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Abstract

We consider the initial-boundary value problem in a two dimen-
sional exterior domain for the dissipative wave equation (82 + 8; —
A)u = 0 with the homogeneous Dirichlet boundary condition. Us-
ing the so-called cut-off technique together with the local energy
estimate and L! and L? estimates in the whole space, we derive the
LP estimates with 1 < p < oo for the solution.

2000 Mathematics Subject Classification. 35B40

1 Introduction and Results

Let Q be an exterior domain in 2-dimensional Euclidean space R? with
smooth boundary 0Q and its complement Q°¢ = R?\ Q will be contained in
the ball B,, = {z € R?||z| < o} with some 75 > 0. We never impose any
geometric condition on the domain €.

We investigate LP estimates with p > 1 of the solution to the initial-
boundary value problem for the dissipative wave equation :

{ (0240, —Au=0, u=u(z,t), inQx(0,00) (L.1)

(u, atu)|,§=o = (uo,u1) and u|3n =0,

where 8; = 8/0t and A =V -V =Y )| 82  is the Laplacian.

*This work was in part supported by Grant-in-Aid for Scientific Research (C) of JSPS
(Japan Society for the Promotion of Science).
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In previous paper [18], for 2-dimensional case, we have already studied the
following decay estimates of the solution of (1.1) :

()l ooy < Cdi(1 +2)~(-1/P)+S
for 1 < p < oo and
18su(t) | L2 () + Ve(®) | L2y < da(1 +8)71F°
for t > 0 with any small § > 0, where d; is the quantity given by
di = |lwoll () + llurllzzce) + lluollwra(e) + flutlli) (1.2)

under the initial data ug € H3 () N WL1(Q) and u; € L2(Q) N LY(Q).
The purpose of this paper is an improvement of these estimates.
Our main result is as follows.

Theorem 1.1 Let Q be an exterior domain in R2. Suppose that the initial
data uo € H2(Q) N H}(Q) N WHY(Q) and u; € HF(Q) N LY(Q). Then, the
solution u(t) of (1.1) satisfies that

lu(t)]| Loy < Cda(1+1)~ 1P log(2 + t) (1.3)

for1 <p< oo and
107 u(t) | L2 () + [10:Vut) || 20y < Cda(1+1¢) % log(2 + 1), (1.4)
0su(t)ll 2 () + I Vu(t)l a2y < Cda(1+1t) " log(2+ 1), (1.5)

lu®limz@) < Cda(1+1)7H?log(2+1)  (1.6)
fort > 0, where dy is the quantity given by

da = |luo|lg2() + llurll a2y + lluollwri) + llunllzra) - (1.7)

Theorem 1.1 follows from Theorems 3.1, 4.1, and 4.2, immediately.

We note that under the initial data belonging to some weighted energy
space, the L? estimate ||u(t)||z2(n) < C(1 + t)71/2 has been given by Ikehata
and Matsuyama [8] (also, see Saeki and Ikehata [23] for the energy estimate,
Ikehata [7], Nakao [12], [13] and the references cited therein).

On the other hand, for N-dimensional cases @ C R for N > 3, in previous
paper [22], we have given the LP estimates of the solutions

()| ey < C(1+t)~N/DA=1/P)

for 1 < p <2, and the L? estimates of the derivatives (see [18] for N < 3).
This paper is organized as follows. In Section 2, we prepare some Proposi-
tions for the proof of Theorem 1.1. In Section 3, we derive the L! estimate and
the L? estimate of the solution. In Section 4, we give the energy and second
energy estimates for (1.1).
We use only familiar functional spaces and omit the definitions. Positive
constants will be denoted by C and will change from line to line.
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2 Preliminaries

In this Section, for the proof of Theorem 1.1, we will state some known
results for the solution of (1.1).

