_1 - \frac{1}{2}(P_{n-2} + P_{n-2}^*).$$

Then, Q_2 is a symmetric operator of the form (5) with c_{n-p} being real and $c_{n-2} = 0$.

Next, let P_{n-4} be the (n-4)-th order term of Q_2 , and put

$$Q_4 := Q_2 - \frac{1}{2}(P_{n-4} + P_{n-4}^*).$$

Then, Q_4 is a symmetric operator of the form (5) with c_{n-p} being real and $c_{n-2} = c_{n-4} = 0$. Thus by continuing this process we get Q_2, Q_4, Q_6, \ldots , and we obtain the required operator P as Q_{n-1} if n is odd, or Q_n if n is even.

Next, we show that the coefficients c_{n-p} is uniquely determined by the condition (6) under the assumption (7).

Suppose \underline{n} is odd. The condition (6) for $p=1,2,\ldots$ gives a system of linear equations for $c_{n-1},c_{n-3},\ldots,c_2,c_0$ as follows:

$$2c_{n-1} = \binom{n}{1},$$

$$\binom{n-1}{1}c_{n-1} = \binom{n}{2},$$

$$2c_{n-3} + \binom{n-1}{2}c_{n-1} = \binom{n}{3},$$

$$\binom{n-3}{1}c_{n-3} + \binom{n-1}{3}c_{n-1} = \binom{n}{4},$$

$$\vdots$$

$$\binom{2}{1}c_2 + \binom{4}{3}c_4 + \dots + \binom{n-1}{n-2}c_{n-1} = \binom{n}{n-1},$$

$$2c_0 + \binom{2}{2}c_2 + \binom{4}{4}c_4 + \dots + \binom{n-1}{n-1}c_{n-1} = \binom{n}{n}.$$

It is easy to see that the rank of the $(n \times (n+1)/2)$ -matrix of the coefficients of the above linear equations is equal to (n+1)/2. Hence, the solution (if exists) is unique.

If \underline{n} is even, the linear equations for $c_{n-1}, c_{n-3}, \ldots, c_1$ is the following:

$$2c_{n-1} = \binom{n}{1},$$

$$\binom{n-1}{1}c_{n-1} = \binom{n}{2},$$

$$2c_{n-3} + \binom{n-1}{2}c_{n-1} = \binom{n}{3},$$

$$\binom{n-3}{1}c_{n-3} + \binom{n-1}{3}c_{n-1} = \binom{n}{4},$$

$$\vdots$$

$$2c_1 + \binom{3}{2}c_3 + \dots + \binom{n-1}{n-2}c_{n-1} = \binom{n}{n-1},$$

$$\binom{1}{1}c_1 + \binom{3}{3}c_3 + \dots + \binom{n-1}{n-1}c_{n-1} = \binom{n}{n}.$$

This system similarly derives the uniqueness of the solution.

2. Properties of binomial coefficients

From the system of linear equations for c_{n-1}, c_{n-3}, \ldots in the preceding section we have the following.

Theorem 4 Let $1 \le k \le (n+1)/2$. The following two systems of linear equations for $c_{n-1}, c_{n-3}, \ldots, c_{n-2k+1}$ are equivalent each other:

$$\begin{bmatrix} 2 & & & & & & & & & & \\ \binom{n-1}{2} & 2 & & & & & & & \\ \binom{n-1}{4} & \binom{n-3}{2} & 2 & & & & & \\ \vdots & \vdots & & \ddots & & & & \\ \binom{n-1}{2k-4} & \binom{n-3}{2k-6} & \cdots & \binom{n-2k+5}{2} & 2 & & \\ \binom{n-1}{2k-2} & \binom{n-3}{2k-4} & \cdots & \binom{n-2k+5}{4} & \binom{n-2k+3}{2} & 2 \end{bmatrix} \begin{bmatrix} c_{n-1} \\ c_{n-3} \\ \vdots \\ \vdots \\ c_{n-2k+3} \\ c_{n-2k+1} \end{bmatrix} = \begin{bmatrix} \binom{n}{1} \\ \binom{n}{3} \\ \vdots \\ \binom{n}{2k-3} \\ \binom{n}{2k-3} \\ \binom{n}{2k-1} \end{bmatrix},$$
(8)

$$\begin{bmatrix} \binom{n-1}{1} & & & & & & \\ \binom{n-1}{3} & \binom{n-3}{1} & & & & & \\ \binom{n-1}{5} & \binom{n-3}{3} & \binom{n-5}{1} & & & & \\ \vdots & \vdots & & \ddots & & \\ \binom{n-1}{2k-3} & \binom{n-3}{2k-5} & \cdots & \cdots & \binom{n-2k+3}{1} & \\ \binom{n-1}{2k-1} & \binom{n-3}{2k-3} & \cdots & \cdots & \binom{n-2k+3}{3} & \binom{n-2k+1}{1} \end{bmatrix} \begin{bmatrix} c_{n-1} \\ c_{n-3} \\ \vdots \\ \vdots \\ c_{n-2k+3} \\ c_{n-2k+1} \end{bmatrix} = \begin{bmatrix} \binom{n}{2} \\ \binom{n}{4} \\ \vdots \\ \vdots \\ \binom{n}{2k-2} \\ \binom{n}{2k} \end{bmatrix}.$$

$$(9)$$

Proof. The system (8) of linear equations is obtained from (6) in Proposition 2 for odd p = 1, 3, ..., 2k - 1. On the other hand, the system (9) is obtained from (6) for even p = 2, 4, ..., 2k. These two systems of linear equation have the same solution associated to the unique symmetric differential operator P (Theorem 3).

