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Abstract

In the present paper, we study square matrices in which the
sum of elements in any row, in any column , in any extended di-
agonal add up to a constant. We call such a matrix a pandiagonal
constant sum matrix. We will show that the number of indepen-
dents elements in a pandiagonal constant sum matrix of order n is
n? —4n+ 3 if nis odd or n? —4n + 4 if n is even.
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Introduction

Let £ be a a set of n different elements. A latin square of order n is a square
matrix with n entries of elements in X, none of them occurring twice within any
row or column of the matrix. A matriz of the same number n is defined to be
a square matrix with n? entries of n different elements, each appeared exactly
n times. A latin square of order n is a matrix of the same number n. A magic
square of order n is an arrangement of n? consecutive integers in a square, such
that the sums of each row each column and each of the main diagonal are the
same. If also the sum of each extended diagonal is the same, the magic square
is called pandiagonal. Two latin squares A = (a;; and B = (b;;) of order
n are said to be orthogonal if every ordered pair of symbols occurs exactly
once among the n? pairs (a;j,b;;) . We can define that two matrices of the
same number n are orthogonal similarly. Let A = (a;;), ai;; € RQbe a square
matrix of order n. It is called a constant sum matriz if the sums of each row
and each column are the same. If moreover the sum of each main diagonal is
the same , it is called adiagonal constant sum matriz and if the sum of each
extended diagonal is the same, it is called a pandiagonal constant sum matriz.
In the present paper, we take 0,1,---,n — 1 as n consecutive integers and put
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= {0,1,---,n — 1}. A pandiagonal latin square on ¥ is a pandaiagonal
constant sum matrix of the same number n.

Let A and B are orthogonal matrices of the same number n. Put C =
nA+ B. Then it is known [3] that if A and B are diagonal(resp. pandiagonal)
constant sum matrices, C is a magic (resp. pandiagonal magic) square.

1. Pandiagonal constant sum matrices

Let A = (as5), a;; € R be a pandiagonal constant sum matrix of order n.
In the present paper, subscripts have the range 0,1,-,n—1 (mod n). Then we
have the following equations.

n—1
Zaij = C; OS]S'H—I, (1)
1=0
Y a; = C 1<i<n-1, ()
7=0
Zain+j—i = Ca 1 S J S n-— 1: (3)
=0
Zaii_+j = C7 ISJSn_L (4)
=0

where C is a constant. Notice that from (1) and (2), (3),(4) it follows

n

D a; = G
Jj=0

k23
E tin-i = C,
i=0

n

E Qi3 = C.
=0

When n is even, that is, n = 2m, there is a redundant equation in (3) and (4).
In fact, if we set 2j = 2k +2¢  (mod 2m), we have

m—12m—1 m—12m-—1 m—12m-—1

E § Ai2m+1+25—1 = E E A1 425—4 = E E ai142k+i = mC.

=0 =0 7=0 =0 k=0 =0

Hence, we can consider the equation
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2m—1

E a4 =C

=0

is redundant. Now, when n = 2m, we set

2m—1
Z ai;j = C, 0<j<2m—1, (5)
=0
2m—1
»a; = C 1<i<2m—1, (6)
j=0
2m—1
> aiomiji = C, 1<j<2m—1, (7)
1=0
2m—1
Y auy; = C 2<j<2m-1L (8)
1=0

Theorem 1 When n is an odd number, the equations (1),(2),(3) and (4)
are independent, and when n = 2m, the equations (5),(6),(7) and (8) are
independent.

Proof. Set

Ti=agi, Yi=0ay, 2=4az», 0<i1<n-—1

Then we have
n—1
Aj:wj+yj+kj2a¢j = C, OSjS’n—l,
=3
n—1
Bj :xj+yj_1+zj_2+2aij_i = C,1<j<n-1,
1=0

n—1
Dl:zyj = C,
7=0

n—1
Dzisz = C,
J=0

n—1

Dj:Zu,j,- = C, 3<j<n—-1
1=0
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(1) Now suppose that n is odd, that is n = 2m + 1. Then it holds

n—1
Cj:x;+yjt1+ 2j42 +Zaii+j =C, 1<j<n-1
=3

Now we represent simply the above equations as

Aj (x5,95,25,%), 0<j<n—1,
Bj = (zjyj-1,2j-2,%), 1<j<n—1,
CJ = ($j7yj+l7zj+2;*)7 ISan_l

