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Abstract
In this note we derive some identities concerning the binomial coeffi-
cients by considering a certain n-th order symmetric differential operator
on R™ associated to the function p(z,£)(z € R™) which is a homogeneous
polynomial in €.
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Introduction

Let (Z) denote the binomial coefficients, namely

(1+2)" = i <Z>mk

k=0

1)

Various formulas for the binomial coefficients are well known (see e.g. [1], [2]).

For example we have

£0) -+
;}(—1)’“(2) = o,
S (B)(7) =0 wzn,

k=r

which are easily obtained from (1). (The last one is obtained by differentiating

(1) r times relative to z, dividing by r!, and putting z = —1.)

In this note we consider a certain linear symmetric differential operator,
and derive some identities concerning the binomial coefficients (Corollaries 5

and 6).
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1. Symmetric differential operators

Let C§°(R™) denote the space of complex-valued C* functions on R™ with
compact support. Suppose the space C§°(R™) is endowed with the inner prod-
uct (-,-) defined by

(f,9) = A f(@)g() day - -dam (9 € C°(R™)).
Let D; (j =1,...,m) denote the differential operator %ai (¢ :=+/=1). Then,
D; is a symmetric operator, namely,
(Dsf,9) = (f,Dig)  (f,9€ C(R™))

holds.
Let us consider a function p(z, ) of variables (z1,...,@m,&1,. .., &) which
is a polynomial in &;’s

n

p(z, &)=Y | > aF @), 6,

p=0 | j1,j2,....dp

where @772 (z)’s are symmetric with respect to the indeces ji, ja, - - . , jp-

The function p(z, £) is regarded as an “observable” in the phase space T*R™
of classical mechanics. In theory of quantum mechanics the classical observ-
able p(z,£) corresponds to a self-adjoint operator on the Hilbert space L?(R™)
according to the corresponding rule of variables:

fjHDj, Tjr—= T X

We consider the symmetric (formally self-adjoint) operator corresponding
to the homogeneous polynomial of degree n given by

pn(xvé) = Z a7tz (m)gjdgjz e gjn'
J1,J2,50n
By applying the corresponding rule directly to p,(z, &) we get the n-th order
differential operator
Po= Y " (a)D; Dy, D;

J1,325--0n

ne

Lemma 1 The adjoint operator P of P, is given by

P’r:.( = Z D]l Jn a/jl In ("'L) : )

= Z( ) Z Z D]l"'D]'pahm]n(x)>Djp+1"'Djny
p=0 p jp+1,--v,] 1s- 7]]2

where @/t In(z) denotes the complex conjugate of a?tJn(z).



A Note on Symmetric Differential Operators and Binomial Coefficients 3

Remark The property (P;)* = P, (formally) derives the formula (4). In
fact, by virtue of Lemma 1 we have

(Pr)" =
. n
i (7)
2!
The (n — r)-th order differential term of (P})* is given by

Z (_1)p< > < p> Z (Djlyn-;j'r‘a]l ]T(J;))D%H Dy,
pr+q=r p q Jisendn

n

n— .
< q p) Z <DJl e D.7’1)+41aj1 J'L(m))Djp+11+L e Dj,L}'

—p
q=0 Jlyeensdn

Hence, for 1 < r < n we have

-zl

ptg=r
- 5200 -5l GE)
= n—p/\r-p) = n—p)\n—r
that is nothing but the formula (4). 0

In order to obtain the symmetric operator P corresponding to p,(z,&) we
put

P = > a"in(z)Dy, - Dy,

Jiseendn
n
) oD gdrIn (g . oD 5
+ E Cn—p E (Dj, -+ Dj,a” () Dy, ., Dj. |, (5)
p=1 J1seesdn
where a7!"97 (z)’s are real-valued functions, and ¢,_,’s are complex constants.

Proposition 2 The operator P is symmetric, i.e., P* = P if and only if the
coefficients cn—p (p = 1,2,...1) satisfy

_ _i/m—=p+1\_
oy = WPy + (0 (T o

_ofn—p+2\_
(P

)
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Proof. The assertion is directly derived by comparing the coefficients of
(n — p)-th order differential terms in P and P*. O

As examples of symmetric operators of the form (5) we have the following:

Zaﬂ )D; + = ZD o (z
Zajk )D; Dk+z ZD :a’*(2)) Dy,
Zaﬂkl(;p)DjDle + — Z ZD aﬂvl Dle . ZD Dlea””l( )

Jiksl j k,l

Observing these examples we assume the coefficients ¢,—, (p = 1,2,...,n) to
be

(7)

| areal number (p:odd)
r=p = (p: even)

Theorem 3 For any n € N, and any real valued functions a/*"In(x) there
exists an unique n-th order symmetric differential operator P of the form (5)
satisfying the condition (7).

