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Abstract

In the present paper, we study square matrices in which the
sum of elements in any row, in any column , in any extended di-
agonal add up to a constant. We call such a matrix a pandiagonal
constant sum matrix. We will show that the number of indepen-
dents elements in a pandiagonal constant sum matrix of order n is
n? —4n+ 3 if nis odd or n? — 4n + 4 if n is even.

2000 Mathematics Subject Classification. 05B20
Introduction

Let ¥ be a a set of n different elements. A latin square of order n is a square
matrix with n entries of elements in 2, none of them occurring twice within any
row or column of the matrix. A matriz of the same number n is defined to be
a square matrix with n? entries of n different elements, each appeared exactly
n times. A latin square of order n is a matrix of the same number n. A magic
square of order n is an arrangement of n? consecutive integers in a square, such
that the sums of each row each column and each of the main diagonal are the
same. If also the sum of each extended diagonal is the same, the magic square
is called pandiagonal. Two latin squares A = (a;; and B = (b;;) of order
n are said to be orthogonal if every ordered pair of symbols occurs exactly
once among the n? pairs (a;;,b;;) . We can define that two matrices of the
same number n are orthogonal similarly. Let A = (a;;), a;; € RQbe a square
matrix of order n. It is called a constant sum matriz if the sums of each row
and each column are the same. If moreover the sum of each main diagonal is
the same , it is called adiagonal constant sum matriz and if the sum of each
extended diagonal is the same, it is called a pandiagonal constant sum matriz.
In the present paper, we take 0,1,---,n — 1 as n consecutive integers and put
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Y = {0,1,---,n — 1}. A pandiagonal latin square on X is a pandaiagonal
constant sum matrix of the same number 7.

Let A and B are orthogonal matrices of the same number n. Put C =
nA+ B. Then it is known [3] that if A and B are diagonal(resp. pandiagonal)
constant sum matrices, C is a magic (resp. pandiagonal magic) square.

1. Pandiagonal constant sum matrices

Let A = (as;), a;; € R be a pandiagonal constant sum matrix of order n.
In the present paper, subscripts have the range 0,1,-,n—1 (mod n). Then we
have the following equations.

n—1
Yay = C 0<j<n-—1, (1)
=0
n—1
day; = C 1<i<n-1, (2)
j=0
n—1
Ain+j—i = Cy 1§JSTL—1, (3)
1=0
n—1
Y tiv; = C 1<j<n-1, (4)
=0

where C is a constant. Notice that from (1) and (2), (3),(4) it follows

Z ap; = C7

=0
n
E tin— = C,
1=0
n
E A;; = C.
1=0

When 7 is even, that is, n = 2m, there is a redundant equation in (3) and (4).
In fact, if we set 2j = 2k +2¢ (mod 2m), we have

m—12m—1 m—12m-—1 m—12m—1

§ : Z Ai2m+1+25—1 = z E Qi142j—i = Z E i1yok+i = mC.

=0 1i=0 3=0 =0 k=0 i=0

Hence, we can consider the equation
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2m—1

Z air+i =C

=0

is redundant. Now, when n = 2m, we set

2m—1
Z a5 = C, OSJS?ITL—]., (5)
1=0
2m—1
ay = C 1<i<2m—1, (6)
Jj=0
2m—1
> aigmiji = C, 1<j<2m—1, (7)
1=0
2m—1
Y auy; = C 2<j<2m-1L (8)
=0

Theorem 1 When n is an odd number, the equations (1),(2),(3) and (4)
are independent, and when n = 2m, the equations (5),(6),(7) and (8) are
independent.

Proof. Set

&y = agg, Yi = A4, 2; = a9, 0 S 1 S n— 1.

Then we have

n—1

Aj:wj+yj+kj2a¢j = C, OSan—l,
=3
n—1
Bj3$j+yj—1+2j—2+zaij-¢ = C, 1<j<n—1,
1=0

n—1
Dl:zyj = C,

=0

n—1
D2122j = C,

j=0

n—1
Dj:Zaﬁ = C, 3<j<n-1
=0
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(1) Now suppose that n is odd, that is n = 2m + 1. Then it holds

n—1
Cj X+ Yi+1 + 242 +Zaii+j =C, 1<j<n—1
i=3

Now we represent simply the above equations as

4; (25,95, 25,%), 0<j<n—1,
Bj = (zj,y5-1,2-2,%), 1<j<n—1,
Cj (Z5,Yj+1,2j42,%), 1 <j<n-—1
n—1
D, = (O,Zyj,o,*),
7=0

n—1
D2 = (070’22_7'7*),
=0

D; = (0,0,0,%), 3<j<n-—1.
Put
B;j(1) = Bj—A;=0,yj-1~¥j,2j—2— 2j,%), 1 <j<n—-1(9)
Bn—l(z) = Bn—l(]-) = (O,yn—Z — Yn—1y2n-3 — 2n—1, *)’ (10)
Bj(?) = Bj(l) + Bj+1(2)
= (0, Yji—1— Yn—1,2j—2+ 2j—1 — 2n—-2 — Zn—1, *), (11)
1<j<n-2.

Especially, we have

31(2) = (0: Yo — Yn—1,20 — Zn—2-*)

Next, we get

C](l) = CJ_AJ - (07_yj+yj+lv_zj+zj+2’*)7 1 SJSn‘ 17

Cj(2) = Cj(1)+ Bj+1(1) =(0,0,25 — zj41 — zj42 + zj43,%), 1<j<n—2,
Cn~1(2) = Cn_l(l) - Bl(z) = (0,0,Zn_g — Zp-1— 20+ 21, *).
Now, set

Ci(3) = Ci(2)+ Cj11(2) = (0,0,25-1 — 22541 + 2j43,%), 1 <j<n—-2,

Cn~1(3) = Cn~1(2) = (O, 0,2n—2 — 2n—1— 20 + Z]_,*).
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Put
CQm—l(4) = C2m—1(3)7 CQm—3(4) = C‘2m—3(3) + 202m—1(4),

Cotm-ry+1(4) = Com—1)+1(3)+2C2(m—r+1)+1(4)—Co(m-rk+2)+1(4), 3 <k <m.
Then we have

CQ(m—k)+1(4) = (0,0, Zo(m—k) — (k+ 1)zom + kz1,%), 1<k <m.
Next, we put

Com(4) = Com(3), Com—2(4) = Cam—2(3) + 2Com(4),

Cotm—k)(4) = Co(m—1)(3) + 2C20n—r+1)(4) — Cogn—r+2y(4), 2<k<m-—1L
Then, we get

Com-k)(4) = (0,0, 22(n—x)—1 — (k + 1)(22m — 21) — 20,%), 0<k<m-—1
Set

1
Ca(5) = m(C‘Z(‘l) + C1(4)) = (0,0, 21 — 22m, %),
Com-ry+1(5) = Com-r)+1(4) —kC2(5), 1<k<m,
Com-1)(8) = Copm—ry(4) — (k+1)Co(8) + C1(5), 0<k<m-—2.

Thus we obtain
CJ(5) = (0,0,Zj_l —sz,*), 1 S] Sn— 1=2m.

Now the equations

A; = (%,y5,25,%), 0<j<n—1,
Bj(2) = (¥j-1—UYn-1,%j—2+ —2j_1 — Zn—2 — 2Zp_1,%), 1 <j<n—-2,
Bn-1(2) = (Opyn—Z —Yn—1,2n-3 — znfl;*)y
n—1
Dl = (0723/1709*))
Jj=0
CJ(5) = (070’zj—1 - Z2m,*), 1 S] <n-1,
n—1
D, = (070722_7'7*)7
o
Dj = (0,0,0,*), 3<j<n—-1

are equivalent to the equations given at first. It is evident that the rank of
the coefficient matrix of the equations is 4n — 3. Hence, these equations are
independent.
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(2) Suppose that n is even, that is, n = 2m. By using the similar notations,
we consider the following 4n — 4 equations

A; = (2),¥5,25,%), 0<j<n—1,
Bj = (xj,yj-lazj—Q:*)y 1 SJ S n-— 17
C; = (Tj+1,Yj42,2j4+3,%), 1 <j<n—2

n—1
-Dl = (O,Z%’,O,*),
j=0

n—1
D2 = (0,0522.7"*)7
=0
D; = (0,0,0,%), 3<j<n—1.

We define B;(1), Bj(2), 1 <j <n—1 as similarly as in (9),(10),(11).
We put

Ci(1) = Cj—Ajt1=(0,—yjr1 + Yj+2, —2j41 + 2j43,%), 1 <j<n—2,
C;(2) Cj(1) + Bjs2(1) = (0,0,25 — zj41 — zj42 + zj43,%), 1<j<n—3,

Cn—2(2) = Ch_a(l)—B1(2) =(0,0,2p—2 — 2n—1 — 20 + 21, *).
Now, set
Ci(3) = Ci(2+Cj(2) =(0,0,2j — 22542 + 244, %), 1<j<n—2,
Cn—23) = Cn-2(2)=1(0,0,2z-2 — 2p—1 — 20 + 21, %).
Put

Com-2(4) = Com-2(3), Cam-4(4) = Com-4(3) + 2Comm_2(4)

Cotm—k)(4) = Copm-1)(3) + 2Co(m—r+1)(4) — Copm—-k+2), 3<j<m—1
Then we have
Cotm-1)(4) = (0,0, 29(m—k) — k(z2m-1—21) — 20,%), 1<k<m-—-1

Next, we put

Com—-3(4) = Com—3(3), Com—5(4) = Com—5(3) + 2C2m—3(4),

Cotm—1)—1(4) = Com-1)-1(3)+2C2(m—k+1)-1(4)—Co(m—k+2)-1, 3 <k <m—1L.
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Then we get

Cotm-iy-1(4) = (0,0, 25(m—p)—1 — (k + D)zzgm-1 + k2z1,%¥) 1<k<m—1

Set

1
C1(5) = :r_n'cl(4) = (070a 21 — Z22m—1, *)7

Co(m—k)(8) = Co(m—i)(4) — kC1(5) = (0,0, z3¢m—k) — 20,%), 1<k<m-1,

Cotm—k)—1(5) = Co(m—-i)—1(4)—kC1(5) = (0,0, 22(m—k)y-1—22m-1,%), 1<k <m—L

Now the equations

Aj = (mj’yjazj>*)’ OS]S’H,—I,
Bi(2) = (¥j-1—Yn-1,2j—2+ —2j-1 = Zn—2 — Zn—1,%), 1 <j<n—2,
Bn—1(2) = (0, Yn—2 — Yn—-1,2n—-3 — Zn—1, *)’
n—1
Dl = (O)Zijo)*)v
o
C1(5) = (0,0,21 — z2m—1,%),
CZ(m»k)(E}) = (07 O’ 22(m—k) — 20y *), 1<k<m— 1,
Cotm-k)-1(6) = (0,0,22(m—k)-1 — 22m-1,%), 1<k<m-—1,
n—1
D, = (07 Oazzj7*)a
—
Dj = (0,0,0,*), 3<j<n~-1

are equivalent to the equations given at first. It is evident that the rank of
the coefficient matrix of the equations is 4n — 4. Hence, these equations are
independent.

2. Pandiagonal zero sum matrices

Let A = (ai;), a;; € R be a pandiagonal constant sum matrix of order
n with constant C. In this section, we have from here on , subtracted S/n
from every elements in the matrix so that the sum of the elements in any row,
column or diagonal will be zero, and we call such modified a zero-sum matriz.
The results in this section mainly owe to W. R. Andress [1]. We introduce
operators R, C such that
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Ram = Qi41,5 Caw- = a¢.j+1.