n—1
Dl = (07Zyja0>*)7
7=0

n—1
D2 = (07 Oa Z 2§, *)7
j=0

Dj = (070703*)7 3<j<n—-1
Put
BJ(l) = Bj—A]':(O,yj_l-—yj,Zj_g—Zj,*), 1 S]S’I’l—l(g)
B‘n—l(2) = Bn1(1) = (0,yn—2 — Yn—1,2n-3 — Zn—1, %), (10)
Bi(2) = Bj(1)+ Bl
= (0,yj-1 = Yn-1,2j—2+ 2Zj_1 — Zn_2 — Zn_1, %), (11)
1<3<n-2.

Especially, we have

B1(2) = (0, Yo — Yn—1,20 — Zn—z-*)

Next, we get

CJ(I) = CJ_A] - (07_yj+yj+1:_zj+zj+27*)7 1 SJS“" 1,

CJ(Z) - CJ(]‘) + BJ+1(1) = (0707ZJ - 2j+1 - zj+2 + zj+37*)7 1 S J S n— 27
Cn_1(2) = Cn_.l(l) — B1(2) = (0,0,Zn_g — Zp—-1— 29 t+ 21, *)
Now, set

Ci(3) = Cj(2)+ Cj11(2) = (0,0,25-1 — 22j11 + 2j43,%), 1 <j<n—2,

Cn~l(3) = Cn—l(2) = (Oa O’ Zn—2 —2p—1— % + 21,*).
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Put
Com-1(4) = Com-1(3), Com-3(4) = Com—3(3) + 2Com-1(4),

Cotm-r)+1(4) = Com—1)+1(3)+2C2(m—r+1)+1(4)—Co(m-rk+2)+1(4), 3 <k <m.
Then we have

Cotm—ry+1(4) = (0,0, 29(m—r) — (k + 1) z2m + k21,%), 1<k <m.
Next, we put

CZm (4) = CZm (3), C2m—2 (4) = CQm—2(3) + 2C‘2m (4),

Co(m-1)(4) = Co(m—1)(3) + 2C2(m—r+1)(4) — Copn—r+2)(4), 2<k<m—1L
Then, we get

Com-r)(4) = (0,0, 22(m—x)—-1 — (k + )(220m — 21) — 20,%), 0<k<m-—1
Set

1
C2(5) = m((]z(‘l) + Cy (4)) = (0, 0,21 — zom, *),
Com-r)+1(8) = Copm-p)+1(4) —kC2(5), 1<k<m,
Com-1)(8) = Copm-iry(4) — (k+1)Ca(5) + C1(5), 0<k<m—2.

Thus we obtain
Cj(S)Z(O,O,Z]‘_l—*ZQm,*), IS]§n71=2m

Now the equations

Aj = (2j,Y5,25,%), 0<j<n-—1,
B;j(2) = (yj-1—¥Yn-1,2j—2+—2j_1 —Zn2—2p-1,%), 1 <j<n—-2,
B.-1(2) = (0,Yn—2 — Yn—1,2n-3 — 2n—1,%),
n—1
Dy = (Oizyﬁ(],*),
7=0
CJ(5) = (07072_7‘—1'22my*)’ 1SJS71—1,
n—1
Dy = (0,0,>  z,%),
j=0
D; = (0,0,0,%), 3<j<n-1

are equivalent to the equations given at first. It is evident that the rank of
the coefficient matrix of the equations is 4n — 3. Hence, these equations are
independent.
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(2) Suppose that n is even, that is, n = 2m. By using the similar notations,
we consider the following 4n — 4 equations

Aj = (Zj7yj72j,*)> OSJSTL—L
B; = (25,¥5-1,2j-2,%), 1 <j<n~1,
C; = (@j+1,VUj+2,2j+3,%), 1 <j<n—2

n—1
-Dl = (Ovzyjyoﬂ*):
=0

n-1
D2 = (O,O,ZZJ',*),
0
D, = (0,0,0,%), 3<j<n—1.

