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Abstract

In [17], M. Newman, D. Shanks and H. C. Williams have shown
that the order of a symplectic group S,(2n,F,) is square if and
only if n = 2 and q = p. Here p is a prime called a NSW prime. In
this paper, we shall show that there is no symplectic group of cube
order.

2000 Mathematics Subject Classification. Primary 11D41; Sec-
ondary 11E57

Introduction and Preliminaries

In their paper [17], M. Newman, D. Shanks and H. C. Williams have shown
that a symplectic group S,(2n,F,) has a square order if and only if n = 2 and
q = p, where p is a NSW prime. The main result given in [17] is the following.

Proposition 1. The order of a symplectic group S,(2n,q) is square if and
only if (n,q) = (2, Somy1), where Somi1 is a NSW prime .

Now we shall recall the definition of NSW numbers in P. Ribenboim’s book
[18]. We define a sequence {S2,,+1} by putting

(1 + \/§)‘2m+1 + (1 _ ﬁ)2m+1
2 .

SQvn+1 =

We call a prime NSW number Ss,,1 to be a NSW prime. For example, S3 =
7,85 = 41 and S; = 239 are the first three NSW primes. In [9], we have
verified the conjecture announced in [17] is true. Namely, we have shown that
the order of any finite simple group G is not square when G # 5,(4,q). Thus
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it is a natural problem to ask the existence of finite simple groups of higher
powers. In this paper, we shall consider the existence of finite simple group of
cube order. For the sake of simplicity, we restrict ourselves to the special case
G = S,(2n,q). We shall show the following main theorem.

Theorem. There is no symplectic group G = S,(2n,q) of cube order.

Firstly we shall prepare the preliminary lemmas which we will use in later.

Lemma 1 (Bertrand’s postulate). If n is an integer > 2, there exists an odd
prime p such that
nf2<p<n.

Lemma 2 (Breusch [3]). For n > 7, there ezists a prime p of the form 6k + 1
such that
n/2<p<n.

Lemma 3 (Shorey, Bugeaud and et al [1], [19]). For any n > 3, the diophan-

tine equation
z?m —1

T2 —1

has no integer solution in integers x > 1,y > 1.

:y3

Lemma 4 (Ljunggren [11]). Ifn = 1,2,4 mod 6 and > 4, then the diophantine
equation

" —1 3
=Y

z—1

has no integer solution in integers |z| > 1,y > 1.

n——-

We note that is the Lucas sequence associated to the pair (z + 1, )

and satisfies the following elementary relation on the greatest common divisor.

Lemma 5 (Ribeiboim [18] ).

g™ -1 g" -1\ zlmm -1
r—1"z-1 ’

z—1
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Lemma 6 (Delaunay [4], [5]). The diophantine equation
B rdyd=1 d>1)

has at most one integer solution with xy # 0. Moreover the solution (z,y)
corresponds to the binomial fundamental unit x + y¥d in the ring Z[{V&]

1. Proof of the main result

We know the order of the symplectic group is

n2

1S,(2n,9)] = T [T (a*

i=1

where d = (2,9 — 1). Hence we can write

n? n 20 __
8,em 0 = T -0 T (57 ).

=1

We shall treat the case 3|n and 3 J n separately. In the following, we shall
consider the easier case 3|n.

Case 1) 3|n.
We can write n = 3m. Then we have

3m 2% _
mmmm=@mmm=mww-nW%g(%tﬂ-

3m ;
. . L1 ¢ -1\ .
Then we see |Sp(6m, q)| is cube if and only if P ,l;[, ( pr) ) is cube. From
Lemma 1, we can take an odd prime p which satisfies 3m/2 < p < 3m for any
2p _ 1
positive integer m. Take the factor %5—1 of |5,(6m, ¢q)|. Then we see
lﬁ q2i_1 _ q2p__1 1 ﬁ q2i__1
dit\g~1) \¢-1) d @?-1)

i=1(#p)

2p _ 1
Here we note that q2_1 = qz(”“l) +---+¢*+ 1 is always odd. Hence we see
q

2p __
q 1 _
(qz—l’d)_l'
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Moreover, from Lemma 5, we have

q2p —~1 q2z -1 1

-1 ’ q2 -1/ 7
. g -1
for any 1 < i (# p) < 3m. Thus we see if |S,(6m, g)| is cube then )
be cube. From Lemma 3, we know there is no integer solution with ¢,y > 1 for
g -1
g* -1
positive integer m.

must

= y3. Hence we have shown that |S,(6m,q)| is never a cube for any

Case 2) 3 fn.