First we state the result on the local energy decay estimate for (1.1) in 2-
dimensional case, which was proved by W. Kawashita (W. Dan) in [2]. (Also,
see Dan and Shibata [3], Shibata and Tsutsumi (24], Ono [22].)

Lemma 2.1 Let ) be an exterior domain in R? and let r > ry. Suppose that
that initial data up € HE(Q) and vy € L?(Q) and

supp up Usuppuy C .,
where Q. = QN B,.. Then, the solution u(t) of (1.1) satisfies that

(@)l & @, + 18su(®) L2,y < C(1+t(logt)®)  (luollaray + luillz2ay)
fort>0.

Next, we state the estimates of the solution and its derivatives to the Cauchy
problem in the whole space R? :

{ (B +0.-Ap=0, v=v@t), DR x(O0e0)

(v76tv)1t:0 = ('UO, vl) .

The following L? estimates are well-known (see Matsumura [10], and also
Kawashima, Nakao and Ono [9]).

Lemma 2.2 Let m > 0 be a non-negative integer. Suppose that the initial
data vo € H™(R?) N LY (R?) and v; € H™ }(R%) N L} (R?). Then, the solution
v(t) of (2.1) satisfies that for 0 < k+b< m,

10FVPu(t) || L2mey < C(1 + t)~*—0/2-1/2
X (I[vollrrmgz) + o1l m=-1g2) + llvoll 22 ey + or )
fort > 0.

By using the representation formula of the solution v(t) of (2.1) (see Courant
and Hilbert [1]), we have derived the L! estimate in previous papers [16], [17],
[19]. (Also, see Nishihara [14], [15], Ono [20], [21]. Cf. Hosono and Ogawa [6],
Milani and Han [11].)

Lemma 2.3 Suppose that the initial data vo € WH1(R?) and v; € L'(R?).
Then, the solution v(t) of (2.1) satisfies that

lo@)llr®zy < Clllvollwriwray + vl (re))
fort>0.



46 Kosuke Ono

3 L' estimate

In this Section we will derive the L! and H! estimates for the solution of
(1.1) combining the so-called cut-off technique with Lemmas 2.1-2.3.

Theorem 3.1 Under the assumption of Theorem 1.1, the solution u(t) of (1.1)
satisfies that

lu() | @) < Cda(1+1)"?log(2+1), (3.1)
lu®)llr @) < Cdzlog(2 + 1) (3:2)
fort > 0, where dg is the quantity given by (1.7).

Theorem 3.1 will be deduced from the following Propositions 3.2 and 3.3
together with
lu(@lx < llux(@)llx + lu(t) — ux(®)llx (3.3)

for X = H(Q) or L*(£2), where u,(¢) is the solution of (3.4).
Let r > 7o. As cut-off functions in R?, we take smooth functions x; () and
x2(z) such that 0 < x1(z), x2(z) < 1,

0 if|z|<r
1 ifje|>r+1

0 iflz|<r+2

X(x)le(w):{ 1 if|zg|>r+3.

and x2(z) = {

First we study on the solution u,(t) to the initial-boundary value problem
of the dissipative wave equation with the initial data (xuo,xu1) :

{ (8248, — A)uy, =0 in Q x (0, 00) (3.4)

(ux,atux)[tzo = (xuo, xu1) and “XIan =0.
We can expect that u,(t) behavior like the solution u(t) of (1.1) if |z| is large.

Proposition 3.2 Under the assumption of the Theorem 1.1, the solution u,(t)
of (3.4) satisfies that

llux ()12 () < Cda(1 + )72 log(2 + 1), (3.5)
lux ()1 (@) < Cdzlog(2 +t) (3.6)

for t > 0, where dg is the quantity given by (1.7).

