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Abstract

Following Euler’s method, A. Hedayat constructs some Knut
Vik designs. We call them Knut Vik designs of Hedayat in this
note. We give Knut Vik designs of Hedayat explicitly and decide
when Knut Vik designs of Hedayat are mutually orthogonal.

2000 Mathematics Subject Classification. 05B15
Introduction

Let A be a Latin square of order n, that is, an n x n array in which n
distinct symbols are arranged so that each symbol occurs once in each row and
column. Index its rows and columns by 1,2,...7n. By the jth right diagonal of
A we mean the following n cell of A:

(6,5 +i-1); i=1,2,---,n; (mod n.)
We define also the jth left diagonal of A to the following n cell of A:
(4,5 —1); i=1,2,---,m; (mod n.)

Let ¥ be a set of n distinct symbols. If we can fill the cells of A by the
elements of X in such a way that each row, column, right diagonal and left
diagonal of A contains all the elements of X, we say the resulting structure a
Knut Vic design, which we denote by K. It is also called a pandiagonal Latin
square [1], [3]. In this paper, we set £ = {0,1,2,---,n — 1}. It is well known
that Knut Vic designs of order n exists if and only if n is not divisible by 2 or
3. A. Hedayat [3] showed that n is not divisible by 2 or 3 then K = (k;;) with
kij = A+ j(mod n) is a Knut Vic design if A\, A — 1, A+ 1 are relatively prime
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to n. In this paper, we call these Knut Vic designs as Knut Vic designs of
Hedayat, Let n have the prime decompsition

n=pi'py* P
Then also he showed that there are
N =p3 g2~ p2r=t(py — 3)(p2 — 3) - -+ (pr — 3).

different choices for A. In the present note, we define a standard way which

gives A satisfing the condition that A, A — 1, A+ 1 are relatively prime to n. K.

Afsarinejad showed that there exist at least min(p; — 3), (i=1,2,---,7)

mutually orthogonal Knut Vik designs of order n. We show that there exist at

most min(p; — 3), (¢=1,2,---,r) mutually orthogonal Knut Vik designs of

Hedayat. We also obtain that to each Knut Vik design of Hedayat, there are
P Tps T prr T (pr — 4)(p2 — 4) - (P — 4)

orthogonal Knut Vik designs of Hedayat.

1. A standard construction of Knut Vik designs of
Hedayat

Let n be not divisible by 2 or 3 and have the prime decomposition

n=ppy*-ppr, B<p1<pa<--<pr).

If A, A+ 1, —1 are relatively prime to n, then
K = (kij) with kij =Xi+7] (mod n)

is a Knmut Vik design of Hedayat. We decide explicitly when A, A+ 1, A —1 are
relatively prime to n.
Put

mg, = da+1, 1<a<r, 1<i,<p.-3.
From Chinese remainder theorem, we obtain
Lemma 1. For each {i1,49, -,i,} with1 <i3 <p1 —3,1<ia<py—3,---,

1 <i, < p, — 3, there is a positive integer m satisfies

m=m’3{1 (mod p1)7m=m122 (mOd pz)iu'1m=m:’- (mOd p‘l‘)'
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As this integer is unique on Zy,,,,...p,) , we denote it by myyiy...i, -
Now, we obtain

Theorem 2 Set n; = p‘l"l"lpg?‘1 o.p2r=1. For each {t,i1,i2, - ,ir} with

0<t<n;-1,1<i1<p1—-3,1<i3<py—3,---,1<4.<p,— 3, put
)‘(t7i17i27"'5i7') =P1P2"'Prt+mi1i2---i,‘,

then these \’s give N different choices for Knut Vik designs of Hedayat.

Following the proof of Chinese remainder theorem, we construct explicitly
integers m; ;,...;,. as follows. Put

@ =pi" (mod Py),q2 = (p1p2)~* (mod Ps),-++,qr—1 = (p1p2-+Pr—1)"" (mod P,)

Now we get inductively,

Miyigei, = m}l (mod p1),
Miyigei, = m}l +p1s1 = m?z (mod pg),
s1 = @ (mi - mgl) + s2p2,
Miy, = m +piq(m? —mi),
Miyigeiy = Miyg +P1P2s2 =ms (mod p3),
s2 = q2(m:z?;; - miliz) + s3p3,
Miyigiy = My + P1D2G2 (mf, - Miy4,),
Miyigei, = Miyigiy + P1P2P353 = mi (mod py),
Misiginey = Miyigesip_y +P1P2* Pr—2lr—2(Mi s = Misigeip_3)s
Miyigei, = Mijigeip_y +P1P2° Pr—15r—1 =m;_(mod p;),
Sr—1 = gr—1(m] — Miigei,_,) (mod (p1p2-:-pr)),
Miyigeip =  Migigeip_y T P12 Pro18r—1(M, = Myjipeci,_y JMiyiged,_, (mod (p1p2 - pr)).

