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Abstract

A singed cykle is transformed to a line by a sequence of local
switchings if and only if its parity is odd. We invesigate induced
cycles in a signed graph which are transformed to lines by local
switching.

2000 Mathematics Subject Classification. 05C22
Introduction

Local switching of signed graphs is introduced by P. J. Cameron, J.J. Seidel
and S. V. Tsaranov in [2]. Signed cycles with odd parity are transformed to lines
by a sequence of local switchings, but signed cycles with even parity can not be
transformed to lines by no means [5]. What kinds of induced signed cyles are
transformed to trees by a sequence of local switchings ? We investigate induced
cycles in a signed graph which are transformed into lines by local switching.

We state briefly basic facts about signed graphs. A graph G = (V,E)
consists of an n-set V(the vertices) and a set E of unordered pairs from V'(the
edges). A signed graph (G, f) is a graph G with a signing f : £ — {1,—1} of
the edges. We set E* = f~1(+1) and E~ = f~1(—1). For any subset U CV
of vertices, let fy denote the signing obtained from f by reversing the sign of
each edge which has one vertex in U. This defines on the set of signings an
equivalence relation, called switching. The equivalence classes {fy : U C V}
are the signed swithing classes of the graph G = (V, E).

Let ¢ € V be a vertex of G, and V (i) be the neighbours of i. The local graph
of (G, f) at i has V(i) as its vertex set, and as edges all edges {j,k} of G for
which f(¢,7)f(4,k)f(k,i) = —1. A rim of (G, f) at ¢ is any union of connected
components of local graph at i. Let J be any rim at i, and let K = V(3)\J.
Local switching of (G, f) with respect to (i,J) is the following operation:(i)
delete all edges of G between J and K; (ii) for any j € J, k € K not previously
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joined, introduce an edge {4, k} with sign chosen so that f(%,5) f(4,k)f(k,%) =
—1; (iii) change the signs of all edges from i to J; (iv) leave all other edges
and signs unaltered. Let £, be the set of switching classes of signed graphs
of order n. Local switching , applied to any vertex and any rim at the vertex,
gives a relation on  which is symmetric but not transitive. The equivalence
classes of its tansitive closure are called the clusters of order n.

A signed graph is said to be positive if we can switch all signs of its edges
into +1. A tree is always considered as a positive signed graph. A tree with
only two. leaves is said to be a line in the present paper.

1. Signed induced cycles

A k—cycle C* = (V, E), where V = {a1,a2,--,ax}, E = {a1a2,a2a3,--,
ax—10k,0x01} , will be denoted simply C* = ajay---agay. For signed cycles,
there are two switching classes, which are distinguished by the parity or the
balance, where the parity of a signed cycle is the parity of the number of its
edges which carry a positive sign and the balance is the product of the signs
on its edges [2]. We show the follwing in [5].

Theorem . Let C* be a k—cycle. Then, it is transformed to a tree by a
sequence of local switchings if and only if its parity is odd.

In the present note, we study induced cycles in a signed graph which are
transformed into lines by local switching.

An induced cycle with odd (resp. even) parity in a signed graph is called
simply an odd (resp. even) induced cycle in the present paper. Let C be an
induced cycle in a signed graph. Let P be a path between vetices a and b which
are vertices of C. We call P a C-path if P meets C exactly in its ends, and in
this case we call it also a-b path.

Theorem 1. Let C be an induced cycle in a signed graph G. For some two
its vertices a,b, suppose that there is a C-path P between a and b. Together
with two pathes Py, P, between a and b in C, P forms two induced cycles Cy
and Cy. If C is an odd induced cycle, then one of Cy and C3 is odd , and the
other is even. On the other hand, if C is even, both of C; and Ca are even or
odd.

Proof. Now a parity of a signed path is defined to be the parity of the
numbers of positive edges. Firstly, suppose that C is an odd induced cycle.
Then, the parity of one of two pathes P; and P, is odd and the parity of the
other is even. We may assume that P; is an odd path. Then P; is an even
path. If P is an odd(resp. even) path, then C; is an even(resp. odd) cycle and
C; is an odd(resp. even) cycle.

Next, suppose that C is an even induced cycle. Then both P, and P; are
odd pathes or even pathes. Suppose that P, and P; are odd pathes. If P is
an odd(resp. even) path, both C; and C; are even(resp. odd) induced cycles.
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When P, and P; are even pathes, if P is an odd(resp. even) path, both C; and
C> are odd(resp. even) induced cycles.

The following is evident.

Proposition 2. Let C be an induced cycle in a signed graph G with length
k. Take any vertez a of C. Let C' be the induced cycle obtained from C by
local switching at a. Then C' has the same parity as C and its length is k— 1.

Definition 1. For a given induced cycle C, take any C-path P. As in
Theorem 1, we can construct two cycles Cp,Ca2. In this case, we say that C
consists of Cy and C, and that C; and C; are contained in C. Assume that
C is even. If C1,C3 are odd, we say that C consists of odd cycles. If Cy,Ca
are even but they consist of odd cycles, we say also C consists of odd cycles.
If C;,C are even , C; consists of odd cycles and C3 consists of two cycles
Ca1, Caz which consist of odd cycles, we say also C consists of odd cycles and
so on.

Definition 2. Let C be an induced cycle in a signed graph.

We call C a fundamental odd cycle if the following two conditions are sat-
isfied. (1) Its parity is odd. (2) If C consists of two induced cycles C1, C2 and
C, is odd, then the even cycle Cz does not consists of odd cycles. We call C
a fundamental even cycle if the following tree conditions are satisfied. (1) Its
parity is even.(2) It does not consists of odd cycles. (3) For any vertices a,b of
C, there is no a — b path whose length is shoter than the lengthes of two a — b
pathes on C. The following is evident.

2. Local swithching of signed induced cycles

Lemma 3. Let C be an induced cycle in a signed graph G with length k.
Take a vertex d in the outside of C which is adjacent to vertices a,b of C,
where ab is one of the edges of C. Moreover suppose there is no other vertez of
C which is adjacent to d. Let C' be the induced cycle obtained from C by local
switching at d. Then C' has the same parity as C and its length is k + 1.

Let C be a fundamental even cycle in a signed graph G. Take a vertex d in
the oudside of C. Assume that the vertex v is adjacent to some vertices of C.
The following three cases may occur. (1) There is an edge ab of C' and vertices
of C which are adjacent to v are just a,b. As C is a fundamental even cycle,
there is no pathes which link the vertex v and any other vertice of C'. (2) Edges
ab and be are contained in C and vertices of C which are adjacent to v are just
a,cor (3) a,b,c. Since C is a fundamental cycle, we have no other cases. When
the case (1) occurs, by local switching at d, we get an even cycle C; with length
one longer than that of C. If there is a C-path which links a and b and makes
a fundamental odd cycles with a — b pathes in C, then C consists of odd cycles
and is not a fundamental even cycle. Thus, C; is a fundamental even cycle.
For case (2), by local switching at v, we get two fundamental even cycle abca
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and the cycle consist of the edge ac and the other a — ¢ path in C. The length
of the latter is one less than that of C. In the case (3), suppose that C' consists
of the path abc and the other a — ¢ path P. By local switching at d, we obtain
a fundamental even cycle C; which consists of the edge ac and the path P and
has the length one less than that of C, or a even cycle Ca which consists of
the path adc and the path P. As C is a fundamental even cycle, C; is also a
fundamental even cycle with the same length as that of C.
Summing up, we have

Lemma 4. Let C be a fundamental even cycle in a signed graph G.