Proof. These estimates will be derived by using Lemmas 2.1, 2.1, and 2.3
together with

llux (D) x < lIxv)llx + llux(t) — xv(®)llx (3.7)
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for X = H'(Q) or L(Q), where v(t) is the solution to the Cauchy problem :

{ (62 +0,— Ay =0 inR? x (0,00)

(U»atv)‘t=0 = (EO’Ul) ) (38)

where f is a function in R? such that f(z) = f(z) in z € Q and f(z) =0 in
z &€ Q. It is easy to see from Lemma 2.2 and Lemma 2.3 that
lo(®)lm < Ca1+072 and [o@)lo@ <Cd (39)

for t > 0, respectively.
Then, we see that the function xv(t) satisfies

(62 + 0, — A)(xv) =g in R? x (0,00)
(Xva atxv)‘tz_—o = (Xﬂ()a Xﬁl) y

where g = —2Vx - Vv — Ay - v with suppg C {z € R?|r < |z| < r + 1}, and
hence, as a function in € x (0, c0),

(02 4+ 8, — A)(xv) =g in Q x (0,00)
(0, Buxv)]_ = Oxuo xur) and (xv)]pg = 0.

Moreover, we observe that the function w(t) = u,(t) — xv(t) satisfies that

(0248, — A)yw=—g inQ x(0,00)
(w,@tw)\t=o =(0,0) and wlm =0.

Here, we denote the solution to the initial-boundary value problem of (1.1)
with the initial data (ug,u1) by S(¢; {uo,u1}), and then, by the Duhamel prin-
ciple (e.g. [4]), we see that

t
w(®) = [ S(t-5{0,~g(s)))ds.
0
Since it follows from Lemma 2.2 and the Gagliardo—Nirenberg inequality that

lg@®llzzwey = 9Bl L2811 \B.) < ClIVV(D)lL2®2) + Cllv(t)l| Lo (r?)
< Cdy(1+1t)71,

applying Lemma 2.1 to the function w(t) in the domain Q,,3 = QN B, 3, we
have that

(@) a3 @0e) < C / (1+ (& - 5)(log(t — ))2) " [19(s) ey ds

< Cdy /t(l + (t — 5)(log(t — 8))*) "} (1 + )" ds
0
<Cdy(1+18)71, (3.10)
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and also,
w21 (@,4s) < Cllwt)|m1(@mrs) < Cda(L+1)7, (3.11)
where we use the fact that [;°(1 +t(logt)®)™1dt < C + ["e/(1 +e*s?)ds

<C+ f1°° 1/s?ds < C with t = e®.
On the other hand, the function wW(t) = Ty (t) — xv(t) satisfies that

{ (02 + 8, — AT = —g in R? x (0, 00)
(@, atm)lt:O =(0,0),

and then, xowW(t) satisfies that

(62 + 8; — A)(x2®W) =h in R% x (0, 00)
(sz, 3tX2w)|t=0 = (Oa 0) )
where h = —2Vxg - V@ — Ay - @ with supph C {z € R?|[r +2 < |z| < r +3}.

Here, we denote the solution to the Cauchy problem of (2.1) with the initial
data (vg,v1) by S(¢; {vo,v1}), and then, by the Duhamel principle, we see that

() = [ "3(t - s 0, h(s))) ds.
Applyin‘g Lemma 2.2 to the function x2w(t), we have from (3.10) that
wlmas . < @l < [ 180 — {0, A())) e dis
<0 [t 2 s + I d
<0 [+t 2wl o ds

t
< Cdy / (14+t—s)"21+s)"ds
0
< Cdy(141)"Y2log(2 + 1). (3.12)
Therefore, from (3.7), (3.9), (8.10), and (3.12) we obtain

lux (Ol @) < CllvO ey + Cllwt)l mr(@,1s) + Cllw(®)l g1 e
< Cda(1+ )" ?log(2 + 1),

+3)

which is the desired estimate (3.5).
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By the similar way, applying Lemma 2.3 to the function xsw(t), we have
from (3.10) that

t
lw ()l s,y) < Xl @s) < C / 13( — 50, h(8)}) | 2 ey ds
t t
<c / 1A(s) | sy ds < C / ()12 @0 ds
t
< Cdz/ 1+ s)_1 ds < Cdalog(2+ ). (3.13)
0