Example 1. Let n =5 x 7. Then p; = 5,po =7 and ¢ = 3 (mod 7). We
have
m% = 2,m§ = 3,m? = 2,m§ = 3,m§ = 4,mz = 5.

Hence, we get

My, = mgl + 15(771?2 - m}l) (mod 35),
= i1 +1+15(ip — ;) (mod 35), 1<i; <2, 1<iy<4.
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Thus, we obtain

mi1 = 2, myg = 17, my3 = 32, mi4 = 12,m21 = 23,m22 = 3, ma3 = 18,m24 =33 (mod 35).

Example 2. Let n =5 x 7 x 11. Then p; = 5,p3 = 7,p3 = 11,,

@1 =3 (mod 7),g2 =6 (mod 11). m} ,mZ, are the same as in Example 1,

and m =iz+1, 1<i3<8. It is evident that my;, 1<i; <2, 1<1iy <4
are also the same as in Example 1. Now we have
My igig = My + 210(’”1,?3 - m.,;liz) (mod 385)

Now we write simply 1,5, for (43,51, %1452, 1y4,8)-

mi1s = (2,212,37,247,72,282,107,317), ma. = (332, 157,367,192,17,227, 52, 262),
mizs = (277,102,312,137,347,172,382,207), my4 = (222,47,257, 82,292,117, 327,152),
ma1. = (233, 58,268, 93, 303,128, 338, 163), maa. = (178, 3,213, 38,248, 73,283, 108),

ma3. = (123,333,158, 368,193, 18,228,53), moq, = (68,278,103, 313,138, 348,173, 383).

Example 3. Let n =72 x 11. Then p; = 7,py = 11, ¢; = 8 (mod 11).
ml —i1+1,m122 =ig+1, 1<i;3 <4, 1<1i3; <8. Hence, we get

1:1 -
Miyi, = My +56(m? —ml ) = i1+1456(ip—i1) (mod 77), 1< <4, 1<y <8.

We write m;,, for (451,452, ,%i,8)-

mi. = (2,58,37,16,72,51,30,9), mo. = (24,3,59,38,17,73,52,31),

m3, = (46,25, 4, 60, 39,18, 74,53), my. = (68,47,26,5,61,40,19,75).
Now we obtain

A(t,il,i2)=77t+m,~1i2, 0<t<L6, 1<4; <4, 1<i1n<8.
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2. Orthogonal Knut Vik designs of Hedayat

Let K; and K be Knut Vik designs of Hedayat of order n. Kj and K
are said to be orthogonal if they are orthogonal in the sense of Latin squares.
Using the notations in Theorem 2, assume that K; = (IcZ(J1 )) and Ky = (k (2))
are given by

kD = A, i, i, i)+ g, BD = A, iD,iD, - i®)i+ 4,
where

0<ti<m-1,1<iP <p-3,1<iV <pp—3,---,1<i) <p,. -3,

0<ta<n—1,1<iP <p1-3,1<i) <pp—3,--+,1<i® < p, - 3.
It is known that K7 and Ky are orthogonal if and only if

/\(tl,zgl),zgl), . ,z’ﬁl)) —A(t2, z§2),zg2), . ,i?)) and n are relatively prime.
Hence we have
Lemma 3. Knut Vik designs of Hedayat K, and Ko are orthogonal if and
only if
N
igl) 7é i?)’ igl) 7é 7:9)7 T ":9) 7£ 7:9)'

When K and Ky are orthogonal , we call (K;.K5) a orthogonal pair in this
note. From Lemma 3, it follows

Theorem 4. For each Knut Vik design of Hedayat, there are
PRI ptr T (o1~ 4) (2 — 4) -+ (pr — 4)

Knut Vik designs orthogonal to it. There are
1 _ _ |
Epfal 2plaa=2. . p2ar=2(p _ 3)(p; — 4)(py — 3)(p2 — 4) -+ (b — 3)(pr — 4) 1

orthogonal pairs of Knut Vik designs of Hedayat .

