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Abstract 

In their paper [4]， A. Schinzel加 dW. SierpiIIski have investi-
gated the diopha凶 neequ抗ion(x2 -1)(ポ-1)= (z2 _1)2. In this 
paper， we shall inv'田 tigatean analogous equation (x2 + 1)(ポ+1)= 
(Z2十 1)2.

2000 Mathematics Subject Classification. Primary llD25; Sec-
ondary llB37， llD09 

Introduction 

In their paper [4]， A. Schinzel and W. Sierpi白kifirstly investigated the 
following diophantine equation 

(1) (x2 _1)(y2 -1) = (Z2 _1)2. 

They have found all the integer solutions for which x -y = 2z. But they could 
not find all the integer solutions of (1)，組dthe problem to find all the integer 
solutions of this diophantine equation still remains as加 openproblem. In this 
paper， we shall show the following diophantine equation 

(2) (x2 + 1)(y2 + 1) = (Z2十 1)2

has infinitely many integer solutions. Though we could not find all of the 
integer solutions of this equation， we found all the solutions with the additional 
conditi侃 x-y = 2z. It is obvious that the above diophantine equation (2) 
has the solution Ixl = Iyl = 14 Throughout this paper， we shall call these 
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solutions tr旬開1and other solutions nontrivial. Without loss of generality， we 
may restrict ourselves to the nontrivial組 dnonnegative solutions. 

We shall also show the following slightly generalized diophantine equation 
h剖 infinitelymany integer solutions for any fixed positive 
integer t 

(3) (x2 + 1)(y2 + 1) = (Z2 + t2)2. 

The equation (x2 + 1)(y2 + 1) = [((x -y)j2)2 + 1]2 
In this section， we shall show the diophantine equation (2) h制 infinitely

m加 yinteger solutions with x -y = 2z. 
The left hand side of the equation (2) can be written掛

(x2 + 1) (y2 + 1) = (時十 1?十 (x_ y)2. 

Since z = (x -y)j2， the right hand side of the equation (2) is 

(X_y¥2・鳴 (x一智子 +4
1 = ¥ヲ一/十円 4 

Thus we have 

16(xy + 1)2 + 16(x -y)2 = (x _ y)4十 8(x-y)2 + 16， 

and then 

16(xν+ 1)2 = (x -y)4 _ 8(x _ y)2 + 16 = ((x _ y)2 _ 4)2. 

Therefore we have 

(x-y)2-4=土4(均十 1)
( (x -y)2 -4 = x2 -2xy + y2 -4 = -4xy -4 

.c=:今< or 
l (x -y)2 -4 = x2 -2xy + y2 -4 = 4xy + 4. 

We note that 
x2 -2xy + y2 -4 = -4xy -4 

if and only if 
x2 + 2xy + y2 = (x + y)2 = O. 

Hence we have y = -x組 dthen z = (x -y)j2 = x. Now we see these solutions 
are trivial. Let us consider another c剖 ex2 -2xy +ポ-4= 4.時十 4.Then 
we have x2 -6xy + y2 = 8. Since x2 -6xy + y2 = (x -3y)2 -8y2， we can 
conclude x -3y must be divisible by 4. Put w = (x -3y)j4. Then we have 
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16w2 -8y2 = 8， that is， y2 -2w2 = -1. Let us denote E = 1 +ゾ互加d
l=1ーゾ豆 Definethe binary四 currencesequences {tn}組 d{Sn} by putting 

(tn=(♂十?，，)/2，
Sn = (♂-?，，)/2V2. 

Then {tn} and {sn} satisfy 

tn+l = 2tn + tn-l， Sn+l = 2sn + Sn-l， 
組 d

t~ -2s~ = (-1)n. 

Combining the fact that y2 -2w2 = -1 and y is nonnegative， we see y = t2n-l 

組 dl叫 =S2n-l for some positive integer n. Then we have 

x-3y 
ω=-4-=土S2n-lや今 x= 3t2n-l土4s2n-1・

From the fact that E2nー 1= t2n-l + S2n-l v2 and E2 = 3十 2V2， we have 

E2n+l = t2n+l + S2n+l v2 = (t2n-l十 S2n-lV2)(3 + 2V2) 
= 3t2n-l + 4s2n-1 + (3s2n-1 + 2t2n-l)V2， 

and 

ε2n-3 = t2n-3十 S2n-3V2= (t2n-l十 S2n-lV2)(3 -2V2) 
= 3t2n-l -4s2n-1 + (3s2n-1 -2t2n-I)V2). 

Hence we have verified 3t2n-l十 4s2n-1= t2n+l加 d3t2n-1 - 4s2n-1 = hn-3・

Thus we have x = t2n+l or t2n-3・Inthe c掛 ex = hn-3ヲ wehave x = t2n-3 < 
y = t2n-l， which contradicts to the assumption 2z = x -y三o.Hence any 
nonneg抗i刊 solutionof (2) can be written描 x= t2n+l and y = t2n-l for some 
positive integer n. From the recurrence relation t2n+1 = 2t2n + t2n-l， we have 

z-z-u-tznキ1- t2n-l = t 一一一一一 -b2n.・2 

Thus we have shown the following theorem. 