Proof. First we show the existence of P (cf. [3, Lemma 4.2]). Let Qo :=
2.a? (@) Dy, - Dy, (= Pn). Put

Q1= 5(Qo + Q)

Then, by means of Lemma 1 ()7 is a symmetric operator with the n-th order
term being equal to Qp, and the coefficients

§<p> Z Dj, ."Djpa]‘ Jpredn ()
J1500p

of the (n — p)-th order term of @)y are real if p is even. Let P,_o denote the
(n — 2)-th order term of (), and put

Q2= Q1 — (n2+P;2)

Then, Q2 is a symmetric operator of the form (5) with ¢,_, being real and
Cp—9 = 0.
Next, let P,_4 be the (n — 4)-th order term of ()2, and put

Qq:=Q2— = ( n—a + P _y).

Then, @4 is a symmetric operator of the form (5) with ¢,—, being real and
Cn—g = Cp_q = 0. Thus by continuing this process we get @2, Q4, s, .. ., and
we obtain the required operator P as Q,_1 if n is odd, or @, if n is even.
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Next, we show that the coefficients c,_, is uniquely determined by the

condition (6) under the assumption (7).
Suppose n is odd. The condition (6) for p = 1,2
equations for ¢,_1,Cn_3,...,C,co as follows:

")
. <n; 1)
(e ()
(Bew (s oos (172

2c+2c+4c+
0 9)¢2 4)C

,... gives a system of linear

Il

It is easy to see that the rank of the (n x (n+41)/2)-matrix of the coefficients of
the above linear equations is equal to (n+ 1)/2. Hence, the solution (if exists)

is unique.
If n is even, the linear equations for ¢,_1,cn—3,

2Cn—1
n—1
1 Cn—1
n—1
2Cn—3+< 9 >Cn—1
n—3 + n—1
1 Cn—3 3 Cn—1
2+ () es + (7!
C1 9 C3 n—9 Cn—1

(

This system similarly derives the uniqueness of the

(1)
2
(5
(&)
(
(

I

b
)
)
)

n

n—l)7

W)

solution.
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2. Properties of binomial coefficients

From the system of linear equations for ¢,_1,¢n_3, ... in the preceding section
we have the following.

Theorem 4 Let 1 < k < (n + 1)/2.
equations for ¢,_1,Cn_3, ..

The following two systems of linear
.yCn—2k+1 are equivalent each other :

Cn—1
Cn—3

Cn—2k+3
|Cn—2k+1

Cn-—-1
Cn—3

Cn—2k+3

LCn—2k+1 |

(o)

[ (52
9)

Proof. The system (8) of linear equations is obtained from (6) in Proposition
2 for odd p = 1,3,...,2k — 1. On the other hand, the system (9) is obtained
from (6) for even p = 2,4,...,2k. These two systems of linear equation have
the same solution associated to the unique symmetric differential operator P

(Theorem 3).

[m]

Note Cramer’s formulas for the solution ¢,—2r+1 of (8) and (9), and we have

the following.

Corollary 5 For n,k € N with 1 < k < (n + 1)/2 we have the following
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identity, which is equal to (—=1)* e, _opiy ¢
12
RN 0
SOOI
; 2
() (i) (G "5
() (7))
S @ %) ) 0
n— 2k — 1! _ _
= Tmonn G ) (50 (10)
N ; : : (n2h3)
: : : 1
(0)  (3cy) () ("5
Remark If & =1, (10) means
1/n 1 n
§<1> Tl <2> (= en-1)
Table for c¢,_,
n | Ch-1 Cp-2 Cn—3 Cn—4a Cpn—5 Cn—6 Cn—7 Ch—8 Cp—9 Cn—-10
L3
2 1 0
3| 2 0 -1
4 2 0 -1 0
510 2 0 -2 0 5
6 3 0 -5 0 3 0
7| 1 o =% 0o & 0 S
8 4 0 —14 0 28 0 —-17
9| 2 o -21 0 63 0 1 3
10 ) 0 -30 0 126 0 —255 15 0
nls@ 0 =) 0 3G o —FE) o () o
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Finally, by considering the case n = 2k we have the following from the last
equation in (9).

Corollary 6 For even n (€ N) we have

n/2

g Cn—2k+1
k=1

1

n/2 e
- ;“21 @Y

Y (2 — 1) X
- el E ) 6
k=1 . (n—21k+3)
k) Gio) Gezs) o (7F)
- 1.
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