(1) Take any vertez a in C. By local switching at a, we get a fundamental
even cycle with lengh one less than that of C. Take a vertez v outside C which
is adjacent to some vertices in C. Then the following two cases occur.

(2) Edges ab and bc are contained in C and vertices of C which are adjacent
to the vertz v are just a,c or a,b,c. By local swithing at v, we get a fundamental
even cycle with lengh one less than that of C or with the same length as that
of C.

(8) There is an edge ab of C and vertices of C which are adjacent to v are
just a,b. By local switching at d, we get an even induced cycle Cy with length
one longer than that of C. This C; may consists of odd cycles. Otherwise, C}
is a fundamental even cycle.

Let C be a fundamental odd cycle in a signed graph G. Take a vertex d
in the outside of C. Assume that the vertex v is adjacent to vertices a,b of C
and that ab is an edge of C. As C is a fundamental odd cycle, there are no
pathes which link the vertex v with any other vertices of C, By local swithing
at v, we obtain a fundamental odd cycle with lengh one longer than that of
C. Assume only two vertices a,b of C are adjacent to v and that a,b are not
adjacent. Suppose that signs of the edges av and bv are positive. Then, one of
a — b path P in C is an even path. The path adb and P make an even cycle.
By local switching at v, we get an fundamental even cycle with length less than
that of C. Let a1, az,---,ax be vertices of C which are adjacent to v. We may
assume that these vertices are on C in this order and that signs of the edges
vay,vag,---,vay are positive. We may also suppose that all pathes a; — a2
path, az — a3 path, --- ax_1 — ai path are even pathes. By local switching at
v, we get at least k — 1 fundamental even cycles with length less than that of

C.

Lemma 5. Let C be a fundamental odd cycle in a signed graph G.

(1) Take any vertez a in C. By local switching at a, we get a fundamental
odd cycle with lengh one less than that of C.

Take a vertex v outside C which is adjacent to some vertices in C. Then
the following two cases occur.

(2) There is an edge ab of C and vertices of C which are adjacent to v are
just a,b. By local switching at d, we get a fundamental odd cycle Cy with length
one longer than that of C.
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(8) The vertez v is adjacent to some vertices in C any two of which are not
adjacent. By local swithing at v, we obtain at least one fundamental even cycle
with length less than that of C.

Theorem 6. We list some facts about transforming cycles into lines by a
sequence of local switichings.

(1) A cycle with length longer than three is not able to be transformed into
a line by a local switching. Only an odd cycle with length three can be torans-
formed into a line by a local switching.

(2) A fundamental even cycle C can not be transformed into line by a se-
quence of local switchings when it remains as an even cycle. If there is a vertex
v outside C and it is adjacent to only two vertices a,b in C where ab is an
edge of C, by local switching at v, we obtain an even cycle with length one
longer than that of C. Moreover if this cycle consisits of odd cycles, it may be
trannsformed into a line by a sequence of local switchings.

(8) The outside vertez v is adjacent to some vertices in C any two of which
are not adjacent. Scince by local switching at v, we obtain some fundamental
even cycles, we must avoid this local switching in order to transform the cycle
into a line.

Example 1. Let G = (V, E) be a signed graph with V = {a1, a2,a3,a4,a5}
and Bt = {a,a,, aza3,a3a4,a3a5,04a, }, E~ = {a1a5}. Aneven cycle a;azazaqa,
consists of two odd cycles ajazazasa; and ayasazasa;. As a; and a4 are re-
garded inner vertices of the even cycle, by local switching at a3 or a4, we obtain
an even 3-cycle. On the other hand, by local switching at as, we get three odd
3-cycles. By local switching with respect to (a1,J = {az2}), we get an even
3-cycle, because it is regarded as local switching at an inner vertex of an even
cycle. On the other hand, by local switching with respect to (a;, J = {a2, a4}),
we obtain odd 3-cycles.
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Abstract

In his master thesis [8], the first author has studied the RSA
signatures with several types of redundancy functions. In this pa-
per, we shall introduce these redundancy functions and investigate
arithmetic properties of these redundancy functions and the signa-
tures with these redundancy functions.

2000 Mathematics Subject Classification. Primary 11N45; Sec-
ondary 11A07, 94A62

Introduction

The purpose of this paper is to generalize the digital signatures with redun-
dancy functions introduced in [8] and investigate arithmetic properties of these
redundancy functions and the signatures with these redundancy functions.

Firstly, we briefly describe the RSA signature scheme. Let n be the product
of randomly chosen distinct large primes p and q. Then the message space
and the cipher text space for the RSA public-key encryption scheme are both
Z /nZ: The RSA signature scheme can be created by reversing the roles of the
encryption and the decryption as follows.

We denote Alice’s public key and secret key by e and d, respectively. Note
that the public key and the secret key satisfy ed = 1 mod ¢(n). Here ¢ is the
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Euler’s @ function and satisfies |(Z/nZ)*| = ¢(n).
Alice can sign any message m € (Z/nZ)* by applying her secret key d

s=m? € (Z/nZ)*.
Bob can check the signature by applying Alice’s public key e, i.e.,
s¢ = m? =m mod n.

We will explain the reason why this is a signature. By raising the randomly
looking number to the power e, one may recover the plain text m. Hence s
can be considered to the eth root of m and computing eth roots of an integer
m mod n without the knowledge of d is infeasible. Since Alice is the only one
who knows d, Bob can verify that Alice must have computed s and thereby
signed m. We note that any one who knows Alice’s Public key (n, e) can also
verify this signature s.

Though the original idea of the RSA signature is the one described as above,
there are a number of possible attacks. We explain here some of those attacks.

Firstly, we shall explain the ezistential forgery. Oscar chooses s € (Z/nZ )
and claims that s is a RSA signature of Alice. If m = s¢ mod n is a meaningful
text, one believes that Alice has signed m. This is called an ezistential forgery.

Another attack comes from the fact RSA is multiplicative. Let my,ms €
(Z/nZ)* and their signatures are s; = m{ mod n and s; = mg mod n. Put
m = myms mod n. Then

s = 5180 = mimg = (mymy)? = m? mod n.

Thus s is the signature of the message m. This is called a multiplicative attack.
There are two known methods to protect from these attacks. The first one is
to use the hash function h and the second one is to use the redundancy function

R:Z/nZ — Z/nZ.