Set
n—1 ‘ n—1 o
L.(R)=Y_R', Du(R,C)=>» R*'C".
=0 =0
Then we have
columm : L, (R)a; ; = 0,
row: L,(Cla;; = 0,
diagonal : L,(RC)a; j 0,
diagonal : D,(R,C)a;; = 0.

Lemma Let Q; ; be elements of a square matrix of order n. If any one of
the three conditions (1) (C'—1)Qi; =0,3720 Qi; =0, (2) (R—1)Qi; =
0,503 Qi;=0,3) (R—C)Qi; =0, 771 Qii=0 holds, it follows that
Qi,j =0.

Proof. Assume that the condition (1) holds. Then Q; ; = 0 is independent

of column. Hence using the second equation of (1), we get Q; ; = 0. The other
results follow similarly.

From (Ln(RC) — Ln(R))as; = R(C — 1) RL,_1(C)as j = 0, using
Lemma, we get 22:11 R=L; 1(C)a;; = 0. Since this is true for all values of
1,7, it is convenient to suppress the operand q; ; so that

n—2
> R'Li(C) =0. (12)
=0

This is a triangle-invariant. We may interchange the operations R,C in the
above formula so that

n—2
> C'Li(R) =0. (13)
=0

The triangle-invariant (12) remains invariant if we replace R by 1/R and
multiple R*~! as this merely represents a reflection in a horizontal line, and
give

n—2
> RLn2-4(C)=0. (14)

1=0
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Put
Sp = La(R)L,(C).

Then, this presents a square of order n. Subtracting {12)-(13), and justifying
the removal of the factor R — C by Lemma 1, we obtain the invariant

[(n—3)/2] _
Y. (RCYSn_z-2i=0. (15)
i=0
Subtracting (14) from (15), adding C~!D,, and multiplying (RC)™! , we get

the invariant
[(n—5)/2]

> (RC)'Sp_3_oi+ R*C™ 2 =0. (16)
i=0
Subtracting 372 R*L,,(R) from (15) and adding (C™3 + C"~2)L,(R) gives

the invariant
[(n—5)/2]

D> (RC)'Sp-s4 2+ (RC)* 38, =0. (17)
i=0
From now on, we assume that n is odd, that is, n = 2m + 1.
The triangle-invariant (12) remains invariant if we replace C by 1/C as this
merely represents a reflection in a vertical line, and give

n—2
> R'L{(C™')=0. (18)
=0
Subtracting this from (12) and removing R(C — C' 1), we get
m—2—1
$ R Yl sciie) +Z R Y L(m—i=j)/2)(C7+C ) =0.
=0 Jj=0 =0 3=0

(19)

Theorem 2 Let A = (a; ;) be a pandiagonal constant sum matrix of order
n. For an odd n, if n? —4n+3 elements a;5, 0<i<n—4, 0<j<n—2are
given, the other elements decided uniquely. For an even n, if n2—4n+4 elements
a;j, 0<i<n—-4, 0<j<n-2andanyanyoneofa, 3;, 0<j<n-—1
are given, the other elements decided uniquely.

Proof. Using (12), we can get a;n—1, 0 < i < n—4. Assume that n
is an odd number. Using (19), we obtain a,—3;, 0 < j < n—1 and then
Gn-2j,8n-14, 0 < j<n—1. Next, Let n be an even number. Using (16),
we can determine a,_5;, 0 < j <n—1. Then using (17), from any one of
Un-35, 0ZLj<n-—1,weobtaina, 3;, 0<j<n-—1 Now,itiseasyto
get an_15, 0<j<n-—-1
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3. Orthogonal matrices of the same number

A matriz of the same number n is a square matrix with n? entries of n
different elements, each appeared exactly n times. Two matrices of the same
number n A = (a;; and B = (b;;) are defined to be orthogonal if every ordered
pair of symbols occurs exactly once among the n? pairs (aij,b;;) . It is well
known that the largest value of r for which there exist r mutually orthogonal
Latin squares of order n is less than n. Now, we have

Theorem 3. Denote by N(n) the largest value of r for which there exist r
mutually orthogonal matrices of order n. it holds

Nn)<n+1.
Proof. Suppose Aj,: -+, A; are mutually orthogonal matrices of order n on
the symbols {0,1,---,n — 1}. Take an n-square matrix S = (s; ;) whose n?

positions are labelled 0,1,---,n% — 1 as follows: S;; =ni+j, 0<i<j0<
j <n—1. Then consider the collection of subsets B, ,, defined by

B, m = {z : z is the label inSof aposition in which A, has entry m},

where 1 <r <t, 0<m <n— 1. There are tn subsets of size n. It follows
from the orthogonality of the A, that no pair of elements can occur in more
than one block. Suppose for example 2 and y both occur in B,, ,,, and

B,, m,- Then A, has the same entry m; in x and y, while A,, has entry my
in these positions. Hence the pair (mj, mg) occurs twice, contradicting to the
orthogonality of A; and As. Note the number of pairs of elements in the
subsets is

tn(g) = -;-tnz(n -1).

2
This number must be more than ("2 ) Hence

1 2 1 2(,,2
= < = —
tn (7’1, 1) n (’I’L l)

givest <n+ 1.
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Abstract

The operation of local switching is introduced by Cameron, Sei-
del and Tsaranov. It acts on the set of all signed graphs on n ver-
tices. In this paper, mainly, we study how local switching acts on
trees. We show that two trees on the same vertices are isomorphic
if and only if one is transformed to the other by a sequence of local
switchings. There is a correspondence between signed graphs and
a root lattice. Any signed graph corresponding to the lattice A,, is
transformed by a sequence of local switchings to the tree which is
regarded as the Dynkin diagram of A,,.

2000 Mathematics Subject Classification. 06C78

Introduction

Following [?], we state basic facts about signed graphs. A graph G = (V, E)
consists of an n-set V(the vertices) and a set E of unordered pairs from V'(the
edges). A signed graph (G, f) is a graph G with a signing f : E — {1,-1}
of the edges. We set Et = f~1(+1) and E- = f~!(~1). For any subset
U C V of vertices, let fy denote the signing obtained from f by reversing
the sign of each edge which has one vertex in U. This defines on the set
of signings an equivalence relation, called switching. The equivalence classes
{fu : U C V} are the signed switching classes of the graph G = (V, E). The
adjacency matric A = (A;;) is defined by A;; = f({3,7}) for {i,j} € E ;
else A;; = 0 otherwise. The matrix 2I + A is called the intersection matriz
, and interpreted as the Gram matrix of the inner product of n base vectors
@, ,a, In a (possibly indefinite) n-dimensional inner product space RP9.
These vectors are roots(which have length v/2) at angles 7/2,7/3, or 2n/3.
Their integral linear combinations form a root lattice (an even integral lattice
spanned by vectors of norm 2), which we denote by L(G, f). The reflection w;
in the hyperplane orthogonal to the root a; is given by
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2(a;, ) _
wi(z) =z — ) a; =2 — (r,0:)q.
The Weyl group W(T, f) of L(G, f) is generated by the reflections w;, (1 = 1,

..n).

Let i € V be a vertex of G, and V() be the set of neighbours of i. The
local graph of (G, f) at i has V(i) as its vertex set, and as edges all edges
{4,k} of G for which f(i,)f(4,k)f(k,i) = —1. A rim of (G, f) at i is any
union of connected components of local graph at 7. Let J be any rim at 7, and
let K = V(i)\J. Local switching of (G, f) with respect to (i, J) is the
following operation:(i) delete all edges of G between J and K; (ii) for any
j € J, k € K not previously joined, introduce an edge {7, k} with sign chosen
so that f(i,5)f(J, k) f(k,1) = —1; (iii) change the signs of all edges from % to
J; (iv) leave all other edges and signs unaltered. Let §2,, be the set of
switching classes of signed graphs of order n. Local switching , applied to any
vertex and any rim at the vertex, gives a relation on 2, which is symmetric
but not transitive. The equivalence classes of its transitive closure are called
the clusters of order n. If two signed graphs (G1, f1) and (Ga, f2) are in the
same cluster, we say that (Gy, f1) and (Gs, f2) are equivalent by local
switching. They are equivalent by local switching if and only if (G, f1) is
transformed to (G, f2) by a sequence of switchings and local switchings.

Let L be a root lattice , B the set of ordered root bases, and B* the subset
of B consisting of bases which arise from signed graphs. Then,

(a1, +,a,) € B* if and only if (a;,a;) € {0,+1,—1} for all i # j. Many
natural operations on B do not preserve B*. Consider the map

Oij - (al:" '7an) = (ala"'awi(aj)y"',an)-

For any 7, the map o;; just changes the sign of the vector a;. Hence, they
generate the equivalence relation induced by switching and preserve B*. If i
and j are non-adjacent, then o;; is the identity. So assume that ¢ and j are
adjacent. By switching, we may ensure that (a;,ex) > 0 for all k. Then
(ai,a;) =1 and (w;(a;),ar) = (a;,ax) — (a;,ax). Hence, if (a;,ax) =1 and
(aj,ar) = —1, B" is not preserved by o;;. However the product of the
commuting maps ¢;; and o, preserve B*. Let J be any set of neighbours of 4
and let (ay,---,ay,) be a root base in B*. Then HjEJ oi; maps (a1, -,an) to
a base in B” if and only if J is a rim at ¢. This is the reason why the notion of
local switching is defined as above.

We investigate how local switching acts on trees. For this purpose, we
need to treat with Hushimi trees. In section 2, we discuss Hushimi trees which
are related to the lattice A,,. We show in section 3 that these Hushimi trees
are equivalent by local switching to trees with only two leaves. In section 4,
we prove that two trees are equivalent by local switching if and only if one is
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obtained by rearrangement of vertices of the other. We deal with signed cycles
in section 5. A signed cycle with odd parity is equivalent to a tree which may
be regarded as the Dynkin diagram [D,] of the lattice D,,. Any signed graph
corresponding to the lattice Dy, is also equivalent to the tree [D,].

1. The lattice A, and signed Hushimi trees

A connected graph G = (V, E) is called Hushimi tree if each block of G is a
complete graph. A complete graph is a Hushimi tree of one block. Let a be a
cut-vertex of a Hushimi tree G. If G is divided into m connected components
when the cut-vertex a is deleted, in the present paper, we say that the Hushimi
degree(simply H-degree) of the cut-vertex a is m . If a vertex a of G is not a
cut-vertex, its H-degree is defined to be 1. A connected subgraph of a Hushimi
tree G is called a sub-Hushimi tree if it consists of some blocks of G. A block
of Hushimi tree is said to be pendant if it has only one cut-vertex. It is evident
that any Hushimi tree has at least two pendant blocks.

Definition. In this paper, a Hushimi tree is said to be simple if the H-
degree of any its cut-vertex is 2. A Hushimi tree is said to be semi-simple if
its each block has at most two cut-vertices whose H-degree are greater than 2.
A signed Hushimi tree is called a Hushimi tree with positive sign (or simply a
positive Hushimi tree ) if we can switch all signs of edges into +1. A tree with
only two leaves is said to be a line-tree,

A tree is always considered as a Hushimi tree with positive sign. The lattice
A, is spanned by vectors e; —e;, 1 < i # j < n+ 1, where {e1,--,ent1} is
the orthonormal base of the euclidean (n + 1)-space R**1. There is the one-to
-one correspondence between ordered root bases of A,, and connected signed
graphs associated with A,,. A line-tree with n vertices may be considered as
the Dynkin diagram [A,] of the lattice A,.