Let S be a set of Knut Vik designs of order n . We say S to be a set of
mutually orthogonal Knut Vik designs of order n if any two Knut Vik designs
in S are orthogonal. It is shown by K. Afsarinejad that there are at least
p1 — 3 mutually orthogonal Knut Vik designs of order n. On the other hand,
by Lemma 3, there are at most p; — 3 mutually orthogonal Knut Vik designs
of Hedayat. In fact, p; — 3 rnutua,lly orthogonal Knut Vik designs are given by
Ki = (k) Ko = (k3), . Kp—3 = (k7' ™), where
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k(l) = A(t1, 1, 1'( ) ,ig.l))i + 3, kz(z) A(t2,2, 1(2) ,,;5_2))7; +7,0,

kP = Mtpy-3,p1 = 3,370, )i 4,
and
zgﬂ) # iga)’ii(ia) # i:(sb), R i-ga) # iﬁb), for any a 7& b.

Thus, we obtain

Theorem 5. The mazimum number of mutually orthogonal Knut Vik designs
of Hedayat is p; — 3. There are

B B )P =3) (pa—4) - (a—pr ) (s =) (73 —4) -+ (pa—p1-+1)

...... (I;r_3)(pr_4)..(pr_p1+1)
sets of p1 — 3 mutually orthogonal Knut Vik designs of Hedayat.

Example 4. Let n = 35. Then, the maximum possible number of mutually
orthogonal Knut Vik designs of Hedayat is 2. The all orthogonal pairs are
given by the following pairs of \’s.

(A(1,1) = 2,A(2,2) = 3), (A(1,1) = 2, A(2,3) = 18), (A(1, 1) = 2, A(2,4) = 33),
(A(1,2) = 17,A(2,1) = 23), (A(1,2) = 17, A(2,3) = 18), (A(1,2) = 17, A(2,4) = 33),
(A(1,3) = 32,A(2,1) = 23), (A(1,3) = 32, A(2,2) = 3), (A(1,3) = 32, A(2,4) = 33),

(A(1,4) = 12,A(2,1) = 23), (A(1,4) = 12, A(2,2) = 3), (A(1,4) = 12, A(2,3) = 18).

Let n =5 x 7 x 11. Then, the maximum possible number of mutually
orthogonal Knut Vik designs of Hedayat is also 2. There are 672 orthogonal
pairs in this case. the maximum possible number of mutually orthogonal
Knut Vik designs of Hedayat is also 2.

Let n = 72 x 11. In this case, the maximum possible number of mutually
orthogonal Knut Vik designs of Hedayat is 4. There are 24 x 3 x 73
orthogonal pairs and 2% x 3 x 5 x 75 sets of 4 mutually orthogonal Knut Vik
designs of Hedayat.
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Abstract

In their paper [4], A. Schinzel and W. Sierpiiski have investi-
gated the diophantine equation (z2 — 1)(y% — 1) = (22 —1)%. In this
paper, we shall investigate an analogous equation (z2+1)(y?+1) =
(2 +1)%

2000 Mathematics Subject Classification. Primary 11D25; Sec-
ondary 11B37, 11D09

Introduction

In their paper [4], A. Schinzel and W. Sierpinski firstly investigated the
following diophantine equation

o)) (@ -1)@" - 1) = (> - 1)

They have found all the integer solutions for which z — y = 2z. But they could
not find all the integer solutions of (1), and the problem to find all the integer
solutions of this diophantine equation still remains as an open problem. In this
paper, we shall show the following diophantine equation

2 (@ + 1) +1) = (2* +1)°

has infinitely many integer solutions. Though we could not find all of the
integer solutions of this equation, we found all the solutions with the additional
condition z — y = 2z. It is obvious that the above diophantine equation (2)
has the solution |z| = |y| = |z|. Throughout this paper, we shall call these
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solutions trivial and other solutions nontrivial. Without loss of generality, we
may restrict ourselves to the nontrivial and nonnegative solutions.

We shall also show the following slightly generalized diophantine equation
has infinitely many integer solutions for any fixed positive
integer t

(3) (2 + 1) (2 +1) = (22 +t2)2.

The equation (z2+1)(y2 +1) = [((z — ¥)/2)* + 1]

In this section, we shall show the diophantine equation (2) has infinitely
many integer solutions with ¢ — y = 2z.
The left hand side of the equation (2) can be written as

@@+ +1) = (zy+1)° + (z —y)*.