In order to protect from the multiplicative attack, it is important that the
redundancy function R is not multiplicative. Moreover it should be expected
R satisfies the following property.

For any z,y € Z/nZ,

R(z)R(y) # R(z) mod n for any z € Z/nZ.

In [1] 11.2.5, a redundancy function based on the binary expansion of z (0<
z < n) was proposed. It seems that two attacks described above no longer
work for the signature with this redundancy function, but we could not verify

it mathematically.
Thus, instead of these usual redundancy functions R : Z/nZ — Z/nZ,

the first author introduced other redundancy functions

R:Z/nZ — Z/n*Z
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and studied the security of the signatures with these new redundancy functions.
In the following, we shall introduce these redundancy functions and study the
arithmetic properties of these redundancy functions.

1. Redundancy functions R; and arithmetical
properties

In the following, we shall introduce several redundancy functions and inves-
tigate the fundamental properties of these redundancy functions.
Let k£ be any fixed natural number > 2. - We shall introduce a redundancy

function Ry : {0,1,---,n —1} = {0,1,---,n* — 1} by putting
k
———
Ri:ww— Ry(w) =wowo---ow.

Here, for any 0 < w < n, we denote wn*~! +wn*2 + ... + w mod n* by
wowo---ow.

In the following, we shall consider the conditions of (z,y) when Ry (z) Ry (y) =
Ry, (z) for some z. Firstly, we shall show it is rare to occur Ra(z)Ra(y) = Ra(2).
Finally, we shall show that Ri(z)Ri(y) # Ri(2) for any k > 3.

Consider the case when n is any natural number and k = 2. It is obvious
that (0o 0)(zoz) =000 for any z € Z/nZ. Thus, in the following, we shall
restrict ourselves to non-trivial cases 0 < z,y < n.

We call
(z,y) (1 <=z,y<n)has the double structure

if
(zoz)(yoy) =z0z modn? for some z.

Then we have the following fundamental lemma.

Lemma 1. (z,y) has the double structure if and only if

z-y=an+n—a, with somea (0<a<n).

Proof. Put z - y=an+b (0<a,b<n). Then we have

(zn+z)(yn+y) = zy(n®>+2n+1)

(an +b)(n® +2n +1)
(an + b)(2n + 1) mod n?
(a+2b)n+b mod n®.

11
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Then

(z,y) has the double structure <= a+2b=b modn
< a+b=0 modn.

Since 0 < a + b < 2n — 2, we have
nl(a+b) <= a+b=n.
Thus we have shown

(z,y) has the double structure <= a+b=mn.

Thus we have completed the proof.

Let G be the multiplicative group of residues modulo n — 1, i.e.,
(Z/(n —1)Z)*. If any z with 1 < z < n satisfies z|n, then we see that
z-(n/zr) =n =1mod (n—1). Hence we can define a subset H of G by putting

H={zmodn|1<z<n with z|n}.

We note that |G| = ¢(n—1) and |H| = d(n)—1, where ¢ is the Euler’s function
and d is the divisor function.

Lemma 2. (z,y) has the double structure if and only if

z fnand y =z mod (n—1).

Proof. From Lemma 1, we know that (z,y) has the double structure if and
onlyifzy =an+n—awith0 < a <n. Weseean+n —a = a(n—1) +
n = 1 mod (n — 1). Thus we know if (z,y) has the double structure, then
y = 27! mod (n — 1). Moreover a # 0 implies z | n.

Conversely, assume ¢ € G—H and put y = 27! mod (n—1) with0 < y < n.
Then one can write

zy=bn—1)+1=bm—-b+1=(b-1)n+n—(b—1) withsome0<b<n.

From the assumption z & H, we see  } n, i.e., we have b # 0,1. Thus we have
0 < b—1 < n, which means that (z,y) has the double structure. Hence we
have shown

(z,y) has the double structure
< z€G-H andy=z"!mod (n—-1)
< <z fnand y=z! mod (n-1).

Let K (n) be the number of the pairs (z,y) with 0 < z,y < n which have the
double structure. Then, from the above lemmas, K (n) equals to the number of



Maps R : Z/nZ—Z/n*Z and Some Cryptographic Applications 11

the elements contained in the set G — H. Hence we have shown the following
theorem.

Theorem 1.
K(n)=¢(n—1)—d(n) +1.

We note that we can estimate the security of the RSA signature with the
redundancy function R, from the multiplicative attack by estimating the ratio
of the following numbers:

the number of the pairs (z,y) which has the double structure  K(n)
the number of all the pairs (z,y) T (n-1)2"

In the following, we shall show

K(n)
(n—1)?

—» 0, asn — oo.

More precisely, we shall show

log(K (n))

1 .
log(n—l)——) , asn — 00

°

Firstly, we have to estimate ¢(n — 1). It is obvious that for any n > 2,
©(n —1) < n — 1. Moreover one can easily show the following:

Lemma 3. (Hatalova and T. Salat [3]) For any n > 4,

log 2 n—1
X
2 log(n — 1)

<pn-1)<n-1

Proposition 1. K(n) satisfies the following inequality

(n—1)log2
n — og

Proof. Firstly we note the smaller one of the divisor a of n must satisfies
the inequality a < v/n. Thus we know

d(n) —1 < 2y/n.

(n—1)log2

tlogn = 1) > 2vn  (n > 11688).

Next, we shall show
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We define a function f(n) by putting
_(n—-1)log2
f(n) = 4log(n — 1)

_ (n—1)log2 —8/nlog(n —1)
- 4log(n — 1) ’

2vn

Put
g(n) = (n —1)log2 — 8y/nlog(n — 1).

Then
_4log(n—1) 8yn
vn n—1

- log2>0 (n— 00).

g(n) = log2

Now we can easily verify f(11687) = —0.00553- -, f(11688) = 0.00173-- - and
f'(n) > 0 for n > 11688. Thus we have completed the proof.

From this proposition, for any n > 11688, we have
log(K (n)) > log(n — 1) — loglog(n — 1) + loglog 2 — log 4.

Since it is obvious that log(K(n)) < log(n — 1), we have shown the security of
the RSA signatures with this redundancy function R against the multiplicative
attack as follows.

Theorem 2. . ' K(n) )
. ogK(n) _ 1
A log(n —1)2 ~ 2’

Finally we shall consider the cases k > 2. Assume 0 < z,y < n satisfies
Rit1(z)Ri41(y) = Riq1(2) mod n*t! for some z (0 < z < n).
Then, from the fact Rxy1(z) = Ri(z) mod nF, (z,y) also satisfies
Ri(z)Ri(y) = Ri(z) mod n*.
Now we shall show the following lemma.
Lemma 4. For any 0 < z,y,z < n, we have

Rs(z)R3(y) # Rs(z) mod n®.
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Proof. Assume, on the contrary
Rs3(z)Rs(y) = R3(z) mod n® for some z.