Theorem 1. Any connected signed graph is a signed graph associated with
A, if and only if it is a positive simple Hushimi tree.

Proof. Let G be a signed graph corresponding to an ordered base {a;,as, - -,
ay} of the lattice A,. If we replace a; by —a;, then the sign of G is switched
with respect to {a;}. Hence there is no problem whether we take a; or —a;.
There are no induced cycles in G whose length are more than 3. In fact, if

GiyyQigy 504, (M > 3) make an induced cycle, then we can assume that
iy = €5 = €5y, Qiy = €5, — €53,Aig = €53 — €4,y ** 0,04, = €5, — €5 . But
this implies that a;,,ai,,---,a;, are not linearly independent. If a; ,a;,,aq,

make an induced cycle, then we can assume that a;, = e; —¢;,,a;, = e — e,
a;, = e;—e;,. We have induced cycles of this type only in G. Now take a block
B of GG consisting of vertices a;,,a;,, -, a;,, . Two vertices a;, and a;, must be
on an induced cycle in B. We may assume that a;,,q;,,a;, make an induced
cycle. Then we can put a;, = e;—ej,, 0, = €j—€j,,a;; = €j—e;,. Two vertices
a;, and g;, are also on an induced cycle in B, which may consist of a;, ,a;,,as,.

Then we can pllt Ajy = €5 —€4,,055 = €5 — €5, O A, = €5, —€;,,Q3; = €5, — €5,
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where j4 # j. Assume that a;, = e;, —e;,,a;, = €5, —ej, . Two vertices a;, and
a;, are also on an induced cycle in B. Then we have j; = j3, a contradiction.
Hence, we get a;, = e; —e;,,a:, = e; — e;,. By this way, we get a;, = ¢; —e;,,
1 < k < m. Hence any block of G is a complete graph whose edges have sign
+ 1. Suppose that the vertex a;, = e; —e;, of a block B is a cut-vertex. If
two vertex ay,ap which are not in B are adjacent with a;,, then we can put
ax = €5, — €y,, 0g = €, — €p,. Hence a; , ax,ap are contained in another block
of G. Hence we show that G — ¢;, has two connected components. Thus G is
a Hushimi tree with positive sign and the H-degree of any cut-vertex of G is 2.

Conversely, let G be a positive Hushimi tree whose any cut-vertex has the
H-degree 2. Assume that G has m blocks. If m = 1, it is evident that G is
a connected signed graph associated with A,. Now suppose that the result
is true for positive Hushimi trees with m blocks whose any cut-vertex has
the H-degree 2. Let G be a positive Hushimi tree with m + 1 blocks. Let
B be a pendant block of G and a; = e;, — e;, be its cut-vertex. Let G’
be the positive Hushimi tree which is made from G by deleting B \ {a1}.
Then G’ is a connected signed graph associated with A, and corresponding
to an ordered base {a;,as, - -,a,}, where A, is spanned by vectors e; — €;,
1 <i#j<n+1 Now, all the ¢ vertices of B are adjacent with a vertex
a; = €;, — e;, . We can assume that e;, is not used in any other a;. Then, we
can consider that the block B consists of e;, —€nt2,€i; —€nt3, *,€i — €ntet1
and a;, where {e1, - *,€nt1,€nt2,"**, €nte+1} is the orthonormal base of the
euclidean (n + ¢+ 1)-space R™***!. Hence we regard G as a connected signed
graph associated with A, ,,.

3. Line-trees

Theorem 2 A complete graph with positive sign is equivalent to a line-tree
by local switching.

We will prove a little stronger result as follows.

Lemma 3. Let G be a complete graph with positive sign. Take any two
vertices a and b of G. Then it can be transformed to a line-tree, by a sequence of
local switchings, without adopting local switchings at a and b. Conversely, any
line-tree is transformed to a complete graph with positive sign, by a sequence
of local switchings, without adopting local switchings at its two leaves.

Proof. Let G consist of vertices ay,as, -, ax. We may assume that a = ay
and b = a,. Set J = {1} and K = {a3,a4,--,ax}. By local switching
with respect to (az,J), we obtain a positive Hushimi tree with two blocks
{@1,a2} and {as,---,ar}. Next, set J = {az} and K = {a4,---,axr}. By local
switching with respect to (a3, J), we obtain a positive Hushimi tree with three
blocks {a1,a2}, {az2,a3} and {as,---,ar}. By this way, we can get a line-tree ,
by a sequence of local switchings, without adopting local switchings at a; and
an. The converse is obtained by the reverse sequence of local switchings.
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We show

Theorem 4. Let G be a positive simple Hushimi tree. Then G is equivalent
to a line-tree by local switching. Conversely, a line-tree is transformed to a
positive simple Hushimi tree, by any sequence of local switchings.

Firstly, we prepare two lemmas for proving the above theorem.

Lemma 5. Let G be a positive Hushimi tree consisting of two blocks, B
and B,. Then, it can be transformed to a positive complete graph, by local
switching.

Proof. We can set B; = {a;,02,+,am} and By = {a1,b1,---,bx}. Then
the vertex a; is the cut-vertex. Put J = {az,as, - -,am} and K = {b1,bq, - -, bx}.
By local switching with respect to (a1, J), G is transformed to a complete graph.

Lemma 6. Let G be a positive Hushimi tree. If a is a vertex of G with H-
degree 1(resp. 2), then, by local switching, from G, we get a positive Hushimi
tree, in which the H-degree of @ is 2(resp. 1) and the H-degrees of all the other
vertices are not altered.

Proof. Take any vertex a of G. If the H-degree of the vertex a is 2, then
there are two blocks B; and By which contain a. By local switching at the
vertex a, we join B; and By and get a positive Hushimi tree where the H-
degree of the vertex a is 1 and the H-degrees of all the other vertices are not
altered. If the H-degree of a is 1, then there is a block B which contains a. By
local switching at a, B is divided into two blocks B; and B which contain a.
The vertex a has H-degree 2 as a vertex of the new positive Hushimi tree. The
H-degrees of all the other vertices are not altered in this case either.

Proof of Theorem 4. If G has only one block, we get the result by Theorem
2. Suppose the result is true for any positive Hushimi tree with m blocks which
satisfies the assumption. Now, assume that G has m+1 blocks. Take a pendant
block By of G with cut-vertex b. Let By be the other block with cut-vertex b.
Put i = b,J = B;\b,K = B;\b. By local switching with respect to (b,.J), we
obtain a positive Hushimi tree with m blocks, which can be transformed to a
positive complete graph, by a sequence of local switchings.

It follows from lemma, 6 that a positive Hushimi tree whose any cut-vertex
has H-degree 2 is transformed to a positive Hushimi tree whose any cut-vertex
has H-degree 2, by any local switching. As a line-tree is a positive Hushimai
tree whose any cut-vertex has H-degree 2, we get easily that a line-tree is
transformed to a positive Hushimi tree whose any cut-vertex has H-degree 2,
by any sequence of local switchings.

3. Trees

We show the following results in this section.

Theorem 7. Let G be a positive semi-simple Hushimi tree. Then, G is
equivalent to a tree by local switching. Conversely, if a tree is transformed to a
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positive Hushimi tree G by a sequence of local switchings, then, G is a positive
semi-simple Hushimi tree.

Let T be a tree with vertices {a1,---,an}. Let @ = (a;,--+,a;,) be a
permutation of {a1,-+,a,}. For each j,1 < j < n, by replacing a; with aj,
we get a new tree T’ from T. We call T’ a permutation of T. Tt is evident that
T’ is isomorphic to T.

Theorem 8. A tree T} is equivalent to a tree T, by local switching if and
only if 73 is a permutation of 73.

From lemma 6, the following is evident.

Lemma 9. Let G be a positive Hushimi tree. Then, it can be transformed
to a positive Hushimi tree which has no cut-vertex with H-degree 2, by a
sequence of local switchings.

Lemma 10. Let G be a positive Hushimi tree which consists of k-blocks
By,--+,B; ,(k > 3) and has a unique cut-vertex v contained in all blocks.
Hence, the H-degree of v is k. Take any vertex a in one block and b in another
block which are not the cut-vertex v. By any sequence of local switchings,
we can not construct a complete block containing both a and b. Hence, any
positive Hushimi tree which is equivalent to G by local switching and has no
cut-vertices with H-degree 2 is isomorphic to G.

Proof. Firstly, let k = 3. We may assume a € Bi\{v} and b € Ba\{v}.
Take any vertex ¢ € Bs\{v}.

Case 1. To construct a block containing a and b, from G, we get a signed
graph G; by local switching with respect to (v,J = B1\{v}). Then, there are
the edges ac, ab, but there is no edge be. To get a complete block containing a
and b, we need to join b to ¢ or delete the edge ac (or ab ) by local switching.
Firstly, we want to join b to ¢. Take any vertex a’ € B;. By local switching
with respect to (a',J = By U By\{a’}), we get a singed graph where there is
the edge bc but there is no edge ac if o/ # a or there is no edge ve if o/ = a.
In fact, in this case, each vertex in Bo\{v} is jointed to each vertex in Bz\{v}
but all the edges between Bs\{v} and B;\{a'} are deleted. Hence this signed
graph is similar to G;. Thus, we can not get a complete block containing a
and b. Take any vertex o/ € Bi\{a}. Next, we delete the edge ac by local
switching with respect to {(a’,J = B; U B3\{a'}). Then, we get the edge be. In
the signed graph obtained, any two vertices in By U By are jointed and each
vertex in By\{v} is jointed to each vertex in Bs\{v}, but all the edges between
B1\{a'} and B3\{v} are deleted. This signed graph is also similar to G;.

Case 2. Assume that By = By; UB;9,B;1;N By =0,,a € By1,b € By,c €
Bj. By local switching with respect to (v, J = By;\{v})), we obtained a signed
graph G3. By the same argument as in Case 1, we can show that there is no
complete block containing a, b.

Case 3. Assume that B1 = Bll UBlz, Bll ﬂBlz = @, BQ = le UBQQ, BQl N
Bsy = §,Bs = B3y U B3z, B31 N B3y = 0,0 € By1,b € Boj,¢ € Bs; . By
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local switching with respect to (v,J = Bj; U Baa U Bsz\{v}), we obtained
a signed graph G3. Then, G3 has the edges ab,ac, but has no edge bc. By
similar discussion about Bii, B21, By as in Case 1, we can not get the three
edges ab, ac, be at the same time. In G3, each vertex in By \{v} is jointed to
each vertex in G32\{v} and each vertex in B3;\{v} is jointed to each vertex in
Go2\{v}. Even if we ignore these facts, we can not construct a complete block
containing By, Boi, B3y by the same reason as in Case 1.

Assume k = 4.

Case 4. Let a € By,b € By, c € B;. Set B = B3 U By. By local switching
with respect to (v,J = B1\{v})), we get a signed graph G4. Then, G4 has the
edges ab,ac , but has no edge be. Even if B} was a complete block, we could
not construct a complete block containing By, Bs, Bj.