In the next, we shall treat the case 3 fn. In the case n > 7, we can take a
prime p of the form 6k + 1 which satisfies n/2 < p < n from Lemma 2. Take
2p __ 1
the factor Zz—T of |Sp(2n,q)|. Then we have

q2p_1 q2i__1
q2~1’q2a1

Il

1forany 1 <i (#p) <mn,

2p _
q 1
——,d = 1,
( ¢ -1’ )
2p
-1 ,
—,q ~1 = 1 .
( #-1"1 ) np
g -1 g -1
Thus if |S,(2n,q)| is cube, then the factor o must satisfy prp) =
¢ — _

y® or py® or p?y® for some positive integer y. We note here that
P -1 (" -1\ (" +1
2—1 \g-1 g+1

. g —-1¢g°+1 .

with -1 g+l = 1. Thus we can conclude that the assumption |S,(2n, ¢)|
- q

is cube implies

P_1 P4l —a)P —1
ol _ gl _(29
g—1 g+1  (-q)-1

= y® for some positive integer y,

which contradicts Lemma 4. Thus we have shown |S,(2n,q)| is never a cube
forn > 7.

Finally, we shall verify |S,(2n, g)| is not cube for remaining cases n = 1,2,4
and 5.



On Finite Simple Groups of Cude Order 29

In the case n = 1, we have

S, =ala+ 1) (157) with d=2.a-1).

-1 -1
Here we see (¢, + 1) = 1, (q, QT) = 1, and (gd—’Q+1) = lor2.

Therefore, if |S,(2,q)| is cube, then we must have ¢ = z* for some integer
x > 1. Also we must have g+ 1 = y® or 2y3 or 4y for some integer y > 1.

If g+ 1 = y3, then it contradicts the classical fact z° + y® # 2% for zyz # 0.
If g+ 1 = 2y%, then from Lemma 6 the solution (z,y) corresponds to the
fundamental unit & + y &2 of Z[\%@] Since the fundamental unit & of Z[\3/§]
with 0 < &€ < 1is £ = —1 + ¥2, we must have z = y = 1, which contradicts
the condition ¢ = % > 1.

If ¢+ 1 = 493, then in the same way as above the solution (z,y) corresponds
to the fundamental unit = + y ¢4 of Z[\%I] Since the fundamental unit 1 of
Z[V4 with0 <n< lisnp=e% =14+ ¥4 —%/16, we know there is no solution
which satisfies z° + 1 = 4y3. Thus we can conclude |S,(2,g)] is never a cube
for any q.

In the case n = 2, we have

2 _ 1\ 2 )
Sl =g (T5) a4 1) withd= (g~ 1),

2-1
d

21
and <q2 +1, g—(j—) = 1 or 2. Therefore, if |S,(4,¢)| is cube, then we must

Here we see (q, =1,(¢,¢?+1)=1,(g,d) =1, (¢ +1,d) =1or2,

have ¢ = z® for some integer z > 1. Also we must have ¢ + 1 = y® or 2¢3 or
4y* for some integer y > 1.

If ¢2 +1 = (2%)® + 1 = 3, then it contradicts the classical fact 23 + y® # 2°
forzyz #0. @ +1=(2?)+1 =92 or ¢ +1 = (2?)3 + 1 = 4y, then in the
same way as in the case n = 1, we can see there are no solutions when z,y > 1
from Lemma 6. Thus we can conclude |S,(4, q)| is never a cube for any g.

In the case n = 4, we have

1 .

1958, 9)| = 5¢'°(¢* = D*(g" = D)*(¢" + ¢* + 1)(¢" + 1) withd = (2,4~ 1).
It is easy to see if |S,(8,¢)| is cube, then ¢ = z* with some integer z > 1.
Moreover we see (g* +1,d) =1or2, (¢* +1,¢9)=1,(¢* +1,¢* -~ 1) =1lor 2,
(g*+1,¢*—1) =1or 2, and (¢* + 1,¢* + ¢* + 1) = 1. Therefore, if |S,(8,q)| is
cube, then we must have ¢* +1 = (%)% + 1 = 3 or 2y® or 4y for some integer
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y > 1. In the same way as in the case n = 1, we can see there are no solutions
for z,y > 1 from Lemma 6. Thus we can conclude |S,(8, )| is never a cube for
any q.

Finally we shall consider the case n = 5. Then we have

1 10 _ 1
15,10, 9)} = 5¢*°(¢* = 1)*(¢* = 1)*(¢" + ¢ + D)(q" + 1) ((22 3 ) :

with d = (2,q — 1). It is easy to see if |S,(10,4)]| is cube, then q = r with
some integer x > 1. Moreover we see (¢* + 1,d) = 1 or 2, (¢* + 1,9) = 1,
-1
(q4+1q4—1)=10r2(q+1q+q+1)-lor2and(q +1 1):1.
Therefore, if |S,(10,¢)| is cube, then we must have ¢* + 1 = (334)3 +1 =48
or 2y3 or 4y3 for some integer y > 1. In the same way as in the above cases,
we can see there are no solutions for z,y > 1 from Lemma 6. Thus we can
conclude |S,(10, ¢)} is never a cube for any ¢, which completes the proof of our
main theorem.
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