Then

Ry(z)Ra(y) = Ro(2) mod n’.
Hence, from Lemma 1, z,y satisfies zy = an +n — a with some a (0 < a < n).
Therefore

R3(z)R3(y) (an+n—a)(n®+n+1)2 = (an+n —a)(3n® +2n + 1)
m—a+n2+(n—an+n—a
(

n—a+1)o(n—a)o(n—a) mod n.

We see that (n —a+1)o (n—a)o (n—a) # zozoz, which completes the proof.

From this lemma and the relations of Ry and Ry,1 described as above, we
see .
Ri(z)Ri(y) # Ry (2) mod n* for any k > 3.

Thus we have shown:

Theorem 3.

Ri(z)Ri(y) # Ri(z) mod n*, for any k > 3.

Remark 1. If we use the RSA signature with the redundancy function
Rs, it takes about 27 times to generate and verify this signature compared to
the usual signature. But we think this RSA signature is of interest, because,
from this theorem, the multiplicative attack can no longer be applied to this
signature.

2. On the structure of K(n) and H

In this section, we shall consider the arithmetic properties of K(n) and H
more precisely. Though we don’t use this property later, we think it is worth
for studying the structure of H here. Firstly, we shall consider the special case
n = 27. Here we shall give a table of the numbers K (2") for small .
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R 740%)
2 9 0
3 19 3
4 225 4
5 961 25
6 3969 30
7 16129 119
8 65025 120
9 261121 423

‘ 10 1046529 590
11 4190209 1925
12| 16769025 1716
13| 67092481 8177
14| 268402689 | 10570
15 | 1073676280 | 26985
16 | 4294836225 | 32752
17 17179607041 131053

Table 1: Calculations of the number K (2") using UBASIC86

From this table, we see r|K(2") for small r. Actually, we can show K(2")
has the following property.
We shall define the maps o and o~ ! on K(2") by putting

[z 2z 1<z<2r -1
T lz—2x-2")+1 (2127 -1)
yn——)g- (y=2k,keN)

—1
y.—>y—2——+2r—1 (y=2k+1,keN)

Since
o(z)o " (y) = zy,

we can define a map & on K(27), by putting

& : (z,y) — (0(z),07(¥))-
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Example of & for the case r = 6.

o
(000101, 100110) — (001010,010011)
o/t O
(100010, 001101) (010100, 101001)
RN & N

(010001, 011010) <+ (101000, 110100)

In [8], the first author proved this map has the order r using only the
elementary argument, i.e., he proved that,.for any 0 < d(1) < d(2) <r,

54V ((z,9)) # 5P ((z,y))

and
5" ((z,y)) = (z,y)-
In this paper, we shall give another proof based on the structure of the
group G. From the definition, we see that, for any n = 27,

H = {& mod n(=2")|1 <z <n and z|n} = {1,2,4,...,2" " mod 27}.

Thus H is the subgroup (2) of G = (Z/nZ)* for this case n = 2". We can
verify the map & on K (2") is nothing but dividing the set G — H into the cossets
of H in G. Since |H|(= the order of 2 mod 27) = r, we have shown r|K(2").

Let £ be a prime. Consider the case n = ¢". Then, in the same way as
above, we see H = (£) < G and |H|(= the order of £ mod ¢") =r and r|K(£").

Conversely, we shall show that H < G implies n = ¢" for some prime
£. Assume H < G. Let £ be the smallest prime which divides n. From the
condition £|n, we see £ mod n € H. The assumption H < G implies any powers
of £ mod n must be contained in H. If n is not the power of primes, then there
exist r > 0 with £"|n but £™t! / n and £"+! < n. Thus £"*! mod n ¢ H, which
is the contradiction.

Therefore we have shown the following theorem.

Theorem 4. With the above notation, .
H < G < n ={" with some prime £.

Moreover, we have r|K (7).

3. Other redundancy functions

In the following, we shall investigate other redundancy functions. Let ¢ be a
fixed non-negative integer. We define a redundancy function R(;.1) by putting
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Rgoyy : {0,1,---,n -1} = {0,1,---,n* -1} , w = Rpory(w) =t-wow.
Here we denote twn + w mod n? by tw o w. We shall call
(z,y) has the (to 1) structure, if

Rt01) (%) Rt01)(y) = Ryto1)(2) mod n? for some z (0 < z < n).
Let K(:01)(n) be the number of the elements (z,y) which have the (t o 1)
structure. Let us denote zy = an + b with 0 < a,b < n, then we see

R(t01)(2) R(to1) (y) = (an 4 )(2tn + 1) = (a + 2tb)n + b mod n?.

Thus
(z,y) has the (t o 1) structure <= a + tb =0 mod n.

Since 0 < a,b < n, we see

a+th=0modn < a+th=n,2n,...,tn.

Thus we can estimate
K(tol)(n) <tin

and log(K .
lim sup Mn_))_ < = for any fixed t.
n— 00 lOg(n - 1)2 2
We note that the redundancy function R, investigated in Section 1 is the special
case R(101). In general, we have the following weak but generalized results.

Theorem 5. With the above notation, we have

i log(K (t01)(n))
imsup —————-=~

<
n—o00 log(n - 1)2 -

1
2’

In [8], the first author investigated the cases t = 2 and 3 more precisely and’
conjectured that, for any odd n,

log(Kto
M:l for the cases ¢t = 2 and 3.

n—oo log(n — 1)2 2

In the later, we shall investigate these results more precisely.
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Next, we shall consider the case ¢t = —1. Since we defined Rt01) only for
non-negative ¢, we shall modify the definition of the map R(_;01) as follows

Ri1o1) : {l,---,n—1} > {1,---,n* -1}, w R(_101)(w) = (n — w) ow.
We call (z,y) has the (=10 1) structure, if
(n—2z)oz)((n—y)oy) =(n—2)0zmodn® for some z (0 < z < n).
We have
(n=z)oz)((n—y)oy) =zy(—2n+1) = (a — 2b)n + b mod n°.

Combining this congruence relation and the condition 0 < a,b < n, we see that
(z,y) has the (—1 o0 1) structure if and only if

a—b=0modn <= a=>.
Therefore we have
K(_101)(n) = #{(z,y)|zy =a(n+1) 1 < a <n)}.

Put d = (z,n +1). Then 1 < d < n + 1 and, for any d, z,y can be written
z =dzg and y = ((n + 1)/d)yo with unique z and yg, which satisfy

(zo,(n+1)/d) =1and 0<yg < d.
Thus we have

K("lol)(n) = Z (#{«’EO I 1 <xo < P’;—_l) (ZL'(), n—-'d__l) = 1})

d|(n+1), 1<d<n+1
x (#{yoll < yo < d})

- <p<"$1)(d—1)—n

d|(n+1)
n+1 n+1
= 3 o(H) - 3 () -
d d
d|(n+1) d|(n+1)

= (pxi)(n+1)—2n—1.

Here i is the arithmetic function such that i(k) = k for any natural number k,
and * is the convolution of the arithmetic functions ¢ and i. Using the obvious
relation ¢(z)y < zy, we can roughly estimate

K(_101)(n) < Z pn+1)—2n-1
d|(n+1)
dn+1)pn+1)—2n-1

2vn+1(n+1)—-2n—-1.