Case 5. Let a € By,b € Bsy,c € B;,d € By. By local switching with respect
to (v,J = By U Bs\{v})), we get a signed graph G5. Then. G5 has the edges
ab, ac, db, dc, but has no edges bc,ad. We show as similarly as in Case 1 that
we can not construct a complete block containing a,b by deleting the edge be.
By local switching at some vertex, for example d, we will try to join b and c.
By local switching with respect to (d,J = B3 U By\{v,d}), we get a signed
graph. Then, each vertex in Bg\{v} is jointed to each vertex in Bs\{v}. But,
all the edges jointing v and vertices in B3\{v} are deleted, and if B;\{v,d})
is not empty, all the edges between By\{v} and Bs\{v,d}) are deleted. The
block containing By, B2, B3 must contain By. But, By, B, B3 can not make a
complete block as we can show by the same argument for By, Bs, B3 in Case 1.

Case 6. Assume that Bl = B11 U BlZyBll n 312 — 0, B2 = B21 U BQQ,
B2y N By = 0, By = B31 U B3, B31 N B3z = 0, By = B41 U B2, Bs1 N Byo =
0,a € B11,b € Bay,c € Bs1,d € By . By local switching with respect to
(v, J = B11 U Bs1 U Baa U B3a\{v})), we obtained a signed graph Gs. Then.
G has the edges ab, ac, db, dec, but has no edges be, ad. By the same argument
as in the case 5, even if we ignore Big, Byo, B3s, Bsa, we can not construct a
complete block containing a, b, ¢, d.

Assume k > 5.

Case 7. Let a € By,b € By,c € Bs,. Set By = B3 U B4 U---U By. By local
switching with respect to (v,JJ = B1\{v})), we get a signed graph G7. Then,
G~ has the edges ab, ac , but has no edge be. Even if B} was a complete block,
we could not construct a complete block containing By, Bz, Bj.

Case 8. Let a € By,b € Bs,c € B3,d € By, ({ < k). Set By = B¢UBg41U- -+
UBg and By = B3 U---U By_1. By local switching with respect to (v,J =
B, UBj\{v}) , we get a signed graph Gg. Then. Gg has the edges ab, ac, db, dc,
but has no edges bc, ad. Even if B} and Bj were complete blocks, we could not
construct a complete block containing a, b, ¢, d by the same argument in Case
5.

When we apply some local switching, it rather prevents from making a
complete block to divide given blocks B;’s . Hence, in any cases, we can not
construct a complete block containing vertices a, b.
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Proof of Theorem 7. By lemma.9, we may assume that G has no cut-vertices
with H-degree 2. Select an arbitrary vertex in each pendant block which is not
a cut-vertex. We will show that G can be transformed to a tree, by a sequence
of local switchings, without adopting local switchings at the selected vertices.
Assume that G has m blocks. If m = 1, the result follows from Lemma 3.
Now suppose that the result is true for Hushimi trees with m blocks which
satisfy the assumption. Let G have m + 1 blocks. Take any pendant block B,
with a cut-vertex b. Let Bs,- -, By be all the other blocks of G which contain
the vertex b. We get k sub-Hushimi trees G;(i = 1, ---k) of G, where each
G, contains B;. Select b and an arbitrary vertex in each pendant block of G;
which is not a cut-vertex. Then, each G; can be transformed to a tree, by a
sequence of local switchings, without adopting local switchings at the selected
vertices. Hence, we show the result for the Hushimi tree G.

Now, take a tree T. Then, it is a positive Hushimi tree and its each block
has at most two cut-vertices whose H-degree are greater than 2. By lemma
6, by some sequence of local switchings at vertices with H-degree 2, we obtain
from T the positive Hushimi tree G; which has no cut-vertices with H-degree
2. Take a cut-vertex v of G; whose H-degree is k,(k > 3). Let G5 be a signed
graph obtained from G; by local switching at v. It is evident that G> is
not a Hushimi tree. Tt follows from lemma 10 that by any sequence of local
switchings, from G2, we can not get a positive Hushimi tree which has no cut-
vertices with H-degree 2 and is not isomorphic to G;. Thus, we obtain the
desired result.

We need the following lemma to prove theorem 8.

Lemma 11. Assume that a tree T has a vertex {v} with degree k and just
k leaves. Let a1 be one of the leaves and ajas - - - apv be the path between a,
and v. Take any vertex a;, 1 < < ¢. Then, by a sequence of local switchings,
from T, we get a new tree T where v and a; are interchanged and all the other
vertices are not altered.

Proof. By a sequence of local switchings, from T, we get a positive Hushimi
tree G; with k blocks. This Hushimi tree has the unique cut-vertex v with
H-degree k. Let B; be a complete block with vertices a3, as,- -+, ag,v. By local
switching with respect to (v,J = B1\{v}), from G; we get a signed graph Go.
By local switching with respect to (a;,J = B1\{a:}), we get a positive Hushimi
tree G3 with k blocks. This G3 has the unique cut-vertex a;. By a sequence of
local switchings, from G5 we get the desired tree 7.

Lemma 12. Let 73 and T» be line-trees of order n. Then, T} is equivalent
to T by local switching if and only if T is a permutation of T3.

Proof. Let T; be aline-tree ;a2 - : an, and 5 be its permutation a;, a4, -+ - a;,, .
Then, 77 and 7% are equivalent by local switching to the complete graph with
vertices {aj,as, - -,a,}. Hence, they are equivalent by local switching. Con-
versely, if a line-tree T} is equivalent to a line-tree Ty by local switching, it is
evident that T3 is a permutation of 7.
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Proof of Theorem 8. Let T, be.a permutation of 7. Then using lemmas 11
and 12, we can construct a sequence of local switchings by which T3 is trans-
formed to T>. On the other hand, when a tree is transformed to another tree
by local switchings, by taking account of lemma 9, we can use local switchings
such that are treated in lemmas 11 and 12. Hence we only interchange vertices
of the tree.

4. The lattice D, and signed cycles

A k—cycle C* = (V, E), where V = {a;,02,+++,az}, E = {a;a2,0503, -,
ay_1ax,ax0, } , will be denoted simply C* = aja, -+ aya;. For signed cycles,
there are two switching classes, which are distinguished by the parity or the
balance, where the parity of a signed cycle is the parity of the number of its
edges which carry a positive sign and the balance is the product of the signs
on its edges [7].

The lattice D, is spanned by vectors +e; e;, (1 <4 # j < n), where
{e1,+-,en} is the orthonormal base of the euclidean n-space R"™. There is the
one-to -one correspondence between ordered root bases of D, and connected
signed graphs associated with D,,.

Theorem 13. Let C* be a k—cycle. Then, it is equivalent to a tree by
local switching if and only if its parity is odd.

Proof. Let the parity be odd. If the parity of k is odd, then by switching,
we may assume that signs of all edges are positive. Put C* = ajaz - - - ara;. By
a sequence of local switchings with respect to (az,J = {as}), (a3,J = {a4}),

-+, (ag—1,J = {ax}), we get a signed graph G, which is the graph obtained
from the positive complete graph on vertices {aj,az,---,ax} by deleting the
edge ajar. By a sequence of local switchings with respect to (a3, J = {az}),
(as,J = {as}), -+, (ak-1,J = {ax—2}), from the graph G, we get a tree
with edge set £ = {asa3,0304,"*,0k—20k—1,0k—-10k, 0k—101 }, Which may be
regarded as the Dynkin diagram of Dy.

When the parity of k is even, we get a tree as similarly as above.

Now assume that the parity of C* is even. For a cycle a;a5a3a;, we may
assume that only the edge a;a2 has negative sign. Then we can not transform it
to a tree by local switching. Next, every edge of a cycle a;az2a3a40; has positive
sign. We must transform it by local switching, for example, with respect to
(a2, {a1}). Then, we have a signed graph with E* = {aja2, a1a3,a203,0a4a1},
E~ = {aza4}. This graph can not be transformed to a tree by local switching.
Now suppose that any k — 1-cycle with even parity can not be transformed
to a tree by a sequence of local switching. Take a k-cycle ajas---cre; with
even parity. We must do some local switching, for example, with respect to
(a1,J = {ar}). We get a signed graph and its induced cycle azazay - - - axas
with even parity. Any local switching of the signed graph at some a;,2 < j <k,
has the same effect on the induced cycle asazay - - - aray as local switching at a;
of the cycle agazay - - - aras. Asthe cycle axaszay - - - aras can not be transformed
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to a tree, the induced cycle aza3a4 - - - araz and hence the k-cycle ajas - - cxex
can not be transformed to a tree by a sequence of local switchings.

We denote by [Dy] the tree which is isomorphic to the Dynkin diagram of
Dy, and by K — e the graph obtained from the positive complete graph on &
vertices by deleting one edge. In the above proof, we proved already

Theorem 14. Let C* be a k—cycle with odd parity. Then, Cy, [D] and
K} — e are equivalent by local switching.

Theorem 15. Any signed graph associated to the lattice D, is equivalent
to the tree [D,] by local switching.

Proof. Let G be a signed graph corresponding to an ordered base {a1, a2,
-++,a,} of the lattice D,,. If we replace a; by —a;, then the sign of G is switched
with respect to {a;}. Hence there is no problem whether we take a; or —o;.
If a; = e; — e; (resp. a; = e; + e; ) is contained in the ordered base, e; + e,
(resp. e; — e; ) is not contained in it except one pair which we denote by
k-1 = €x—1 — €k, ar = ex—1 + €k, (1 <k <n). It leaves the switching class of
G invariant to replace a;, = e; — e, (resp. a; = ej+e¢ ) by e; + e, (resp. e; — e
). Hence, we always take a; = e; — e, (j < £), if either of e; — ep or e; + €, is
contained in the ordered base.

If G is a graph corresponding to the base {a; = €1 — e2,a2 = ez — €3, -,
Un-1 = €n—1 — €n,an = €n_1 + €}, G is just the tree [D,].

Assume that G is a graph corresponding to the base {a; = e; — ez, a3 =
€2 — €3, ' ,0k—] = €g_1 — €k, Ak = €1 F+ €k, 0k41 = €k — €gt1," 0, Ap =
én-1—€n}, (2 < k < m). Then it is a signed graph with edge sets E* =
{alaz, a203,0304, " ,0k—-20k—1,0k~20k,Qk—10k4+1,Ak+10k+2," " ", an—lan} and
E~ = {arar+1}. By a sequence of local switchings, from G, we get a signed
graph G, with three blocks By, By and Bs, where B; and Bj; are the positive
complete graphs on vertices {a;,-:-,ar_2} and vertices {axi1, - -,a,}, and
Bs is a 4-cycle ag_gax 105110805 _o With odd parity. By local switchings with
respect to (ak—2,J = {ax—1,ax}), (ax+1,J = {ax—1,ax}) and (ax,J = By),
from G;, we get a signed graph which is isomorphic to K, —e.