Since z = (z — y)/2, the right hand side of the equation (2) is

2 2
N _(z—y _(z—y)’+4
z +1—-(—2 ) +1——————————-——4 .

Thus we have
16(zy + 1)? + 16(z — ) = (z — y)* + 8(z — y)* + 16,
and then
16(xy +1)2 = (z —y)* = 8(x —y)®> + 16 = ((z — y)% — 4)2.
Therefore we have

(z—y)?—4==24(zy+1)

(z—-y)?—-4=22>-2zy+y*—4=—dzy—4
= or

(z—y)?—-4=22-2zy+9y?>—4=4dxy +4.

We note that

2?2 - 2zy+y? —4=—4zy—4
if and only if

2?2 +2zy+y? = (x +y)% =0.
Hence we have y = —z and then z = (z —y)/2 = z. Now we see these solutions
are trivial. Let us consider another case 2% — 2zy + y?> — 4 = 4xy + 4. Then
we have 2% — 6zy + y? = 8. Since z? — 6zy + y% = (z — 3y)? — 8y?, we can
conclude z — 3y must be divisible by 4. Put w = (z — 3y)/4. Then we have
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16w? — 8y? = 8, that is, y> — 2w? = —1. Let us denote ¢ = 1+ /2 and
€ = 1 — /2. Define the binary recurrence sequences {t,} and {s,} by putting

tn = (e" +&)/2,
{ 5n = (€™ — &™) /2V/2.
Then {t,} and {s,} satisfy

thy1 = 2tp +tn_1, Spy1 = 28p + Sn—1,
and
t2 — 252 = (—1)™.
Combining the fact that y2 — 2w? = —1 and y is nonnegative, we see y = tan_1
and |w| = s2,—1 for some positive integer n. Then we have

T3y
Y=g

From the fact that £2”~! = ta,,_1 + Son—1V2 and €2 = 3 + 2v/2, we have

€2 =ty + San11V2 = (fan—1 + 520-1V2)(3 + 2V/2)
= 3tan_1 + 482n—1 + (382n—1 + 2t2,-1)V2,

= +89,_1 <> T = 3top_1 T 4S951.

and
€273 =ty, 3+ S2n-3V2 = (tan—1 + S2n-1V2)(3 — 2V2)
= 3t2n_1 — 432n——1 + (332n—1 - 2t2n——1)\/§)'

Hence we have verified 3t5,,_1 + 42,1 = ton+1 and 3ty,—1 — 48251 = ton—3.

Thus we have £ = ta,, 41 Or ta,—3. In the case z = tg,_3, we have T = {5, 3 <

y = tan_1, which contradicts to the assumption 22 = z —y > 0. Hence any

nonnegative solution of (2) can be written as ¢ = 2,41 and y = t5,—; for some

positive integer n. From the recurrence relation ton+1 = 22, + t2n—1, We have
_T—Y _ tlopy1 —lon—

= ) = ) = t2n-

Thus we have shown the following theorem.

Theorem 1. With the above notation, the diophantine equation (2) has in-
finitely many positive integer solutions. Moreover any positive integer solution
(z,y,z) which satisfies 2z = x — y can be written as T = tant1,y = lon-1,2 =
tan for some positive integer n.

Generalization

Let t be a positive integer. Then we shall generalize the above results to the
following diophantine equation (3)

(@ + 1)y +1) = (2% + )2
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We note that 2 + 1 is not square for any ¢ > 1 and vt2 + 1 ¢ Q. Let us denote

n=t++vVt2+1and 7 =t — V2 + 1. Now we shall define binary recurrence
sequences by putting

{vn = (" +7)/2,
Un = (" — ) /2V1E2 + 1.

Then we have {u,} and {v,} satisfy

u =0, uy =1, ua=2¢,........ y Upy1 = 2tUp + Up_1,
vo=1 wvi=¢t va=22+1,..., Upy1=2tv,+Vp_1,

and

{vgn—l + 1 = ugn—l(tz + 1)7
Vg1 +1 =1z, (¢ +1).

Then we obtain
(U§n+1 + 1)(”31;—1 +1)= [(t2 + 1)"2n+1U2n—1]2-

Here we see
2n+1 _ =2n+1 ,2n—1 _ =2n—1
(#® + Duznt1tzn—1 = 1 5 U i 5 N

_l n4n+ﬁ4n+n2+ﬁ2
T2 2
On the other hand we have

) (n2n+ﬁ2n>2:n4n+f’4n+2

1
) = 5(1;4,, +2t% +1).