Il

IA
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Hence we can easily show the following theorem.

Theorem 6. With the above notation, we have

log(K(—_10
Jim sup og( (-1 1)(”))

3
_—
naoo log(n—1)2 — 4

Next, we shall investigate the case ¢ = 0. In the same way as above, we

denote
Koo1)(N) = #{(z,y) | (00z)(00y) = (002)}.

Writing zy = an + b with 0 < a,b < n, we see (z,y) has the (00 1) structure if
and only if a = 0. Thus we see

Kooy(n) = #{zlzy=>5(1<b<n)}

= Y d®)

1<b<n
= nlogn + (2y — I)n + O(v/n).

Here v is the Euler’s constant defined by

1 1
v = lim (1+—+~--+E—logn).

n—roo 2

Therefore we have the following consequence:

Theorem 7.
log K(ooy(n) _ 1

oo log(n — 1)? 2

Remark 2. Let (n,e) be the public key system of Alice. Then Alice can
divide the plain text into x with z < /n. Then Alice can define the redundancy
function R of usual bit length by putting

R:z— 0oz modn.

Thus, substituting n to /n in Theorem 7, we can estimate the security of this
redundancy function R from the multiplicative attack.

Finally, we will study the redundancy function K(;.1)(n) again. Write 2y =
an + b with 0 < a,b < n. Then we know that (z,y) has the (2 o 1) structure if
and only if a4 2b = n or 2n. In the following, we shall estimate K(201)(n) as
follows.
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(I) Firstly, we shall treat the case a + 2b = n. Then we have

(2z)(2y) = 4(an+1b)
= 4dan+2(n—a)
= 2(2n-1a+(2n-1)+1
= 1mod (2n —1).

Wenotethat 0 <2n—1—-2z, 2n—1—2y <2n—1and
(2n —1-2z)(2n — 1 - 2y) =1 mod (2n — 1).

Since 2z is even and 2n — 1 — 2z is odd, we see the number of even numbers
0 < 2z < 2n — 1 with (2z,2n — 1) = 1 equals to the number of odd numbers
0<2y+1<2n+ 1 with (2y+1,2n + 1) = 1. Thus the number of (z,y) with
(22)(2y) =1 mod (2n — 1) satisfies

#1(z.9) | (26)(29) =1 mod (n - 1} < 2221,

(IT) Next, we shall treat the case a + 2b = 2n. Then we have

2(an +b)

2an + (2n — a)
2n-1a+2n-1)+1
1 mod (2n — 1).

2zy

1!

I

Thus, in the same way as in (I), the number of the pairs (z,y) with 2zy =
1 mod (2n — 1) satisfies

#{(@9) | o)y =1mod (2n— 1)} < 2EZY.

Thus we have shown K(301)(n) < ¢(2n — 1) and proved the following theo-
rem.

Theorem 8.

K(201)(n) < p(2n — 1) < 2(n — 1) for any n > 2.

Moreover, for any 0 < z < n, we may expect the inverse of 2z mod (2n — 1)
distributes uniformly in the interval 0 and 2n — 1. Thus we will give the
following conjecture:
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Conjecture.
. Kigon(n) 1
im ————% =—-.

Here we will give a table of the numbers K(z,1)(n) (n = 27) for small r
which supports this conjecture.

n=2"|p2n—1) | p(2n—1)/2 | Ki201)(n)
2 6 3 3
3 8 4 4
4 30 15 17
5 36 15 14
6 126 63 75
7 128 64 66
8 432 216 213
9 600 300 286
10 1936 968 999
11 1728 864 924
12 8190 4095 4093
13 10584 5292 5294
14 27000 13500 13699
15 32768 16384 16262
16 131070 65535 65661

Table 2: Calculations of K(3,1)(2") using UBASIC86

Remark 3. In [8], we have shown that K(s.1)(n) satisfies the analogous
results as above and formulated similar conjecture for any odd n.

4. Numerical data

In the following, we shall give the numerical data to generate and verify the
signature with the redundancy function Re. We used a text m of the bit length
7.39KB and used the Timing of Mathematica 4.1. In the following ”Normal”
is the time(second) which took to generate and verify the signature s of the
text m. "Redundancy” is the time(second) which took to generate and verify
the signature of the text m; = Rs(m). Let (n, e) be the RSA signature system
with ed = 1 mod ¢(n?). Then We know the complexity to sign the normal
text m is O((logn)? - logd), while the complexity to sign the text with Ry is
O((log(n?))? - logd). Thus we can expect the time to generate and verify the
signature with the redundancy function Ry takes about 4 ~ 8 times as the
usual one. In practice, it took about 2 ~ 3 times as follows.
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The bit length Generation Verification

of p and ¢ Normal Redundancy Normal Redundancy
106 0.312(sec.) 0.516 0.313(sec.) 0.469
212 0.531 1.219 0.562 1.266
318 0.781 2.172 0.781 2.156
425 1.156 3.359 1.172 3.328

Table 3: Practical time to generate and verify, using Mathematica 4.1
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Abstract

We give a geometrical formulation for the classical mechanics in a non-
abelian gauge field on a Riemannian manifold. The formulation is based
on the reduction procedure associated to the non-abelian symmetry in
the principal bundle which describes the gauge field. In the formulation
we present explicitly the equation of the motion (called Wong’s equation)
of a charged particle by using a local coordinate system.

2000 Mathematics Subject Classification. 53D20

Introduction

Let (M, m) be an n dimensional smooth Riemannian manifold without bound-
ary, and let 7 : P — M be a principal G-bundle, where G is a compact Lie
group with g its Lie algebra. Suppose P is endowed with a connection V. Take
an open covering {U,} of M with {pas} being the transition functions of P.
Then the curvature of V is regarded as a family of g-valued two forms O
defined on U, which satisfies

05 = Ad(p34)0a 0.1)

on U, NUs(# ¢), where Ad(-) denotes the adjoint action of G on g. Such a
family of g-valued two forms {©a} on M satisfying (0.1) is called a gauge field.
When G is the abelian group U(1), ©, = ©4 holds, and accordingly we have
a two-form © globally defined on M, which is called a magnetic field.

In the previous papers [10], [11], [12] we have considered the case where
G = U(1), namely the classical and the quantum mechanics in magnetic fields,
and clarified some relations between the classical orbits and the energy levels
of the Schrodinger operator. In those papers the geometrical formulation for
the magnetic dynamical system based on the reduction procedure associated

*This research is partially supported by Grant-in-Aid for Scientific Research (C)
(No.14540210) of JSPS.
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to the U(1)-symmetry of the system plays key role in the investigations. In
the present article we generalize the formulation for the magnetic systems to
the case of a non-abelian compact Lie group G, which describe the motion of
a (classical) particle in a non-abelian gauge field.