In general, let G be a signed graph corresponding to an ordered base
{a1,a2, --+,an}, where we may assume that ax—1 = ex—1 — €y, 0k = €x—1 +
er is the particular pair. By a similar argument as in the proof of the-
orem 1, we can show that G consists of ¢ blocks By, B, -, Be such that

By, By, - -, By are complete blocks and By is given by {ax—1 = ex—1—e€,ax =
€k—1 + €k, ai;, = €p—1 — €5, ,di, = €k — €j,,0y; = € — €y, Ay, =
ex — €y}, where all ex_1,ex, €5, -, €; €y, -, €y, are different. For any

cut-vertex a of G, we can show as similarly as in the proof of theorem 1
that G — a has two connected components. By a sequence of local switch-
ings at all cut-vertices, from G, we get a signed graph G;. If it is nec-
essary, by rearrangement of vertices, G; can be expressed as follows. The
subgraphs of Gy on vertices {a1,---,ax—2} and on vertices {axt+1, **+,an}
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are complete. Moreover G; has.the edges {ajax-1, @20k-1, "+, Qk—20k_1,
10k, G20k, "+ Qp—20k, Ak +10k—1, Ak +20k—1, " * ,Andk—1} With sign +1 and the
edges {ax+10k, Qg 20k,  * +,Anax } With sign - 1. By local switching with respect
to (ak—1,J = {a1, - -,ak—2}), from Gy, we get K,, — {ax_1ax}-
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Abstract
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Introduction and Preliminaries

In their paper [17], M. Newman, D. Shanks and H. C. Williams have shown
that a symplectic group S,(2n,F,) has a square order if and only if n = 2 and
q = p, where p is a NSW prime. The main result given in [17] is the following.

Proposition 1. The order of a symplectic group S,(2n,q) is square if and
only if (n,q) = (2, S2m+1), where Saymy1 is @ NSW prime .

Now we shall recall the definition of NSW numbers in P. Ribenboim’s book
[18]. We define a sequence {Szy,11} by putting

(142> 4 (1 - y2)2m !
5 :

S2m+1 =

We call a prime NSW number S;,,,1 to be a NSW prime. For example, Sz =
7,85 = 41 and Sy = 239 are the first three NSW primes. In [9], we have
verified the conjecture announced in [17] is true. Namely, we have shown that
the order of any finite simple group G is not square when G # S,(4,q). Thus
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it is a natural problem to ask the existence of finite simple groups of higher
powers. In this paper, we shall consider the existence of finite simple group of
cube order. For the sake of simplicity, we restrict ourselves to the special case
G = S,(2n,q). We shall show the following main theorem.

Theorem. There is no symplectic group G = S,(2n,q) of cube order.

Firstly we shall prepare the preliminary lemmas which we will use in later.

Lemma 1 (Bertrand’s postulate). If n is an integer > 2, there ezxists an odd
prime p such that
nf2<p<n.

Lemma 2 (Breusch [3]). Forn > 7, there exists a prime p of the form 6k + 1
such that
n/2 <p<n.

Lemma 3 (Shorey, Bugeaud and et al (1], [19]). For any n > 3, the diophan-

tine equation
.'1:2" -1 iy
2-1 Y

has no integer solution in integers > 1,y > 1.

Lemma 4 (Ljunggren [11]). Ifn = 1,2,4 mod 6 and > 4, then the diophantine
equation

-1 5

z—-1 " y

has no integer solution in integers |z| > 1,y > 1.

" -

We note that is the Lucas sequence associated to the pair (z + 1, z)

and satisfies the following elementary relation on the greatest common divisor.

Lemma 5 (Ribeiboim [18] ).

g™ -1 g7 —1 zmn) 1
(x—l’:c—l)”" r—-1
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Lemma 6 (Delaunay [4], [5]). The diophantine equation
B +dy®=1 (d>1)

has at most one integer solution with xy # 0. Moreover the solution (z,y)
corresponds to the binomial fundamental unit x + yd in the ring Z[@’E]

1. Proof of the main result

We know the order of the symplectic group is

"2

1S,(2n,9)] = T [T

i=1

where d = (2,q — 1). Hence we can write

n? n 20 _
8,m 0l = @ -7 TT (L2 )

=1 q -1

We shall treat the case 3|n and 3 [ n separately. In the following, we shall
consider the easier case 3|n.

Case 1) 3|n.
We can write n = 3m. Then we have
1 3m q2i -1
—_ — 3my 2 3m
15,2, 0)| = 1S,(6m,0)] = (g mq»ag(gj)

3m 21
Then we see |S,(6m, g)| is cube if and only if — H (

-1

Lemma 1, we can take an odd prime p which satlsﬁes 3m/2 < p < 3m for any
2p _

1
positive integer m. Take the factor %5—1- of |5,(6m, q)|. Then we see

(=) - (224 i (52

i=1(+#p)

) is cube. From

2p _ 1
Here we note that (;241 = qz(" D4t ¢® + 1 is always odd. Hence we see

2r _q
q =
<qz~1’d)“1'
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Moreover, from Lemma 5, we have

q2p —1 q‘h -1 1

(_12 -1’ qz -1 ’

for any 1 < i (# p) < 3m. Thus we see if |\S,(6m, g)| is cube then

¢?? -1
21

be cube. From Lemma 3, we know there is no integer solution with ¢,y > 1 for
¢ -1
g* -1
positive integer m.

must,

= y3. Hence we have shown that |S,(6m,q)| is never a cube for any

Case 2) 3 fn.

In the next, we shall treat the case 3 fn. In the case n > 7, we can take a
prime p of the form 6k + 1 which satisfies n/2 < p < n from Lemma 2. Take
2p _ 1
the factor (—qu—_T of |Sp(2n,q)|. Then we have

q2p_1 q2i__1
q2~1’q2~_1

i

1for any 1 <4 (#p) <n,

2p _
q 1

—,d = 1
( ¢ -1’ ) ’

2p
-1 ,
— -1 = 1 .
( g-1"1 ) np
g’ -1 g -1

Thus if |S,(2n,q)| is cube, then the factor Fo1 must satisfy 71 =

y® or py® or p?y® for some positive integer y. We note here that
P -1 [q" -1\ (" +1
@2—-1 \g-1 g+1

. g -1 ¢g°+1 .
with FESRrTSY = 1. Thus we can conclude that the assumption |S,(2n, q)|
is cube implies

p_1 | —a)? -1
i ST s S ')
g1 g+1  (-¢) -1

= y* for some positive integer y,

which contradicts Lemma 4. Thus we have shown |S,(2n,q)| is never a cube
forn > 7.

Finally, we shall verify |S,(2n, q)| is not cube for remaining cases n = 1,2, 4
and 5.
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In the case n = 1, we have

19p(2,0)l = qlg+ 1) .(%_1) with d = (2,¢ ~ 1).

-1 -1
Here we see (¢, + 1) = 1, (q,qT) = 1, and (qT,q+l) = 1lor2.

Therefore, if |S,(2,q)| is cube, then we must have ¢ = z* for some integer
z > 1. Also we must have g+ 1 = y® or 2y3 or 4y® for some integer y > 1.

If ¢ + 1 = g3, then it contradicts the classical fact z° + y* # 2° for zyz # 0.
If g+ 1 = 2y3, then from Lemma 6 the solution (z,y) corresponds to the
fundamental unit « + y /2 of Z[/2]. Since the fundamental unit & of Z[ /2]
with 0 < e < 1is e = —1 + 2, we must have £ = y = 1, which contradicts
the condition ¢ = z® > 1.

If ¢+ 1 = 493, then in the same way as above the solution (z,y) corresponds
to the fundamental unit = + y ¥4 of Z[¥/4]. Since the fundamental unit 7, of
Z[\g/i] with 0 << lisn =2 =1+ ¢4 —3/16, we know there is no solution
which satisfies z° + 1 = 4y3. Thus we can conclude |S,(2, ¢)] is never a cube
for any gq.

In the case n = 2, we have

2___1 2
Sl =¢* (T3] a4 D) withd= (g~ 1),

21
d

i

d

have ¢ = z® for some integer z > 1. Also we must have ¢*> + 1 = y3 or 2y or

4y® for some integer y > 1.

If ¢2 +1 = (2%)® + 1 = 43, then it contradicts the classical fact z3 + y® # 2°

forzyz #0. f®? +1=(z?)3 +1=y3 or ¢* +1 = (2?)% + 1 = 49®, then in the

same way as in the case n = 1, we can see there are no solutions when z,y > 1

from Lemma 6. Thus we can conclude |S,(4,q)| is never a cube for any g.

Here we see (q, a4 =1,(¢,¢?+1) =1, (g,d) =1, (¢> + 1,d) = 1 or 2,

and <q2 +1, ) = 1 or 2. Therefore, if |S,(4,¢)| is cube, then we must

In the case n = 4, we have
1
198, 9)| = 5¢'°(¢" = D*(g" = )*(¢" + ¢* + 1)(¢" + 1) withd = (2,¢-1).

It is easy to see if |S,(8,¢)| is cube, then ¢ = z* with some integer z > 1.
Moreover we see (¢* +1,d) =1or2, (¢* +1,¢) =1, (¢* +1,¢* = 1) =1 or 2,
(¢*+1,¢*—1)=1or 2, and (¢* +1,¢* + ¢* + 1) = 1. Therefore, if |5,(8,q)] is
cube, then we must have ¢* +1 = (%)% + 1 = y® or 2y® or 4y for some integer
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y > 1. In the same way as in the case n = 1, we can see there are no solutions
for z,y > 1 from Lemma 6. Thus we can conclude |S,(8, q)| is never a cube for

any q.

Finally we shall consider the case n = 5. Then we have

15,010,0) = 3076 - 1" = 07+ 7+ 0+ 0 (S5,

with d = (2,9 — 1). It is easy to see if |S,(10,q)| is cube, then q = =3 with
some integer x > 1. Moreover we see (¢* + 1,d) = 1or 2, (¢* + 1,q9) = 1,
-1
(q+1q—1)~lor2(q+1q+q+1)—10r2and<q +1 1):1.
Therefore, if |S,(10, ¢)| is cube, then we must have ¢* + 1 = (234)3 +1=q°
or 2y3 or 4y3 for some integer y > 1. In the same way as in the above cases,
we can see there are no solutions for z,y > 1 from Lemma 6. Thus we can
conclude |S,(10, ¢)| is never a cube for any ¢, which completes the proof of our
main theorem.
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Abstract
We compute the Iwasawa invariants of Q(v/f,(,) in the range |f| <
200 and 5 < p < 200000 (resp. |f| < 10 and 5 < p < 1000000). These
computational results give us concrete information on the higher K-
groups of the ring of integers of Q(v/¥).

2000 Mathematics Subject Classification. 11R23, 11R70

Introduction

Let F be a number field and Op the ring of integers of F. Put K = F((p)
and denote by K, the cyclotomic Z,-extension of K. Let L., be the maximal
unramified abelian p-extension of K, and L the maximal unramified abelian
p-extension of K, in which every prime divisor lying above p splits completely.
Put Xo = Gal(Lew/Ko) and X, = Gal(L, /K).

It is known that there are relations between Iwasawa modules X!  and
Quillen’s K-groups K,,(OF). The main purpose of this paper is to give concrete
information on the Iwasawa invariants of X, and the higher K-groups K,(OF)
for quadratic fields F' by using these relations.

Following [9, 10], we compute Iwasawa invariants and found some excep-
tional pairs. Using these pairs, we give exceptional examples of K,,(OF). For
example, we find that for 5 < p < 1000000, p divides the order of K’ 33538(OQ( \/8—))
if and only if p = 7 or 157229 under the Quillen-Lichtenbaum conjecture.
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1 Iwasawa invariants of Q(\/f, ()

Let x be a quadratic Dirichlet character and p an odd prime number. Assume
-1
that ¥ # w”2 , where w = wp is the Teichmiiller character Z/pZ — Z, such

that w(a) = amod p. Put F = Fy, = Q(\/fy) and K, = Q(y/fy,(pn+1). Let
A, (resp. Al) the p-part of the ideal class group (resp. p-ideal class group) of
K,.
Put Goo = Gal(Koo/F), A = Gal(Ky/Fs) and T = Gal(K/K). Further
put A’ = Gal(Koo/Qoo) and €, = 557 Y scar ¥(6)67" for a Dirichlet character
¥ of A'. For a Z,[A'}-module A, we denote €'y A by A¥. Let A\, (¥), pp(¥) and
vp(¢) (resp. AL(¥), u, (1) and v, () be the Iwasawa invariants associated to

XY (resp. X'%), i.e.,

uAi} = pAP(¢)n+/LP(¢)Pn+VP(¢') (resp_ ﬂA’i = p)\;(xb)n-i—p;(;b)p"—{-u;(;b))

for sufficiently large n. By Ferrero-Washington’s theorem, we have p,(y) =
1, (1) = 0 for all p and 3.