1
Von = 2 1 = 5(van +1).

Thus we have shown
(t% + Dugnirtan_1 = v2, +t2 = (#* + 1)(u3, + 1).
Hence we have
(Vg + D301 +1) = (13, +17)? = [(#* + 1) (u3, + D",
Therefore we have obtained the following theorem.

Theorem 2. With the above notation, the diophantine equation (3) has
infinitely many positive integer solutions T = Vany1,Y = Van—1,2 = U2n With
some positive integer n.
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From the above argument, we have the following corollary.

Corollary. The diophantine equation
@ + D +1) = [ + D" + D)

has infinitely many parameterized positive integer solutions
((l?, Y, 2, t) = (v2'n+1a V2n—1;U2n, t)'

Concluding remarks

Finally, we shall recall the classical results on Shinzel-Sierpiski equation (1)
with £ — y = 22. We have (83,5, — 1)(£3, — 1) = (2s2n42520)°-
Here 1

252n+252n — Z(E2n+2 _ §2n+2)(52n _ E—Zn)

— 2(5411—{-2 + é4n+2 _ 62 _ 6_‘2) — %(6411.—{-2 _ €4n+2 _ 6)

E4n+2 + §4n+2 -2 - (62n+1 + 5—2n+1)2 1
4 2

’ 2
ton+2 — ton
=t —1= (———2 e ) -1
2
Thus we have recalled the elementary fact that any positive integer solution of
(2 -1)@?-1) =(22-1)?* with2z=2-y,
is given by (:l}, y,z) = (t2n+27 ton, t2n+1)~

Here we shall combine this classical result and Theorem 1 as follows. Put
e = £1. Then the following diophantine equation

4) (22 +e)(y? +e) = (2% +¢)%.
with 2z = 2 — y has infinitely many positive integer solutions (z,y,z) =
(tn42,tn,tny1). Here, n is even for the case e = —1 and n is odd for the
case e = 1.

In [2], the positive integer solutions of (1) not of the form (f2n+2, t2n, tan+1)
are called sporadic solutions. For example, there are several sporadic solutions
(31,4,11),(97,2,13), (48049, 155, 2729) quoted by Szymiczek. On the contrary,
it seems rare that our equation (2) has sporadic solutions. We have verified
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the only positive integer solutions with 0 < y < z < 300000 are

(2,9,2) = (7,1,9),
(41,7,17),
(239,41,99),
(1393,239,577),
(8119, 1393, 3363),
(47321, 8119, 19601),
(275867, 47321, 114243).

Hence, there is no sporadic solution for 0 < y < z < 300000.
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Abstract
In this short note, we consider the monotonicity of the heat invariant
az(g) for a Riemannian metric g under the normalized Ricci flow on a
closed surface. We show that a2(g(t)) is decreasing under the normalized
Ricci flow g(t) in the space of metrics of non-positive curvature.

2000 Mathematics Subject Classification. 53C44

Introduction

Let M be an n dimensional compact C* manifold without boundary. Given a
C* Riemannian metric g on M. Then, we have the Laplace-Beltrami operator
A = A, acting on C* functions on M, whose spectrum consists of non-negative
eigenvalues

0=X <A <A< <A <-e-Too.
It is well known concerning {Ax} that we have the asymptotic expansion

Ze"\’“s o (47s) "™ {ao(g) + ar(g)s + -+~ +a;j(g)s’ +--- },
k=0

where the coefficients a;j(g) are the heat invariants, first three of which are
given by

1
a(g) = Vol(M,g), alg) = 5 /Mdeg,

1 .
@(9) = 355 /M[2|R|2 — 2[Ric|? + 552]dV,. (0.1)

Here, S = S(g) is the scalar curvature, Ric = Ric(g) is the Ricci tensor and
R = R(g) is the Riemannian curvature tensor of (M, g). In the case where M
is a closed surface ax(g) reduces to

aa(g) = 616 /M S dv,. (0.2)
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By noticing the Schwarz inequality and the Gauss-Bonnet theorem, we have

/M S2dv, > ( /M sczvg)2 /Vol(M, 9) = {dmx(M)}? [Vol(M,g)  (0.3)

(x(M) being the Euler characteristic). Thus, the functional as(g) attains its
minimum at the metric of constant curvature in the space of C'™° metrics on
M with fixed volume.