Theorem 1. With the abo肘 notαtion，the diophαntine equation (2) hαS in-
finitely mαny positive integer solutions. Moreoverαny positive integer solution 

(x，y，z)ωich satisfies 2z = x -y cαn be written as x = hn+l'y = t2n-l，Z = 
t2n for some positi開 integern. 

Generalization 

Let t be a positive integer. Then we shall generalize the above results to the 
follo討 ngdiophantine equation (3) 

(x2十1)(y2十1)= (Z2十t2?
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We note that t2 + 1 is not squ町 efor any t三1加 dy't2τ1 fj_ Q. Let us denote 
η= t + V't2+I andワ=tーゾFτ工Nowwe shall define binary recurrence 
sequences by putting 

(un=(Mn)九
Un = (ηn _ ijn)/2ゾFτ1.

Then we have {un} and {vn} satisfy 

加 d

(均=0， Ul = 1，日t，• . • • ...• ， 
Vo = 1， Vl = t， V2 = 2t2 + 1， • • • ， 

(dnJ=払 1山)，
V~n十1 + 1 = u~n+l (t2 + 1). 

Un+l = 2tun + Un-l， 
Vn十1= 2tvn十 Vn-l，

Then we obtain 

(V~n+l + l)(V~n_l + 1) = [(t2 + 1)U2n+lU2n-l]2. 

Here we see 

n+l "，2n十1 ~2n-l _ "，2n-l 2 η- η"“ 

(f" + 1)u2畔向n-l= ・L 一一

1 (η4n十句4叫 +η2+ワ2¥ 1〆 ー ョ.、
l' ~. . . I =ー{山明 +2t"" + 1). 

2 ¥ 2 I 2、τ帥・ . -， 

On the other hand we have 

2 ('fJ2n +守2n¥2 η4n十句4n+2 1 
りふ=l'/ ~ ./ ) ='/ '~ ヲ (V4n+ 1). 

Thus we have shown 

(t2 + 1)U2n+lU2n-l = V~n + t2 = (t2 + l)(u~n + 1). 

Hence we have 

(V~n+l + l)(V~n_l + 1) = (V~n 十日)2 = [(t2 + l)(u~n + 1W. 

Therefore we have obtained the following theorem. 

Theorem 2. With theαbove notαtion， the diophantine equαtion (3) hαs 
infinitely many positive integer solutions x = V2n+ 1， Y = V2n-l， Z = V2n with 
some positive integer n. 
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From the above argument， we have the following corollary. 

Corollary. The diophαntine equαtion 

(x2 + 1)(y2十 1)= [(t2十 1)(Z2 + 1)]2 

hαs infinitely many pαrameterized positive integer solutions 
(x， y， z， t) = (V2n+1' V2n-1， U2n， t). 

Concluding remarks 

Finally， we shall recall the classical results 0叩nS他hin
w悦it出hx一ν=2z. We have (t~n+2 -1)(t~n -1) = (2s2n+2S2n)2. 
Here 

282n+28h=;(ε山 _e-2n+2) (e2n _ g2n) 

1 =一(ε4叫+2十g4n+2ー ε2-52)=1(ε4n+2_ g4叶2_ 6) 
4 

E4n十2十g4叫+2_2 1 _ (ε2n+1 +e-2n+1¥21 

¥ 2 I 

? • f t2n+2 -t2n¥2 
二 t~n+1 -1 = ~ -~，oT~2 -~'O) -

Thus we have recalled the elementary fact that any positive integer solution of 

(x2 -1)(y2 -1) = (Z2 -1)2 with 2z = x -y， 

is given by (x， y， z) = (t2n+2， t2n，t2叶 1)'
Here we shall combine this cl剖 sicalresult and The.orem 1剖 follows.Put 

e=土1.Then the following diophantine equation 

(4) (x2 + e)(y2 + e) = (z2十 e)2.

with 2z = x -y h部 infinitelymany positive integer solutions (x， y， z) = 

(tn+2， tn， tn+I). Here， n is even for the c拙 ee = -1 and n is odd for the 
case e = 1. 

In [2]， the positive integer solutions of (1) not of the form (t2叶 2，tzn， t2n+1) 
are called sporlαdic solutions. For example， there are several sporadic solutions 
(31，4，11)， (97，2，13)， (48049，155，2729) quoted by Szymiczek. On the contr紅あ

it seems rare th叫 ourequation (2) has sporadic solutions. We have verified 
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the only positive integer solutions with 0 < y < z < 300000 are 
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Hence， there is no sporadic solution for 0 < y < z < 300000. 
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