Assume that v is even. The Iwasawa polynomial g, (T) € Z,[T] for the
p-adic L-function is defined as follows. Let L,(s,4) be the p-adic L-function
constructed by [6]. Let fo be the least common multiple of f, and p. By [3,
§6], there uniquely exists G (T') € Z,[[T]] satisfying

Gy((1+ fo)' 7" = 1) = Ly(s,9)

for all s € Z,, if ¥ # x°. By [2], it was proved that p does not divide Gy(T).
Therefore, by the p-adic Weierstrass preparation theorem, we can uniquely
write

Gy(T) = gy(T)uy(T),
where g, (T') is a distinguished polynomial of Z,[T] and u(T) is an invertible

element of Z,[[T]]. Put \,(¥) = deg gy (T).
For a pair (p,v), we assume the following condition

(€) ¥(p) #1 and ™ w(p) # L.
If y(p) # 1, we have A, (¥) = A, (¥) and v, () = v, ().
We extend the tables of [9, 10] to all primes below 200000.

Proposition 1 For |f| < 200 and 100000 < p < 200000, all exceptional pairs
(p, xw*) are given in the following table. The meaning of the symbols are as
follows: [V] : v(xwk) > 0, [ao] : vp(ao) > 1, [bo] : vp(bo) > 1, Imd] : A(xw*) >
1, where ag = Ly(1, xw*) and by = L,(0, xw*).
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Exceptional pairs (p, xw*) for 100000 < p < 200000

f p k f P k f p k.
[v] [ao] (Imd]

8 157229 140434 | 57 119627 53592 | 133 185189 119132
28 109829 45474 | 77 175843 43682 | 168 104971 21988
56 100937 93200 | 141 120823 39250 | -187 166823 150305
279 153059 68171 | 157 150401 101272

91 107449 81489 [bo)

-104 184157 53783 | -19 165667 11685

2119 112241 37701 | 53 167593 99386

-120 126691 28093 | -71 177473 58993

149 109211 11960 | 137 124493 41762

-183 104803 58845 | -152 104399 90165

Proposition 2 For |f| < 10, ie., f = -3, 5, —4, —7, 8 or —8 and 200000 <
p < 1000000, there is only one exceptional pair (399181, x_4w'%83), which sat-
isfies A(x—qw'%8) > 1.

In Figures 1-2, we compare the actual number of exceptional pairs with the

expected number E in the range 200 < p < 200000.

# of pairs

FIGURE 1. Exceptional pairs {(quadratic, 1<|f|<200, 200<p<200000)

L P 1

20000

40000

60000

80000

100000

120000

140000 160000 180000 200000
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FIGURE 2. Exceptional pairs (Quadratic, 1<|f|<200, 200<p<200000)
60 T T T T T T

50 +

40

30

# of pairs

20 +

0 - | ) the number of Ifl's | . .
0 20 40 60 80 100 120

From our data, the actual numbers still seem to be near to the expected
numbers.

2 Higher K-groups of Op

We recall some results on Quillen’s K-groups.
Theorem 1 (Quillen) For alln > 0, K,,(Or) is a finitely generated Z-module.
Theorem 2 (Borel) For m > 1,

R Rt

where r1(F') is the number of real embeddings of F', and ro(F) is the number
of pairs of complex embeddings of F. Further,

Kom—2(OF) is finite.

Conjecture 1 (The Quillen-Lichtenbaum conjecture) The natural map (via
p-adic Chern characters)

Kom-i(OF) @ Zp, — Hét(Spec(OF[l/p]), Z,(m))

15 an isomorphism for allm > 2, ¢ = 1,2 and any odd prime number p, where
A(m) is the m-th Tate twist of a Galois module A.
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The surjectivity of p-adic Chern characters was proved by (1, 4, 7, 8. We
simply denote H,(Spec(Or[1/p]), A) by H (Op, A).

Theorem 3 ([5, §3, §4]) For m # 0, we have
HY (O, Zp(m))tors ~ H*(OF, Qp/Zp(m)).
For m # 1, we have an ezact sequence
0 X, (m-1)g, — H*Op,Z,(m))
- [[ H*(F., Z,(m)) = H(OF, Qp/Zy(1 - m))¥ = 0,
vlp

where AY = Homgz, (A, Qp/Z,).

From now on, we use the same notation as in the previous sections. For
an even character yw!' ™™, we write the Iwasawa polynomial g,,,1-= (T) for the
p-adic L-function L, (s, xw!™™) in the form

Alxw

gxwl—m (T) = H (T - axwl—m’i), axwl—m,i 6 QP'
i=1

)

We put

Zl'(p,X,m - 1) = min{yp(xwl_m)’ UP(H (1 - (1 + fO)m_l(axul“"‘,i + 1)))}

i=1

For an odd character yw!™™, we put Qym ; = flo%(:‘:,;n—:,
A(xw™)
G (M) = I (T -afumy)
i=1
and )
Alxw™)

e*(pom—1) = [[ Q-+ f)" " afn: + 1))

=1

Further, for an integer m, we define the following sets of prime numbers

Si(m=1)={p:p'l(m—1),(p— 1) { (m - 1),xw? (p) = 1, xw? # x°},
So(x,m—1)={p: (p—1)|(m - 1), x(p) =1},

where p' = ";—1. We put

o vpm=1)+1 if pe Si(x,m —1)US2(x,m — 1),
yp,xom—1) = { 0 otherwise.
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Proposition 3 Let x be a quadratic Dirichlet character, p an odd prime num-
ber and F = F,. For an odd character xw'™™, if (p, xw™) satisfies (C), then

BXL (m = 1) =p= Pxm,

1-m
For an even character xw'™™, assume that X'%’ is finite. If (p,xw'™™)
satisfies (C) and if gy, 1-=(T) is an Eisenstein polynomial or of degree one,
then
£X., (m ~ 1) = prxm=D),

Further, for an integer m, we have

i H'u|p H?(Fy, Zp(m))X
#HO(OF, Qp/Zp(1 — m))x

_ py(;v,xym—l)‘

Proof. In [9, Proposition 4.1], we prove the above theorem when x is even.
In the same way, using an isomorphism ‘

Xom-1Dy = X% " ®Z(m-1),

we can show the above equations. O

For a positive integer n and a prime number p, we denote by Ks,,_2(Or)(p)
the p-Sylow subgroup of Ko, —2(Op). Here we put

Kym2(Or)= @ Kam2(0r)(®),

5<p< 200000

X'em-1)= J[ #X(m-1%_ and
5<p<200000

)/i’(X'/m_ 1) = H

pESi(x,m), 5<p<200000

$ 1Ly H(Foy Zp(m))x
IH(OrF, Q72,1 — m)X’

Then, Theorem 3 and the surjectivity of p-adic Chern characters, we have

4K, o(OF) is divided by X'(x,m — 1) ¥{ (x,m — 1) - Y3 (x,m — 1).

For an odd character yw!™™, we can compute v,(X'(x,m — 1)) from the zeros
of the Iwasawa polynomial by Proposition 3. In fact, we can easily obtain a lot
of examples of (x,m) with X'(x,m —1) > 1.

On the other hand, for an even character xyw!™™, it is more difficult to
obtain examples of (x,m) with X'(x,m — 1) > 1. Since Vandiver’s con-
jecture is true for all p < 12000000, X/ (m — 1)?;; is trivial for any odd
integer m. Further we have $H%(Q,,Z,(m)) = $tH*(Qp, Qp/Z,(1 — m)) =
tH°(Z,Q,/Z,(1~m)). By Proposition 3 and our computational result [9, 10],
we obtain such examples in the following tables.
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Factors of ﬁKlzm—z(OQ(\/g)) with X' =X'(x,m—-1) > 1

~200 < f, <0 and 5 < p < 200000

2m -2 | f, X' 2m -2 | fy X'

122 -4 379 46 -11 79
22 -11 173 5470 -15 4909
38 -19 37 58 -19 41
594 -19 2251 1714 -20 | 20261
34 -23 193 30 -31 131
1090 -31 821 26 -40 97

198 -51 557 5918 -51 6553
78178 | -55 | 41189 46 -67 433
26 -71 17 14 -79 17
55534 | -79 | 45943 || 169774 | -79 | 153059
654 -84 | 10133 47958 | -88 | 33049
30 -91 37 7550 -91 7069
51918 | -91 | 107449 26 -103 17
102 -103 67 35102 | -104 | 17837
260746 | -104 | 184157 1034 | -116 | 4363
149078 | -119 | 112241 3846 | -120 | 4177
197194 | -120 | 126691 26 -127 67

1450 | -131 8563 14 -136 11
96258 | -136 | 54547 4434 | -139 | 4451
18 -148 23 490 -152 863
1398 | -152 | 3019 6478 | -155 | 12377
46 -163 79 1102 | -167 797

91914 | -183 | 104803 30 -187 79

We have Y{(x,m — 1) = YJ(x,m — 1) = 1 for all the above cases.
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1 < fy <200 and 5 < p < 200000

2m—2 | fx X Yy 2m—2 | fx X’ Ys
68372 | 8 | 34301 1 33588 | 8 | 157229 7
316 12 | 701 1 96 21 199 517
128708 | 28 | 109829 47 44 33 53 1
20 37 43 11 936 | 53 | 1033 7-132.37
15472 | 56 | 100937 5 92652 | 56 | 55621 | 43.6619-15443
8 69 19 5 1220 | 85 | 3697 1
88 88 71 1 5124 | 101 | 5333 43-367
8 104 | 19 5 20 113 | 43 11
3540 | 113 | 3373 | 71131 140 | 124 | 197 11
380 | 124 | 239 11 76 129 | 67 1
9260 | 140 | 4751 1 1208 | 141 | 5431 5
20 149 | 43 1 108 | 149 | 71 7-19
92 149 | 229 47 194500 | 149 | 109211 251
90936 | 156 | 50051 | 5.7-19 688 | 157 | 401 173
156 | 161 | 101 1 28 168 | 37 1
124 [172| 73 1 4 173 7 1
20 173 | 43 1 116 | 173 | 101 1
20 177 |17 11 36 181 7 1
10724 | 181 | 6991 1 944 | 185 | 827 1
2004 | 188 | 1621 | 23-67-727 || 11380 | 193 | 62791 1
206 | 197 | 521 1

We have Y/ = Y{(x,m — 1) =1 for all the above cases.

Examples

There exist submodules A; of K-groups such that

KIQQ(OQ(\/TZ)) 2 K{QQ(OQ(H)) 2 A ~Z/(379Z),
K68372(OQ(\/§)) 2 K(IS8372(0Q(\/§)) 2 Az ~ Z/(34301Z), and
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Abstract

We consider the initial-boundary value problem in a two dimen-
sional exterior domain for the dissipative wave equation (82 + 8; —
A)u = 0 with the homogeneous Dirichlet boundary condition. Us-
ing the so-called cut-off technique together with the local energy
estimate and L! and L? estimates in the whole space, we derive the
L? estimates with 1 < p < oo for the solution.