Therefore, from (3.7), (3.9), (3.11), and (3.13) we obtain

lux 22y < lv@)lLr@ey + Cllw(t)lzr(@,45) + Cllw(@®)l L1 (e
< Cdylog(2+1t),

+3)

which is the desired estimate (3.6). O

Proposition 3.3 Under the assumption of Theorem 1.1, the function U(t) =
u(t) — uy (t) satisfies

U@ a0y = 1) — ux @l @) < Cda(1+1)72, (3.14)
U@L @) = fu(t) — ux(®)ll L1y < Cdi(1+8)~/2 (3.15)
fort > 0, where d; is the quantity given by (1.2).

Proof. It is easy to see that the function U(t) = u(t) — u,(t) satisfies

(02 +8;, — AU =0 in§ x(0,00)
(Uy 6tU)lt=0 = ((1 - X)uﬂa (1 - X)ul) and Ulag = 0,

and then, by Lemma 2.1 again, we observe that

IU@ 1 (@01s) < C(L+ t(log t)®) ™ (||uoll 2 ey + luall2y) » (3.16)
and also,
NU@ 21 (@0rs) < C(L+ t(log t)®) ™ (||uoll e + lluallrze)) - (8.17)

Moreover, we see that the function x.U(t) satisfies

(02 + 6, — A)(x2U) = f in R% x (0, 00)
(X2U7 th2ﬁ)|t:() = (0)0) 3
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where f = —2Vx2 - VU — Ax2 - U with supp f C {z € R?|r+2 < |z| < r+ 3},
and also, it follows

WU = [ 8- 50160 ds.
Applying Lemma 2.2 to the function x2U(t), we have from (3.16) that
U@ 0s,,) < IX2U@) @2y < /Ot 15t — 5 {0, £(s)})ll 2 (rey ds
< C/Ot(l +t— )2 F(5)ll ey + ()]l (mey) ds
<O [ 1= 9 Uit
<0 [0t aren d
< C’/Ot(l +t—s)"Y2(1+ s(logs)?)lds < Cdy (1 +¢)"V2.  (3.18)
Therefore, we know that (3.14) follows from (3.16) and (3.18).

By the similar way, applying Lemma 2.3 to the function x2U(t), we have
from (3.16) that

t
U@L 0s,,) < Ix2Ud)ll ey < /0 1S(t — 5;{0, fF() Pl 1 (me2) ds

<C [ 1Oy ds < Can(a +1)72. (3.19)

Therefore, we know that (3.15) follows from (3.17) and (3.19). O

Proof of Theorem 3.1. Summing up the above estimates (3.5), (3.14), and
(3.6), (3.15) together with (3.3), we obtain (3.1) and (3.2), respectively. O

4 Energy estimates

In this section we will derive the energy and second energy estimates for
(1.1) by using the energy method. For simplicity, we often use || - || as the L2
norm, that is, || - | = || - || z2(q)-

Theorem 4.1 Using the assumption of Theorem 1.1, the solution u(t) of (1.1)
satisfies that

1ocu(®)ll L2y + IVu®)lL2(@) < Oda(1+1) ™" log(2 + t) (41)
fort >0, where dg is the quantity given by (1.7).
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Proof. We denote the total energy for (1.1) by

ou(®)IP + SITu(e)?,

DN

E(t)=Ei(t) =

which has the energy identity

d

S B(#) + |8u(t)|> = 0 (42)