Various mathematical formulations of the equation of classical motion of a
particle in the (non-abelian) gauge field (or the Yang-Mills field) have been pre-
sented by Kerner [5], Guillemin-Sternberg [3], [4], Kummer [9] and so on. (See
also Montgomery [14].) We give in this article a slightly different formulation
based on the reduction procedure for the symplectic G-action on the cotangent
bundle T* P, and present the equation of the motion (called Wong’s equation)
explicitly by using a local coordinate system.

The organization of the article is as follows. In §1 we introduce the so-called
Kaluza-Klein metric on P associated to the connection V, and the metrics on
M and G. Thus we get the Hamiltonian system (T*P,Qp, H) of geodesic flow
on T*P. Then in §2 because of the G-invariance the system (T*P,Qp, H ) is
reduced to (P,,Q,, H,) according to the Marsden-Weinstein reduction proce-
dure (see [13], [1]). We clarify in §3 the reduced phase space P, is the fiber
bundle over T*M with the fiber being a co-adjoint orbit through g in g*. In
§4 we show that the reduced system (P,,Q,, H,) is realized as the subsystem
of (T*M,‘,ﬁ#,f[ﬂ), where the manifold M, is a union of the spaces of (ex-
ternal) configurations and of internal degrees of freedom, and the symplectic
structure ﬁy is derived explicitly from the connection form (or the gauge po-
tential) of V. Section 5 gives a explicit expression of the flow or the equation of
motion (called Wong’s equation) in the system (T™*M,,, ﬁ#, H ) by using local
coordinates. Finally in §6 we consider the Hopf bundle over the quaternionic
projective space, which is a typical example in non-abelian gauge theory.

1 Kaluza-Klein metric on the principal bundle

Let w : P — M be a principal G-bundle over an n-dimensional Riemannian
manifold (M, m) without boundary, where G is an r-dimensional compact Lie
group. Suppose P is endowed with a connection €7, i.e., the direct decomposi-
tion of each tangent space T,,P (u € P) as

T.P=H,®V,, (1.1)

where V, is tangent to the fiber, and H, is linearly isomorphic with T5 () M
through .|, and satisfies

Hyg = Rgu(H.,) (1.2)

for the right action Ry of g € G on P (cf. [8]). Note that the tangent space
V., to the fiber is linearly isomorphic with g by the correspondence g 3 4
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AP == 4 (u-exptA)|s=o € Vu. Let us take an inner product (, ) on g = TeG (e

: the identity of G) which is invariant under the adjoint action of G (such inner
product induces a right- and left-invariant metric on G). Then, (, )4 induces the
inner product (, )y, on V, (u € P) as (AP, Bf)y, = (4,B)g (A,B€g). On
the other hand, we have the inner product (, )&, on H, from the metric m on
M such that 7, |g, is an isometry. Finally, we define an inner product m in each
T,P (u € P) by defining H,, and V, to be orthogonal each other. The metric
m on P (which is induced from the metric m on M, the Ad-invariant metric on
g, and the connection (1.1)) is called the Kaluza-Klein metric (cf. [5]). Note
that 7 is invariant under the G-action on P because of the Ad-invariance of
the metric of g and the property (1.2).

Let Qp = dwp be the standard symplectic structure on the cotangent
bundleT*P of P, where wp is called the canonical one form on T*P. We
have the natural Hamiltonian function H on T* P defined by the Kaluza-Klein
metric m. Thus, we have the Hamiltonian system (TP, Qp, H ), which is just
the system of geodesic flow on T*P generated by the Hamiltonian vector field
X induced from H, ie., i(X5)Qp = —dH, where i(X7z)Qp stands for the

H
interior product of X5 and Qp.

2 The momentum map and the reduction of the
system

The action p — p-g = R ,(p) (p € P, g € G) of G on P is naturally lifted to the
action R;_, := (Rg-1)* on T*P (so that R;_, : Ty P = T, P for each p € P),

and the actxon R’*_1 preserves wp (and accordmgly Qp) 1e R _iwWp = wp
holds for every g e G. (We call such action a symplectic action. ) Moreover, we

notice that the Hamiltonian H is also invariant under the action R;_l
A momentum map for the symplectic G-action is a map J : T™P —» g*

satisfying
(J(p), A) = (pu, AL) = i(ATP)wp (PET*P,pu €T P (e P)), (21)

for all A € g, where AT'F := %(R;(t)—l(p))hzo with g(t) = exp tA.

Lemma 2.1 (1) The momentum map J is surjective onto g*, and every 4 € g*

is a regular value of J.
(2) The momentum map J is Ad"-equivariant, i.e.,

Jo Ry =Ad*(g7})0J (2.2)

holds for g € G. Here we define Ad*(g) := (Ad(g™"))* (the adjoint of Ad(g™1) :

g—9)
(3) The momentum map J is invariant under the geodesic flow on T*P,

e, XgJ = 0 holds.
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Proof. (1) Note the definition (2.1) of J, we can easily derive the assertion
from the fact that the map g 3 A+~ AL € T, P is surjective.
(2) For p e TP, A € g we have

TR (B), A) = (Rya (), AL,) = (B Bymra(AL,).
Since
Rysi(AD,) = $(u gep(tA)g™limo

= %(u -exp(tAd(g)A))|t=0 = [Ad(g)A]fj,

we have
(J(R:-1(p)), A) = (pu, [Ad(9) Al = (J(p), Ad(g)A) = (Ad"(g7")J (p), A).

(3) For A € g define the function Ja on T*P as Ja(p) = (J(p),4) =
i(AT"P)wp. We show Xz Ja = 0. First note that the Lie derivative £ 4r+rwp =

d(E(AT"P)wp) 4+ i(ATP)dwp = 0 because G-action on T*P preserves wp. We
have

XgJa=XgG(ATP)wp) = (d@(ATPywp), X 5)
= —(i(ATP)dwp, X5) = (i(Xz)dwp, ATF)
= —(dH,ATF) =0.

Here note that G-action also preserves H. a

Now, we apply the reduction procedure associated to the momentum map
" J by Marsden and Weinstein. For p € g*, it follows from Lemma 2.1 that
J~1(p) is a (2n 4 r)-dimensional submanifold of T* P, which is invariant under
the geodesic flow. Let G, := {g € G|Ad*(g)p = p} C G, which is a closed
subgroup of G. Then, by virtue of Lemma 2.1,(2) G, preserves the submanifold
J~1(1), and the action of G, on J~!(u) is free. Hence the quotient set P, :=
J~1(n)/G, is a smooth manifold, and the natural projection

Tt I H(w) = Py
is a submersion. In this situation we have the following.