2000 Mathematics Subject Classification. 35B40

1 Introduction and Results

Let Q be an exterior domain in 2-dimensional Euclidean space R? with
smooth boundary 6 and its complement Q¢ = R?\ Q will be contained in

the ball B,, = {z € R?||z| < ro} with some 7y > 0. We never impose any
geometric condition on the domain .

We investigate LP estimates with p > 1 of the solution to the initial-
boundary value problem for the dissipative wave equation :

{ B2+, —Au=0, uw=u(zt), inQx(0,00) an

(u, 8tu)|t=0 = (ug,u1) and u|aQ =0,

where §; = 9/0t and A=V -V = Zjvzl 2, is the Laplacian.

*This work was in part supported by Grant-in-Aid for Scientific Research (C) of JSPS
(Japan Society for the Promotion of Science).
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In previous paper [18], for 2-dimensional case, we have already studied the
following decay estimates of the solution of (1.1) :

()l 2o () < Cda(1+¢)~(=/P+0
for 1 < p < oo and
18eu(t)ll22(@) + V() 22y < da(1+18) 71+
for t > 0 with any small § > 0, where d; is the quantity given by
d1 = |luollar(ay + lutllLz) + lluollwrre) + urllLr) (1.2)

under the initial data ug € H}(Q) N WH1(Q) and u; € L2(Q) N LY(Q).
The purpose of this paper is an improvement of these estimates.
Our main result is as follows.

Theorem 1.1 Let Q be an exterior domain in R2. Suppose that the initial
data uo € H2(Q) N H}(Q) N WHY(Q) and uy € HF(Q) N LY(Q). Then, the
solution u(t) of (1.1) satisfies that

lu(t)] () < Cda(1+1)~11P log(2 + t) (1.3)

for1 <p< oo and
107 u(®)l L2 () + 18:Vu(t)l L2y < Cda(1 + 1)~ log(2 + 1), (L.4)
0su(t)ll a2 () + I Vu(t) a2y < Cda(1+1t) " log(2 + 1), (1.5)

lu()lizz(@) < Cda(1+)"2log(2+1¢)  (L6)
fort > 0, where dy is the quantity given by

da = |luo|l g2 + llurll a2 @) + lluollwri) + llullzr ) - (1.7)

Theorem 1.1 follows from Theorems 3.1, 4.1, and 4.2, immediately.

We note that under the initial data belonging to some weighted energy
space, the L? estimate ||u(t)||z2(n) < C(1 + ¢t)71/2 has been given by Ikehata
and Matsuyama [8] (also, see Saeki and Ikehata [23] for the energy estimate,
Tkehata [7], Nakao [12], [13] and the references cited therein).

On the other hand, for N-dimensional cases @ C RY for N > 3, in previous
paper [22], we have given the L? estimates of the solutions

lu(®)|lzr@) £ C(1 + ¢)~(N/2)(1=1/p)

for 1 < p <2, and the L? estimates of the derivatives (see [18] for N < 3).
This paper is organized as follows. In Section 2, we prepare some Proposi-
tions for the proof of Theorem 1.1. In Section 3, we derive the L! estimate and
the L? estimate of the solution. In Section 4, we give the energy and second
energy estimates for (1.1).
We use only familiar functional spaces and omit the definitions. Positive
constants will be denoted by C' and will change from line to line.
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2 Preliminaries

In this Section, for the proof of Theorem 1.1, we will state some known
results for the solution of (1.1).

First we state the result on the local energy decay estimate for (1.1) in 2-
dimensional case, which was proved by W. Kawashita (W. Dan) in [2]. (Also,
see Dan and Shibata [3], Shibata and Tsutsumi {24], Ono [22].)

Lemma 2.1 Let § be an exterior domain in R? and let r > ry. Suppose that
that initial data up € HE(Q) and vy € L?(Q) and

supp up Usuppuy C .,
where . = QN B,.. Then, the solution u(t) of (1.1) satisfies that

lu@)ll a2 ) + 102,y < C(1L+ t(logt)) " (lluollm @) + llurllz2ey)
fort>0.

Next, we state the estimates of the solution and its derivatives to the Cauchy
problem in the whole space R? :

{ (6?2 +0;—Ayw=0, v=uv(z,t), inR?x(0,00) 2.1)

(v,8v)|,_, = (vo,v1).

The following L? estimates are well-known (see Matsumura [10], and also
Kawashima, Nakao and Ono [9]).

Lemma 2.2 Let m > 0 be a non-negative integer. Suppose that the initial
data vo € H™(R?) N LY(R?) and v; € H™ }(R%) N LY (R?). Then, the solution
v(t) of (2.1) satisfies that for 0 < k+b < m,

10FVeu(t)ll L2mey < C(1 +t)~F-b/2-1/2
X (Jlvoll am (r2y + 1]l m-1w2y + vollLr w2y + vl (re))
fort>0.

By using the representation formula of the solution v(t) of (2.1) (see Courant
and Hilbert [1]), we have derived the L! estimate in previous papers [16], [17],
[19]. (Also, see Nishihara [14], [15], Ono [20], [21]. Cf. Hosono and Ogawa [6],
‘Milani and Han [11].)

Lemma 2.3 Suppose that the initial data vo € WH1(R?) and v; € L'(R?).
Then, the solution v(t) of (2.1) satisfies that

lv@ll 22y < Clllvollwriwrzy + vl wrz))
fort > 0.
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3 L' estimate

In this Section we will derive the L! and H! estimates for the solution of
(1.1) combining the so-called cut-off technique with Lemmas 2.1-2.3.

Theorem 3.1 Under the assumption of Theorem 1.1, the solution u(t) of (1.1)
satisfies that

lu(®)ll ) < Cda(1 +8)"?log(2 + 1), (3.1)
lu(®)llLr (@) < Cdzlog(2 + t) (3.2)
for t > 0, where dg is the quantity given by (1.7).

Theorem 3.1 will be deduced from the following Propositions 3.2 and 3.3
together with
lu(@®)llx < llux(@)llx + llut) — ux(®)llx (3.3)

for X = H'(Q) or L*(§2), where u,(t) is the solution of (3.4).
Let r > ro. As cut-off functions in R?, we take smooth functions x; () and
x2{z) such that 0 < x1(z), x2(z) < 1,

0 if|z|<r
1 ifjz|>r+1

0 iflz|<r+2

X(m)le(:t):{ 1 if[z|>r+3.

and x2(z) = {

First we study on the solution u,(t) to the initial-boundary value problem
of the dissipative wave equation with the initial data (xuo,xu1) :

{ (8248, — A)uy, =0 in Q x (0, 00) (5.4)

(“x,atux)‘mo = (xuo,xv1) and “XIan =0.

We can expect that u,(t) behavior like the solution u(t) of (1.1) if |z| is large.

Proposition 3.2 Under the assumption of the Theorem 1.1, the solution u,(t)
of (3.4) satisfies that

llux (®)llzr2 0y < Cda(1+1t)"2log(2 + ), (3.5)
llux ()]l 21 () < Cdalog(2 + t) (3.6)

fort > 0, where dg is the quantity given by (1.7).

Proof. These estimates will be derived by using Lemmas 2.1, 2.1, and 2.3
together with

lux ()l x < lxv()llx + llux (t) — xv(®)llx (3.7)
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for X = H*(Q) or L}(Q), where v(t) is the solution to the Cauchy problem :
2 _ —0 inR2
{ (02 +8,— A)y=0 in R? x (0, 00) 58)

(’U,at’U)‘tzo = (ﬁo,ﬁl) y

where f is a function in R? such that f(z) = f(z) in z € Q and f(z) = 0 in
z & Q. Tt is easy to see from Lemma 2.2 and Lemma 2.3 that

@l < Cdi(1+8)7? and |Ju(t)| 1) < Ca (3.9)

for t > 0, respectively.
Then, we see that the function xv(t) satisfies

{ (@248, — D) (xv) =g in R x (0,00)
(Xva 6txv)‘t=0 = (Xﬂ()’ Xﬂl) y

where g = —2Vx - Vv — Ax - v with suppg C {z € R?|r < |z| < r + 1}, and
hence, as a function in Q x (0, o),

(07 + 0, - A)(xv) =g inQx(0,00)
(xv, ath)lt.—:o = (xuo, xu1) and (Xv)|69 =0.

Moreover, we observe that the function w(t) = u,(t) — xv(t) satisfies that

(02 +8; —A)w=—-g inQx(0,00)
(w, 8w)|,_, = (0,0) and w|,, =0.

Here, we denote the solution to the initial-boundary value problem of (1.1)
with the initial data (ug,u1) by S(¢; {uo,u1}), and then, by the Duhamel prin-
ciple (e.g. [4]), we see that

t
w()) = [ (- 50,-glo)ds.
0
Since it follows from Lemma 2.2 and the Gagliardo—Nirenberg inequality that

lg@®llzzwey = |9(B)lL2(Brri\B.) < CIVV(E)l[L2@®z) + Cllv(t)]| Lo (m2)
< Cdy(1+t)71,

applying Lemma 2.1 to the function w(t) in the domain Q,.3 = QN B3, we
have that

(@) a3 @0e) < C / (1+ (& - s)(log(t — 5))2) " 19(5)l 2y ds

< Cdyp /t(l + (t — s)(log(t — 8))*) 11 + )" ds
0

<Cdy(1+1)71, (3.10)
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and also,
@)Lt (@n4s) < Cllw)l| a1 (0r4s) < Cda(1+8)7", (3.11)

where we use the fact that [;°(1 +t(logt)®)™1dt < C + ["e*/(1+e°s?)ds
<C+ [[C1/s%ds < C with t = e®.
On the other hand, the function W(t) = Ty (t) — xv(t) satisfies that

(62 + 8, — Ayw=~g inR? x (0,00)
(w, &:w)|,_, = (0,0),

and then, xow(t) satisfies that

(02 + 8, — A)(xaW) = h  in R? x (0, 00)
(X2E’ 6tX2’LU |t 0 (0 0)
where h = —2Vx3 - Vo — Ay - @ with supph C {z € R?|r+2 < |z| < r + 3}.

Here, we denote the solution to the Cauchy problem of (2.1) with the initial
data (vg,v1) by S(t; {vo,v1}), and then, by the Duhamel principle, we see that

X2W(t) =/0 S(t —5;{0,h(s)}) ds.