Note Cramer's formulas for the solution c_{n-2k+1} of (8) and (9), and we have the following.

Corollary 5 For $n, k \in \mathbb{N}$ with $1 \le k \le (n+1)/2$ we have the following

identity, which is equal to $(-1)^{k-1}c_{n-2k+1}$:

$$\frac{1}{2^{k}} \begin{vmatrix} \binom{n}{1} & 2 \\ \binom{n}{3} & \binom{n-1}{2} & 2 \\ \binom{n}{5} & \binom{n-1}{4} & \binom{n-3}{2} & \ddots \\ \vdots & \vdots & \vdots & 2 \\ \binom{n}{2k-1} & \binom{n-1}{2k-2} & \binom{n-3}{2k-4} & \cdots & \binom{n-2k+3}{2} \end{vmatrix} = \frac{(n-2k-1)!!}{(n-1)!!} \begin{vmatrix} \binom{n}{2} & \binom{n-1}{1} \\ \binom{n}{4} & \binom{n-1}{3} & \binom{n-3}{1} \\ \binom{n}{6} & \binom{n-1}{5} & \binom{n-3}{3} & \ddots \\ \vdots & \vdots & \vdots & \binom{n-2k+3}{1} \\ \binom{n}{2k} & \binom{n-1}{2k-1} & \binom{n-3}{2k-3} & \cdots & \binom{n-2k+3}{3} \end{vmatrix} . (10)$$

Remark If k = 1, (10) means

$$\frac{1}{2} \binom{n}{1} = \frac{1}{n-1} \binom{n}{2} (= c_{n-1}).$$

Table for c_{n-p}

\overline{n}	c_{n-1}	c_{n-2}	c_{n-3}	c_{n-4}	c_{n-5}	c_{n-6}	c_{n-7}	c_{n-8}	c_{n-9}	c_{n-10}
1	$\frac{1}{2}$									
2	1	0								
3	$\frac{3}{2}$	0	$-\frac{1}{4}$							
4	2	0	-1	0						
5	$\frac{5}{2}$	0	$-\frac{5}{2}$	0	$\frac{1}{2}$					
6	3	0	-5	0	3	0				
7	$\frac{7}{2}$	0	$-\frac{35}{4}$	0	$\frac{21}{2}$	0	$-\frac{17}{8}$			
8	4	0	-14	0	28	0	-17	0		
9	$\frac{9}{2}$	0	-21	0	63	0	$-\frac{153}{2}$	0	$\frac{31}{2}$	
10	5	0	-30	0	126	0	-255	0	155	0
:	:	:	:	:	:	:	:	÷	:	:
n	$\frac{1}{2} \binom{n}{1}$	0	$-\frac{1}{4} \binom{n}{3}$	0	$\frac{1}{2} \binom{n}{5}$	0	$-\frac{17}{8} \binom{n}{7}$	0	$\frac{31}{2} \binom{n}{9}$	0

Finally, by considering the case n = 2k we have the following from the last equation in (9).

Corollary 6 For even $n \in \mathbb{N}$ we have

$$\sum_{k=1}^{n/2} c_{n-2k+1}$$

$$= \sum_{k=1}^{n/2} \frac{(-1)^{k-1}}{2^k} \begin{vmatrix} \binom{n}{1} & 2 \\ \binom{n}{3} & \binom{n-1}{2} & 2 \\ \binom{n}{5} & \binom{n-1}{4} & \binom{n-3}{2} & \ddots \\ \vdots & \vdots & \vdots & 2 \\ \binom{n}{2k-1} & \binom{n-1}{2k-2} & \binom{n-3}{2k-4} & \cdots & \binom{n-2k+3}{2} \end{vmatrix}$$

$$= \sum_{k=1}^{n/2} (-1)^{k-1} \frac{(n-2k-1)!!}{(n-1)!!} \begin{vmatrix} \binom{n}{2} & \binom{n-1}{1} \\ \binom{n}{4} & \binom{n-1}{3} & \binom{n-3}{1} \\ \binom{n}{6} & \binom{n-1}{5} & \binom{n-3}{3} & \ddots \\ \vdots & \vdots & \vdots & \vdots & \binom{n-2k+3}{1} \\ \binom{n}{2k} & \binom{n-1}{2k-1} & \binom{n-3}{2k-3} & \cdots & \binom{n-2k+3}{3} \end{vmatrix}$$

References

= 1.

- [1] M. Hall, Jr., Combinatorial Theory, Blaisdell Publishing Co., 1967.
- [2] R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2nd ed., Addison-Wesley Publishing Co., 1994.
- [3] R. Kuwabara, Lax-type isospectral deformations on nilmanifolds, Ann. Global Anal. Geom. 14(1996), 193-218.