We define B;(1), B;(2), 1< j <n—1 assimilarly as in (9),(10),(11).
We put

Ci(1) = Cj—Ajr1=0,—yj1 + Yjr2, —2j41 + 2j43,%), 1 <j<n—-2,
Cij(2) = Cj(1)+ Bjt2(1) = (0,0,25 — zj41 — zj42 + 2j43,%), 1 <j<n-—3,
Cn42(2) = Cnfg(l) — 31(2) = (0, 0,2p—9 — 2p—1 — 29 + 21, *)
Now, set
CJ(3) = CJ(2)+CJ+1(2) :(0707zj_2zj+2+zj+47*)) 1 SJ Sn_Q,
Cn—2(3) = Cn—2(2) = (0,07 Zp—2 — Zp—1 — 29 + 2y, *)
Put

Com—2(4) = Com—2(3), Com—a(4) = Cam-4(3) + 2C2n—2(4)

Cotm—k)(4) = Coim-i)(3) + 2Co(m—r+1)(4) — Com—-r+2), 3<j<m—1
Then we have
Com—r)(4) = (0,0, 22(m—r) — k(z2m—1 — 21) — 20,%), 1<k<m-—L

Next, we put

Com-3(4) = Cam—3(3), Com-5(4) = Com—5(3) + 2Com—3(4),

Cz(m—k)—1(4) = C2(m—k)—1(3)'+202(m—k+1)—1(4)*Cz(m—k+2)—1, 3<k<m-L
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Then we get

C2(m—k)-—1(4) = (O,O,ZQ(m_k)_l — (k + 1)2.’2m__1 + kZl,*) 1 S k S m— 1.

Set

1
Ci(5) = 501(4) =(0,0,21 — zom—1, %),

C2(m—k)(5) = 02(m~k)(4) - kcl (5) = (O)Oa 22(m—k) — <0, *)9 1<kL<m— 1,

Cotm—1)—1(5) = Co(m-i)—1(4)—kC1(5) = (0,0, 29(m—k)-1—22m-1,%), 1<k <m-—1.

Now the equations

Aj = (xj’yj’zﬁ*), OS]STL—].,
Bi(2) = (¥j-1—Un-1,2j—2+ —2j1 — 2n—2 — Zn_1,%), 1 <j<n—2,
Bn—1(2) = (0, Yn—2 — Yn—1,2n-3 — 2n—1, *),
n—1
D1 = (Oyzijo’*)a
3=0
C1(5) = (0,0,21 — zom—1,%),
CZ(m~k)(5) = (05 o, 22(m—k) — 20 *)7 1<k<m— 1,
Coim—-iy-1(6) = (0,0,22(m—k)-1 — 22m-1,%), 1<k<m-1,
n—1
D2 = (07 Ovz Zj:*)3
=0
D; = (0,0,0,%), 3<j<n—-1

are equivalent to the equations given at first. It is evident that the rank of
the coefficient matrix of the equations is 4n — 4. Hence, these equations are
independent.

2. Pandiagonal zero sum matrices

Let A = (ai;), ai; € R be a pandiagonal constant sum matrix of order
n with constant C. In this section, we have from here on , subtracted S/n
from every elements in the matrix so that the sum of the elements in any row,
column or diagonal will be zero, and we call such modified a zero-sum matriz.
The results in this section mainly owe to W. R. Andress [1]. We introduce
operators R,C such that
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Rai,j = Qi41,5 Caiyj = ai.j+1.

Set
n—1 . n—1 o
L.(R)=)_R', Du(R,C)=>» R*'C".
1=0 =0
Then we have
columm : L,(R)a; ; = 0,
row: L,(Cla;; = 0,
diagonal : L,(RC)a;; = 0,
diagonal : D,(R,C)a;; = 0.

Lemma Let Q; ; be elements of a square matrix of order n. If any one of
the three conditions (1) (o] 1)Qi; =0, Z Q” =0,(2) (R-1)Qi;=
0 Zz—O Qi;=0,(3) (R- C)Q” =0, Q¢ , =0 holds, it follows that
Qz,g =0.

Proof. Assume that the condition (1) holds. Then Q; ; = 0 is independent
of column. Hence using the second equation of (1), we get Q; ; = 0. The other
results follow similarly.