Applyin'g Lemma 2.2 to the function x2w(t), we have from (3.10) that
lw@) z20s,,) < Ix2@()] a2 ®e2) </ I5(t — 5 {0, k()] | 1 w2 ds
<0 [t t= 2R o + e ds
< c/ (14 ¢~ )2 ()| 1) d

< C’dz/ (14+t—s)"Y2(1+s)"1ds
0
< Cdy(1+ 1)~ Y2 log(2 + 1). (3.12)
Therefore, from (3.7), (3.9), (3.10), and (3.12) we obtain

lux®llar @) < Cllv@lmme) + Cllw®ll g (0,45) + Cllw®)l mes,,)
< Cda(1+ )2 log(2 + ),

which is the desired estimate (3.5).
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By the similar way, applying Lemma 2.3 to the function x3w(t), we have
from (3.10) that

lw(®)llz: s,y < 3B ey < C / 13t — 5 {0, ()}l 2 ay ds
<C / ()| ey ds < C / () 23 (1,0 ds
< Cdy /t(l +5)"lds < Cdplog(2 + 1) . (3.13)
0

Therefore, from (3.7), (3.9), (3.11), and (3.13) we obtain

lux @22 @) < vl @e) + Cllw@®)lrr(@ps) + Cllw(@)ll e
< Cdylog(2+1t),

+3)

which is the desired estimate (3.6). O

Proposition 3.3 Under the assumption of Theorem 1.1, the function U(t) =
u(t) — uy(t) satisfies

U@ @) = u(®) — ux@Ollm@) < Cdi(1+1)7Y2, (3.14)
U@L @) = §u(t) — ux(t)| 1oy < Cdr(1+8)~/2 (3.15)
for t > 0, where d; is the quantity given by (1.2).

Proof. It is easy to see that the function U(t) = u(t) — u,(t) satisfies

(02 4+ 08, — AU =0 inQ x(0,00)
(Ua 6tU){t=0 = ((1 - X)UOa (1 - X)ul) and Ulag =0,

and then, by Lemma 2.1 again, we observe that

IO 51 (2s0) < CA+ togt))H(Jluoll i) + luallza@y),  (316)
and also,

1T L1 (@,45) < C(1 +t(logt)*) " (luoll are) + luallzze)) - (3.17)

Moreover, we see that the function x.U (t) satisfies

(0 +0:— D) (x2U) = f inR? x (0, 00)
(X2U7 atX2l_]) ‘t:O = (0’ 0) ’
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where f = —2Vx2- VU — Ax2 - U with supp f C {z € R?|r+2 < |z| < r+3},
and also, it follows

WU = [ 8- 510760 ds.
Applying Lemma 2.2 to the function x2U(t), we have from (3.16) that
U@z, ) < IX2U@) e ey < /Ot 15t — 5 {0, £(s)})ll o2 (rey ds
<0 [t t= U + 15 ds
<O [ Q= TGt
<0 [ 1= 9PN E arnn do
< C’/Ot(l +t—s)"Y2(1+ s(logs)?)ds < Cdy (1 +8)"V2.  (3.18)

Therefore, we know that (3.14) follows from (3.16) and (3.18).

By the similar way, applying Lemma 2.3 to the function x2U(t), we have
from (3.16) that

t
0O z205,0) < DOl < [ 13¢5 {0, £ Dllzsaey ds

<c /0 1F ()2 ey ds < Cdn(1+8)~12. (3.19)

Therefore, we know that (3.15) follows from (3.17) and (3.19). O

Proof of Theorem 3.1. Summing up the above estimates (3.5), (3.14), and
(3.6), (3.15) together with (3.3), we obtain (3.1) and (3.2), respectively. O

4 Energy estimates

In this section we will derive the energy and second energy estimates for
(1.1) by using the energy method. For simplicity, we often use || - || as the L?
norm, that is, || - [| = || - | 2(e)-

Theorem 4.1 Using the assumption of Theorem 1.1, the solution u(t) of (1.1)
satisfies that

10cu(®)L2(@) + Vu(t)llL2@) < Cda(1 + 1)~ log(2 + t) (4.1)
fort > 0, where dy is the quantity given by (1.7).
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Proof. We denote the total energy for (1.1) by

B() = By(t) = 310w + 3 IVu()l?,

D |

which has the energy identity

S B + 1l = 0 (42)
or
E(t) + /0 6:u(s)||? ds = E(0). (4.3)

Multiplying (1.1) by u and integrating over 2, we have

% (%llu(t)n2 + (u(t>,atu(t))) + | Vu(t)|? - [|8u()]? = 0, (4.4)

and then, integrating it in time,

FhOF + [ 1vu) as

<

[ R

llwoll + luollffur || + [fu(®)1Gcu(®)ll + /Ot 1 u(s)||? ds
< O+ O + 10l + [ 10(s)] ds
with do = ||uol| g1(q) + [lu1]|, and hence, from (4.3) we obtain
@I + [ 19u(s) ds

< Cd + CllBwu(t)|? + C /0 t 18pu(s)||2 ds < Cd2 . (4.5)

Thus, from (4.3) and (4.5) we have
/0 t E(s)ds < Cd2. (4.6)
For m > 1, we observe from (4.3) and (4.4) that

%tmE(t) + t™|0u(t)||? = mt™ L E(t) (4.7)
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and

% (%tmﬂu(t)uz +tm(u(t),8tu(t))) + £ Va()|?

M : m— m
= St @I + mt™ 7 u(t), Bu() + B, (48)
respectively, and moreover, integrating (4.7) and (4.8) in time, we have that
t t
tmE(t) + / s™||B;u(s)||® ds = m/ s™1E(s)ds (4.9)
0 0

and

%tmuuu)u% | s ivute) P as

[y

Tt eI + e locu®)® + m/ ™ Hlu(s)|| ds

-~

/ (ms™ 1 + s™)[[Bpu(s)[2 ds, (4.10)

respectively, where we used the Young inequality at the last inequality.
Then, we obtain from (4.9) for m = 1 together with (4.6) that

tE(t) + /0 sllu(s)| ds = /0 E(s)ds < Cd2, (4.11)
and from (4.10) for m = 1 together with (4.11) and (4.3),
2 ¢ 2
@I + [ IVu(s)P ds
< CHlBau(®)|? + C / lu(s)|2ds + C /0 (1+ 8)|0u(s)|2 ds
<Cl+C / u(s)|2 ds < C2(log(2 + 8))°, (4.12)

where we used (3.1) at the last inequality. Thus, from (4.11) and (4.12) we
have

/ " $B(s)ds < C3(log(2 + £))° (4.13)
0

Moreover, from (4.9) for m = 2 together with (4.13) we have

t2E(t) + /; s2||Opu(s)||? ds = 2/0 sE(s)ds < Cdi(log(2 + 1)), (4.14)
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and from (4.10) for m = 2 together with (4.14), (4.11), and (3.1),
¢
Pl + [ Va1 ds
0

< CeBu)|P + C /0 sllu(s)| ds + /0 (5 + 52) [ Bpu(s)]? ds
< Cd3(log(2 + 1))* + C / " slu(s) [P ds < Cd3(1+t)(log(2 +1))?, (4.15)
1)

where we used (3.1) at the last inequality, and hence, from (4.14) and (4.15)
we have

t
/ s2E(s)ds < Cd3(1 + t)(log(2 + 1))%. (4.16)
0
Thus, from (4.9) for m = 3 together with (4.16) we have
t
BB + / Sldwuls)|2ds < C2(1+H)(og@ + 1),  (4.17)
0

and hence, the desired decay estimate (4.1) follows from (4.3) and (4.17). O
Moreover, by using the energy method again, we have the following esti-

mates.

Theorem 4.2 Using the assumption of Theorem 1.1, the solution u(t) of (1.1)
satisfies that

”6t2u(t)”L2(Q) + [18:Vu(t) |20y < Cda(1 + )2 log(2 + 1), (4.18)
1Bcu(®)ll (e + IVu(t) | mre) < Cda(1+ 1) log(2 + ), (4.19)
lu(®)|l r2(@) < Cda(1+ )72 log(2 + 1) (4.20)

fort > 0, where dg is the quantity given by (1.7).

Proof. We will carry out the similar way as the proof the Theorem 4.1.
Put V(t) = 8yu(t) and

Eo(t) = 510V @I + 3 IVVEIP = S 1620l + S 10 Vu)]?
Then, we see that the function V(¢) satisfies that
(02 +8,— AV =0 inQx (0,00)
with V\an = 8tu|an =0, and

SE(0) + 10V Q) =0 (2.21)



54 Kosuke Ono

and

dit (-;-llv(t)ll2 + (V(t),BtV(t))) +IVV@I? - o, V(@)?=0.  (4.22)

Thus, from (4.21) and (4.22) we have that
B0+ [ 10V ©Pas=50) md [VEP+ [ IVVEPds<cd,
respectively, and hence, we obtain

/0 " Ba(s)ds < C2. (4.23)

For m > 1, we observe from (4.21) and (4.22) that

%tmzz(t) + ™0V ()| = mE™ L By () (4.24)

and
d% (gtmuvmu? + tm<V(t>,atV<t>>) + OV ()|
= SV +men T V), 0V (0) + IV OIE,  (4.25)

respectively, and moreover, integrating (4.24) and (4.25) in time like (4.9) and
(4.10), we have

t" Ey (1) +/O smHBtV(s)”?ds:m/O s™ 1By (s)ds (4.26)
and
%tmllV(t)Hz*-/o sTVV(s)]? ds < }LlfmllV(lt)H2 +t™ 2.V ()]

t t
+m / 1V (s)|2 ds + / (ms™=1 4 5™)18,V (s)|12 ds
0 0

V@2 + / SV (s)|P ds

< C/Ot(l + s)m—lEQ(s) ds + C/()t Sm-lnatu(s)HQ ds, (4.27)
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respectively. Thus, from (4.26) and (4.27) for m = 1 together with (4.23) and
(4.3) we observe that

tE,(t) + /t 510,V (s)||2 ds < Cd2,
0
HV @I + / SIVV(s)|P ds < Ca2 + C / l6vu(s) |2 ds < Ca2,
0 0
and
/t sFEq(s)ds < Cd3. (4.28)
0

From (4.26) and (4.27) for m = 2 together with (4.23), (4.28), and (4.11) we
observe that

t2Fy(t) + /O t $28:V(s)||*ds < CdZ,
AR+ [ STV
< Cdé + C/Ot s||0su(s)||? ds < Cdi(log(2 + 1))3,
and
/0 t 52Ey(s)ds < Cd2(log(2 + 1))3. (4.29)

From (4.26) and (4.27) for m = 3 together with (4.23), (4.29), and (4.14) we
observe that

BB, (t) + /O 10, (5)|2 ds < CaB(log(2 +1))°,
PIVOIR+ [ 1V ds
< Cdi(log(2 +1)* +C /0 t s%||8su(s)||? ds < Cd3(log(2 + t))3,
and

/ t s2Ea(s)ds < Cd3(log(2 + 1))3. (4.30)
0



56 Kosuke Ono

From (4.26) and (4.27) for m = 4 together with (4.23), (4.30), and (4.17) we
observe that

| t*E(t) + /Ot s*6,V (s)||* ds < Cdj(log(2 + t))*,
AV + [ STV
< Cdi(log(2+1))* +C /Ot s3||Osu(s)||* ds < Cd2(1 4+ t)(log(2 + t))?,
and
/0 t s*Ex(s)ds < Cd3(1 +t)(log(2 + ). (4.31)
Therefore, from (4.26) for m = 5 and (4.31) we obtain that

t3F(t) + /t s°||0; V (s)||1> ds < Cd2(1 + t)(log(2 + t))*
0
62u(t)|| + |0 Vu(t)|| < Cda(1+t)"2log(2 +1). (4.32)

Moreover, by the elliptic regularity theorem in exterior domains (see [5], [22])
together with (1.1), (4.1), and (4.32) that
Vel @) < CllAu)] + Cl[Vu®)||
< Cldeu(t)l| + ClidZu)]| + ClVa(®)||
< Cda(1+t)"'log(2+1), (4.33)

and hence, the desired estimates (4.18)-(4.20) follows from (3.1}, (4.32), and
(4.33). O
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