or
t
£+ / 18su(s)||? ds = E(0). (4.3)
0
Multiplying (1.1) by u and integrating over {2, we have
d (1
% (GOP + @6.000)) + 17O - [P =0, (44
and then, integrating it in time,
1 t
Fho + [ 1vue|P as
1
‘2‘”U0||2 + lwollfluall + llu(®) [ 10:u(t) | +/ 1eu(s)|* ds
< O+ JIe” + 10O + [ Nowu(s)|?ds
with do = ||uol| g1(q) + [|u1||, and hence, from (4.3) we obtain
‘ t
WO+ [ 1vu) ds
t
< Cd3 + CllBsu(t)||® + C’/ |Bsu(s)||® ds < Cd} . (4.5)
0
Thus, from (4.3) and (4.5) we have
t
/ E(s)ds < Cd3. (4.6)
0
For m > 1, we observe from (4.3) and (4.4) that

%tmE(t) + ™| Ouu(t) |2 = mt™ L E(2) (4.7)
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and
% (31Ol + w0, 0u(0) ) + " Tulo)?
= () + metw), 0u(®) + IO, (48

respectively, and moreover, integrating (4.7) and (4.8) in time, we have that
t t
tmE(t) +/ s™||Bpu(s)||® ds = m/ s™1E(s)ds (4.9)
0 0
and
1 2 ‘ 2
SO + [ smIvu) ds
1 t
< Zt’"llu(S)H2 + ™| 2u(t)]® + m/ s™ Hu(s)|? ds
0
t
+ / (ms™1 + s™)[Byu(s) |2 ds, (4.10)
0

respectively, where we used the Young inequality at the last inequality.
Then, we obtain from (4.9) for m = 1 together with (4.6) that

LE(t) + /0 sl pu(s)|| ds = /0 E(s)ds < C&, (4.11)
and from (4.10) for m = 1 together with (4.11) and (4.3),
YOI + [ [7u(e)P ds
< Ct)|Beu(t)||? + C/Ot llu(s)||? ds + C/Ot(l + 8))18.u(s)||? ds
<C&+C /O " u(s) |2 ds < C(log(2 + )7, (4.12)

where we used (3.1) at the last inequality. Thus, from (4.11) and (4.12) we
have

i
/ sE(s)ds < Cdi(log(2 +t))3. (4.13)
0
Moreover, from (4.9) for m = 2 together with (4.13) we have

t?E(t) + /Ot 82| Ogu(s)||? ds = 2 /Ot sE(s)ds < Cdi(log(2 + 1)), (4.14)
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and from (4.10) for m = 2 together with (4.14), (4.11), and (3.1),
Bl + [ 21V ds
< Clowu®)|)? +C /L sllu(s)||? ds + /t(s + 82)||8;u(s)||® ds
0 0
< Cd(log(2 +1))% + C/ sllu(s)||?ds < Cda(1 + t)(log(2 + t))?, (4.15)
0

where we used (3.1) at the last inequality, and hence, from (4.14) and (4.15)
we have

i
/ s2E(s)ds < Cd3(1 + t)(log(2 + t))?. (4.16)
0
Thus, from (4.9) for m = 3 together with (4.16) we have
¢
tE(t) + / $318u(s)||* ds < Cd2(1 4+ t)(log(2 + t))?, (4.17)
0

and hence, the desired decay estimate (4.1) follows from (4.3) and (4.17). O
Moreover, by using the energy method again, we have the following esti-
mates.

Theorem 4.2 Using the assumption of Theorem 1.1, the solution u(t) of (1.1)
satisfies that

162 u(®)llz2(@) + 110:Vu(t)l r2() < Cda(1 + )~ log(2 + 1), (4.18)
1Bcu(®)l (o) + IVut)l gy < Cda(1 + 1) log(2 + ), (4.19)
lu(®)ll 20y < Cda(1+ 1)~ log(2 + 1) (4.20)

fort > 0, where dy is the quantity given by (1.7).