Proposition 2.2 The quotient manifold P, has a uniquely defined symplectic

form Q, with
W;Q” = i;QP,

where iy, : J~H(u) < T*P is the inclusion.
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Sketch of the proof. Note that the following facts: For p € T*P,

(i) T,(J = () = Ker(J,) = {X € T,(T*P)| p(X, ATP) = 0 for VA € g},
and

(i) Ty (T~ (1) /T (G - P) = Ty ) (P).
For X € T,(J1(p)), let [X] = mu.(X) be the associated equivalence class in
Tp(J (1)) /Tp(G, - p). Let us define Q, on P, as

Q(X)[Y]) =Qp(X,Y) (X, Y €T(J7 (W)

Here we can easily check that 2, is well-defined by the above fact (i) and that
Qp is invariant under the G ,-action. Moreover, we can check that (1, is closed
and non-degenerate. These properties are guaranteed by those of (p. O
The Hamiltonian H is G,-invariant, and accordingly induces the (Hamil-
tonian) function H, on P,. Thus, we have a reduced Hamiltonian system
(P, Q, H,), where dim P, = 2n +r — 7, (7, :=dimG,).
Let O, be the coadjoint orbit of y in g*, i.e.,

Ou = {Ad*(g9)u] g € G},
which is diffeomorphic with G/G,.. Then, we have the following.

Proposition 2.3 Suppose v is an element of O,. Then, the reduced Hamilto-
nian system (P,,Q,, H,) associated to v € g* is isomorphic with (P, 0, Hy).

Proof. Suppose v = Ad*(g)u for ¢ € G. Note that G, = G, by the
isomorphism G, > h — ghg~! € G,. By virtue of Lemma 2.1,(2), we have
the map R} : J~'(u) — J~'(v). Then, we can easily see that R} induces the

isomorphism of (P,,$,, H,) onto (P,,Q,,H,). O

3 Geometrical structure of the reduced space

We can define the surjective map ® . T*P — T* M associated to the connection
V on P as follows. Let p be a point in T*P with np(p) = u € P, w(u) =z € M,
where 7p : T*P — P is a natural projection. For a tangent vector X € T.M,
let X# be the horizontal lift of X relative to the connection V, i.e.,, X # belongs
to H, in (1.1) and 7. (X¥) = X. We define ®(p) € T; M as

(2(p), X) = (0, XF) (X €T:M).
Concerning the horizontal lifts we have X¥, = Ry (X#), and accordingly see
that ® is G-invariant, i.e., ®(R;-.(p)) = ®(p) as follows:
(B(R:-1(p)), X) = (R}-1(p), XE) = (0. XF) = (2(p), X)-

By virtue of the G-invariance (hence, the G-invariance) of ® we have the
surjective map @, : P, = T*M induced from &. The purpose of this subsection

is to show the following.
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Figure 1: Reduced space
Proposition 3.1 ®, : P, — T*M is a fiber space with the fiber being the
coadjoint orbit O, of p in g*.
We have the decomposition of T'¥ P associated to (1.1):
TP =H' oV},

where

HY {p € T*P| (p,X) = 0 for VX € H,},
Vi = {peTrP|(p,AF) = 0for VA € V,.}.

Note that dim H = r and dim V> = n. The following lemma is easily ob-
tained.

Lemma 3.2 (1) The map Jy := J|gs : HE — g* is a linear isomorphism.
(2) For v € g* let p, = J;1(v) € HL. Then,

J_I(I/) NT,P=p, + VuJ' ={p, +p"|p* € Vu‘l‘}.

(3) The map @y, = ®|,, v : J (W) NT;P — T; M is a bijection with
®,.,(py) =0.
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Proof. (1)It is obvious that J,, is linear and surjective. Suppose J(p) = J(p')
for p, p' € HL. Then, (p, AF) = (p', AF) for VA € g. On the other hand,
(p, X) = (p',X) =0 for VX € H,. Hence, (p,V) = (p',V) for VV € T, P, and
accordingly p = p’'

(2) is obvious.

(3) The surjectivity is obvious. Suppose ®(p) = ®(p') for p, p' € J}(v) N
T*P. Then, (p, X#) = (p/, X#) for VX € T, M. On the other hand, (p, AF) =
(p',APY = (v, A) for VA € g. Hence, (p,V) = (p',V) for VV € T,P, and
accordingly p = p' ‘ m]

Let u be a point in P with n(u) = z € M. We define the map %, of
T:M x O, to J~Y(u) as

Ty M x 0,3 (q,v) = Ry-i(2.5() + I, (1) € TL, PN T H (),

where g is an element of G satisfying v = Ad*(g)u. Here we can check by
noticing (2.2) and ®4(q) € V,;- that the image of ¥, belongs to J ~1(u) as
follows:

TR -1 (B75(a) + T () = SR (i () = Ad* (97w = .

If v = Ad*(g)p = Ad*(¢')u for g # ¢, then ¢’ = gh for some h € G,.
Therefore, we obtain the bijective map

T, M x 0, > [(U TipP) N I W]/ Gu
geG

from 1,. It is easily see that ¥, is bijective and satisfies ®, o ¥, (g,v) = q.
Thus it is shown that &, : P, — T*M is a fiber space with the fiber being the
coadjoint orbit ©,. Moreover, by taking a local section u = u(z) (zeUcCM)
of P we have a local triviality of P,:

T, :T*Ux 0, = &;1(T*V).

In particular, we have a local section s(q) (g € T*U) of the fiber space &, :
P, — T*M by

su(q) = ulg, ) = [855(0) + I (W)]: (3.1)
associated to a local section u(z) (z € U) of P. Thus we complete the proof of
O

Proposition 3.1.

4 Dynamical structure of the reduced system

Let 6 be the connection form on P of the connection V. The connection
form 6 is a g-valued one form satisfying (i) §(AF) = A for VA € g, and (ii)
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R0 = Ad(g~')8 for Vg € G. For p € g* we define the R-valued one form 6,
on P by
0u(X) = (1,0(X)) (X €T.P).

It is easy to see that 6§, is G,-invariant, i.e., R;0, = 0, for Vg € G,.. Let g,
be the Lie algebra of G,. Then we have

Lemma 4.1 df,(AP, X) = 0 holds for any A € g, and X € T, P.
Proof. We have
df, (AP, X) = (i(AP)d8,)(X) = (L4r0,)(X) — d(i(A7)6,)(X) =0

because 8, is G,-invariant and i(4F)f, = 0,,(A¥) = (u, A) = constant. ]

Let M, := P/G, be the quotient manifold by the G-action on P. By
noticing the above lemma the two form df,, can be regarded as that on M, as

df,([X],[Y]) :=db.(X,Y) (X,Y € T,P).
Now, we consider the cotangent bundle T*M,, with the twisted symplectic form
Q= Qg + 7y, (d6,), (4.1)
where ), is the canonical symplectic two form on T*M, and mpr, : T* M, —
M, is the projection.