From (L,(RC) — La(R))ai; = R(C — 1) Y1 R1L,_1(C)a; ; = 0, using
Lemma, we get Zfz—ll R=L; 1(C)a;; = 0. Since this is true for all values of
1,7, it is convenient to suppress the operand q; ; so that

ni RiL,j(C) = 0. (12)

This is a triangle-invariant. We may interchange the operations R,C in the
above formula so that

n—2
> C'Li(R) =0. (13)
i=0

The triangle-invariant (12) remains invariant if we replace R by 1/R and
multiple B! as this merely represents a reflection in a horizontal line, and
give

n—2
D R'Lp2-i(C)=0. (14)
=0
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Put
Sp = Lp(R)L,(C).

Then, this presents a square of order n. Subtracting (12)-(13), and justifying
the removal of the factor R — C by Lemma 1, we obtain the invariant

(n=3)/2)
Z (RC)'Sn—2-2; =0. (15)
1=0
Subtracting (14) from (15), adding C~! D,, and multiplying (RC)~! , we get

the invariant
[(n—5)/2]

> (RC)'Sp_3_si+ R C™ =0 (16)
i=0
Subtracting Z;:os R'L,(R) from (15) and adding (C"~3 + C"~2)L,(R) gives

the invariant
[(n—5)/2]

Y (RC)'Sn-gai + (RC)*3S; = 0. (17)
i=0
From now on, we assume that n is odd, that is, n = 2m + 1.
The triangle-invariant (12) remains invariant if we replace C by 1/C as this
merely represents a reflection in a vertical line, and give

ni R'Li{C™Y =0. (18)

1=0
Subtracting this from (12) and removing R(C — C' 1), we get

m—1 3 m—2 m—2—1
YRV |(i+2—5)/2)(CI+CI)+ > R | (m—i—35)/2)(CT+C~7) = 0.
=0 J=0 1=0 7=0

(19)

Theorem 2 Let A = (a; ;) be a pandiagonal constant sum matrix of order
n. For an odd n, if n?—4n+3 elements a; 5, 0<i<n—4, 0<j<n—2are
given, the other elements decided uniquely. For an even n, if n2—4n+4 elements
a;j, 0<i<n—4, 0<j<n-2andanyanyoneofa, 3; 0<j<n-1
are given, the other elements decided uniquely.

Proof. Using (12), we can get a;n—1, 0 < i < n—4. Assume that n
is an odd number. Using (19), we obtain a,—3;, 0 < j < n—1 and then
Gn-2j,n-1,j, 0 < j < n—1. Next, Let n be an even number. Using (16),
we can determine a,_5;, 0 < j <n— 1. Then using (17), from any one of
Un-35, 0Lj<n-—1,weobtaina, 3; 0<j<n-1 Now,itiseasyto
getan_1j, 0<j<n-—1L
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3. Orthogonal matrices of the same number

A matriz of the same number n. is a square matrix with n? entries of n
different elements, each appeared exactly n times. Two matrices of the same
number n A = (a,;; and B = (b;;) are defined to be orthogonal if every ordered
pair of symbols occurs exactly once among the n? pairs (a;j,b;;) . It is well
known that the largest value of r for which there exist r mutually orthogonal
Latin squares of order n is less than n. Now, we have

Theorem 3. Denote by N(n) the largest value of r for which there exist
mutually orthogonal matrices of order n. it holds

N(n)<n+1
Proof. Suppose Ay, -, As are mutually orthogonal matrices of order n on
the symbols {0,1,---,n — 1}. Take an n-square matrix S = (s; ;) whose n?

positions are labelled 0,1,---,n% — 1 as follows: S;; =ni+j, 0<i<j0<
j <n—1. Then consider the collection of subsets B,.,, defined by
B, = {z : z is the label inSof aposition in which A, has entry m},

where 1 <r <t, 0<m <n— 1. There are tn subsets of size n. It follows
from the orthogonality of the A, that no pair of elements can occur in more
than one block. Suppose for example x and y both occur in B, ,», and

By, m,- Then A, has the same entry m; in x and y, while A,, has entry m,
in these positions. Hence the pair (mj, mg) occurs twice, contradicting to the
orthogonality of A; and As. Note the number of pairs of elements in the
subsets is

m(;) = %tn2(n —1).

This number must be more than ("22) Hence
—21-tn2(n -1 < %n"’(n2 -1)

givest <n+ 1.
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