Proof. We will carry out the similar way as the proof the Theorem 4.1.
Put V() = d;u(t) and

1 1 1 1
Ey(t) = 510V + 3 IVVEIP = S 120l + 510 Vu())?
Then, we see that the function V(t) satisfies that
(02 +0,— AV =0 in Qx (0,00)

with V|, = diul 5 =0, and

d
@+ oVl =0 (4.21)
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and

d

pr (%IIV(t)II2 + (V(t),c?tV(t))) FIVV@IE - eV =0.  (4.22)

Thus, from (4.21) and (4.22) we have that
t t
Ea®)+ [ 10V (s)IPds = Ea0) and IVIP+ [ IVV(s)Ids < Cd,
0 ]
respectively, and hence, we obtain
t
/ Es(s)ds < Cd3. (4.23)
0

For m > 1, we observe from (4.21) and (4.22) that

%tmEg(t) OV @) = mt™ B () (4.24)

and

.(;it (%thV(t)lP NV (8), 3tV(t))> + VY )|

5 "IV +mt™ T V), 0V (0) + IV (O (4.25)

respectively, and moreover, integrating (4.24) and (4.25) in time like (4.9) and
(4.10), we have

tmEz(t)+/0 s™0:.V (s))? d.(s:m/0 s™ 1By (s)ds (4.26)
and
IV [TV < gV +rlavo?

rm /0 " V()P ds + | me™1 4 5|0,V ()] ds

thV(t)ll2+/0 s™IVV(s)]* ds

< C/t(l + S)m_lEz(S) ds + C/t 5m¢1}|5tu(8)||2d5, (4.27)
0 0
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respectively. Thus, from (4.26) and (4.27) for m = 1 together with (4.23) and
(4.3) we observe that

tE(t) + /t s)|8:V (s)||?ds < Cd2,
0
HV ()| + / SIVV(s)Pds < C& + C / l6vu(s) |2 ds < C2,
1] 0
and
/t sEy(s)ds < Cd3. (4.28)
0

From (4.26) and (4.27) for m = 2 together with (4.23), (4.28), and (4.11) we
observe that

2By (t) + / " RIa V()P ds < O,
0
IV + [ SIVV()IPds
0
<Cdi+C / t s||0:u(s)||? ds < Cd2(log(2 +t))3,
0
and
/t s2Ey(s)ds < Cd3(log(2 +t))3. (4.29)
0

From (4.26) and (4.27) for m = 3 together with (4.23), (4.29), and (4.14) we
observe that

t
BB+ [ 10V ()| ds < Ca(log(2+ 1),
0
t
BIVAIE+ [ SITVE)Ids
o 0 t
< Cd(log(2+ 1) + C / 52| 0pu(s)||? ds < Cd2(log(2 + 1))?,
0
and

/t s3Fy(s)ds < Cda(log(2 +t))*. (4.30)
0
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From (4.26) and (4.27) for m = 4 together with (4.23), (4.30), and (4.17) we
observe that

t*Ey(t) + /Ot s*10,V (s)||2 ds < Cda(log(2 + t))*,
AN [ Hvveirds
< Cd%(log(2+1))* +C /0 t s3||0su(s)||? ds < Cd3(1 + t)(log(2 + t))?,
and
/0 t s*Ea(s)ds < Cd3(1+t)(log(2 + t))2. (4.31)
Therefore, from (4.26) for m =5 and (4.31) we obtain that

By (t) + / t $)|8:V ()2 ds < Cd2(1 + t)(log(2 + £))2
0
[02u(t)|| + |0 Vu(t)|| < Cda(1+t)"%log(2 + ). (4.32)

Moreover, by the elliptic regularity theorem in exterior domains (see [5], {22])
together with (1.1), (4.1), and (4.32) that
IVu®)llar @) < CllAu@)] + Cl|Vu@)|l
< Clldeu(t)ll + ClidZu)]| + ClIVu(®)||
< Cda(1+1t)" log(2 +1t), (4.33)

and hence, the desired estimates (4.18)—(4.20) follows from (3.1), (4.32), and
(4.33). O
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