In the present note we consider the behavior of the invariant as(g) given by
(0.2) under the normalized Ricci flow on closed surfaces. The normalized Ricci
flow (introduced by Hamilton [3]) on a closed surface M is a one-parameter
C family g(t) (¢t > 0) of C* metrics on M which is evolved by the equation

0
5% = (5 — 5)gij»

where s denotes the average scalar curvature given by

5= (/ SdVg)/Vol (M,g).
M

Here Vol(M, g) = Vol(M, g(t)) is constant along g(t), and s is also constant, in
fact

s = 4mx(M)/Vol(M, g(0))-
Note that the stationary points of the normalized Ricci flow are the metrics of

constant curvature s.
The main result of this note is the following.

Theorem. Suppose M is a closed surface with x(M) < 0. Let g(t) (t > 0)
be a normalized Ricci flow on M such that

S5(g(0)) < 0. (0.4)

Then, az(g(t)) is monotonously decreasing in t, namely

Sar(e(®) <0,

and the equality holds if and only if g(t) is a metric of (negative) constant
curvature s.

Remark. Let g(t) (¢t > 0) be any Ricci flow on a surface M with (M) < 0.
Then, it has been shown by Hamilton [3, Theorems 4.6 and 4.9] that there exists
to such that S(g(t)) < 0 for V¢ > t5, and that g(t) converges to a metric of
constant negative curvature s as t — oo.
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1. Proof of the theorem

Let g(t) is a one-parameter C'*° family of C metrics on the closed surface M.

We put
9 N .
hij = hiz(t) :== 5% R = g*hy (= Zglkhkj),
%

which are symmetric 2-tensor fields on M. Put
F(t) = /M{S(ga))}? dV, 0 (= 60 as(a(t)) ).

Then, we have the following.

Lemma. The derivative of F(t) is given by

dFr I, . ) g
@t /M 2TV )R + (288~ s)H] dV, (W = hiyg™). (L)

If g(t) is a normalized Ricci flow, then

dF
ar :/ [~ 2SAS + 53(S — 5)] V. (1.2)
dt M

Proof. We easily obtain the formulas (1.1) by straightforward calculations
following the variation formulas for the volume element, the Levi-Civita con-
nection and its associated curvature tensors (given in [2], for example). The

formula (1.2) is derived from (1.1) for h;; = (s — S)gi;. a
Put S = S — 5. Then, we have
/ Sdv, =0, (1.3)
M

and the formula (1.2) is rewritten as

ar'
dt

—25AS + 528 + 552 — s2S]av,
M g

-2 / SAS dv, + / $28dV, +s / S%dV, — s°Vol(M, g).
M M M
By virtue of (1.3) we have
/ SASdV, > M\ / 5%av,
M M

for the non-zero first eigenvalue A\; = A;(g) of A = A,. Moreover, by virtue of
(0.3) we have

/ S2dV, > s*Vol(M, g).
M



18 Ruishi Kuwabara

Hence, we get
— 5 -2\ / S%dv, + / $25dv, = / 2\ — S)S2dV, (1.4)
M

if s <0 (which means x(M) < 0). Thus, we have the following.

Proposition. Suppose M is a closed surface with x(M) < 0. Let g(t) be a
normalized Ricci flow on M. If

Aﬁ»amm—swmnﬁwm»%wmzm

then, we have

9 ax(s(t)) <0

Proof of Theorem. By applying the maximum principle to the evolution
equation of S(g(t)), we get S(g(t)) < 0 for V¢ > 0 if S(g(0)) <0 ([3, Theorem
3.2]). Moreover, we notice that in (1.4) the equality holds if and only if S=0.
Thus, we obtain Theorem as a corollary of Proposition. 0O

It is reserved for future discussions to clarify what occurs if the condition
(0.4) is removed.

Concluding Remari{s

1. The functional F(g) = [;,-S?dV, (called “Calabi energy”) was first
considered by Calabi [1], and it was shown that in the case where M is a closed
surface the critical points of F' are metrics of constant curvature (which attain
the minimum) and that F is decreasing under the “Calabi flow”.

2. As a recent result related to this note we refer to [4], in which it was
proved that the determinant of the Laplacian on a closed surface monotonously
increases under the normalized Ricci flow.

3. The heat invariant a2(g) given (0.1) for n dimensional compact Rie-
mannian manifolds has been considered in “Spectral Geometry,” particularly
to characterize the flat metrics by the spectrum (see [5], [6]).
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