Proposition 4.2 ([1, Theorem 4.3.8], [9, Theorem 3]) There exists a sym-

plectic embedding _
Xp - (P[MQM) — (T*Mmﬂu)’

that is, x, is an embedding satisfying X;ﬁu =0,
Proof. For each u € P let
(Vu)a :={p € TuP| (p, AY) = 0for VA € g,.} (C T P),

which can be identified with Ty M,, (¢ = 7'(u) € M, for the projection o
P — M,) because we have the linear isomorphism
Ry1: (Vi)u = (Vu)z‘][-g
for each g € G,. Thus we have T*M, = V,;-/G,.
Take p € T*P such that 7p(p) = u € P, i.e., p € T P. We define x,(p) =
Pu — (8,)u € T2P. Then we can easily see that (i) X.(p) belongs to V- (and
accordingly to (V,)&) if py € J71(u), and (ii) Xu(Rj-1(p)) = Rj-1(Xu(p))
for g € G,, i-e., Xu is Gu-equivariant. In fact, (i) is shown as (pu, AEY —
((0,)u, AP = (J(p), A) — (u, A) = 0. As (i) we have only to see the equality
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By = R:-1((6,)u), that s shown as (0,)ug(X) = Ri-s((6,)u)(X) = 0 for
VX € Hyyg and (0,)uq(AL,) = R ((04)u)(AL,) = (n, A) for VA€ g. Asa
result of (i) and (ii) X, induces the map x, : Pu(= J~'(n)/G,) = T*M,(=
V.-/G,). Tt is obvious that x,, is an injection.

Now, we will show that x;ﬁ# = Q. Let X be a vector in T,(T*P) (p €
T*P,wp(p) = u). Then, X is expressed as

X=X+X* with X € TLP, X* € T: P(= T,(T:P)).
Here X* belongs to V;t if X € T,J*(p) (Lemma 3.2,(2)). For two vector
fields X = X(p), Y = Y(p) on a neighborhood of po in J~*(p) we have

Wp(X,Y) = {X(wp,Y) = Y{wp,X) - (wp, [X,Y])}
= %{X(p, Y)-Y(p,X) - (p[X, Y]}
Put p'(= Xu(p)) = p — by, and we have
Qp(X,Y) = %{X(p',f’) -Y (@, X) - (p",[X—,ﬁ)}
+ %{X«)M,Y) —V(6,,X) — (0, K, Y]}

Noticing V.1 C (V)& we can regard X = X + X* as a vector in Ty (T*M,),
and see that the first term is nothing but Qaz, (X« ([X]), xu+([Y])). By noticing
[X,Y] = [X, Y] we see that the second term is just

8, (71, 0xu)+ ([X]), (mag, 0 x)« ([(Y]))- o

Next, we define the Riemannian metric m, on M, as follows. Put (V,)u :=
T.(G,, - u) for u € P, which is a subspace of V,,. Then we have the orthogonal
decomposition

TuP = Hu &) Vu - Hu. (&) (Hp,)u @ (Vu)‘u (42)
from (1.1) and the G-invariant metric on G, where (H,). is the orthogonal
compliment of (V) in V,. By identifying T,,M,, with H, & (H,). we obtain
the metric m, on T, M,.

Let H, ., be the Hamiltonian function on T*M,, naturally induced from the
metric m,. Then,

Lemma 4.3 H, = X;I::IH +||ull2., where || -||g is the naturally induced norm
from the inner product in g.

Proof. For p € T*P N J~!(u) we have p = X.(p) + (6,) with xu(p) € Vi
and (8,,), € Hi. Since V;- and H are orthogonal each other, we have

Hu() = 1% @I + 10)ull® = Hu (i (D) + 160)ull”-
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TP J g*
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/ Tlncl‘
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7TM” Xp
T M, ~— T*M, + P,(=J ' (1)/G,)
| / 3,
M e T*M

Figure 2: Reduction procedure

Note that (8,).(AF) = (u, A) for VA € g, and we have ||(0,)ull = llpllg-- O

As a consequence, we have the following (cf. Figure 2).

Proposition 4.4 The reduced Hamiltonian system (P,,Q,, H,) is regarded as
a Hamiltonian subsystem of (IT'*M,,, Q JH w)

Let X, be the Hamiltonian vector field on P, associated to Hy, that is,
i(X,)Q, = —dH,. The flow of X, is regarded as embedded Hamiltonian flow
in (T*M,, Q ", u), and represents the motion of a classical particle of “charge”
u in the gauge field given by the connection V. The (external) configuration
space of the system is the manifold M and the fiber of M, — M is the space
of internal degrees of freedom.

5 Expressions in local coordinate systems

5.1 Basic formulas
Let {Yo} = {Ya, Y5} = {Y{,.. ! .., Y!"} be the orthonormal basis

] r yLrg410
of g =m®@g, w1th {va}, {Y5'} l;emé the ba31s of m and g, respectively,
where g, is the Lie algebra of G Note that dim G, =r —ri(=r,). We have
coordinates y = (v',y") = (¥'%, ..,y""1 TRAE R y”’) in a neighborhood V

of the identity (y = 0) of G by

11y nri+1

Y RRERY ]

IIT’)

y=@w"...y

™ r
> g:exp(Zy’aY;) exp( Z y”ﬁYﬁ”).
a=1

B=r1+1
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By virtue of the local triviality of the bundle P we take a local coordinate
(z,y*) e UxV (U C M,V C Q) of P. For the basis {Y,} of g we have the
associated basis {Y.X'} of V,,, which is expressed as

r

0
Yy (z,y) = a; Fg(y)w (5.1)

with T2(0) = 62. Let (z%,y%;&,na) the local canonical coordinates of T*P
Then, the momentum map J is represented as

T

Jayiem =3 (X M) v ea, (52)

a=1 p=1

where {Y1,...,Y"} is the dual basis of g* associated to {Y4}.
We remark that I'(y) := (I(y)) in (5.1) is non-singular near y = 0 because
I'3(0) = 68. Let A(y) = (A2(y)) be the inverse matrix of I'(y). Then, the

following is easy to see.
Lemma 5.1 (1) If1<a <7, r +1<k<r, then we have
Ii(y) = AL(y) =0, (5.3)

| o | M) | O
F = 3 A )
) [ Ia1(y) | Ta(y) } = [ Ao (y I A (y) }

(2) If r1 + 1 < k <r, then we have
I(y,0) = A4(y',0) =6y, e, Da(y,0)=Aa(y',0)=E.  (54)

i.e.,

and ar” dAY
ay,ﬁ( ) - ay,z (yla 0) =0. (55)

Let C*, be the structure constants of g with respect to the basis {Ya} =
{Y},Y)'}, 1., [Ya,Yg] = X, CagYs. Then, the following formulas concerning

the functions ['§(y) and A§(y) are derived from the fact that {Y.F(y)} is a
family of left-invariant vector fields on G.

Lemma 5.2

or;
(g ~Th 35) = Sl (55)
OA5  OA” .
Byf 6yﬁ ZAZ‘CW (5.7)

Proof. The first formula is obtained from the relation [Y, V7S] = 3, C2,Yy -
The second is derived from the first by noticing AT’ = E. O
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5.2 Kaluza-Klein metric and the system of geodesic flow
on TP

Now let us consider the connection form 6 of the connection V. Noticing

6(AF) = A for VA € g, we put

Z(ZQazydz +2Aﬁ (y)dy ) (5.8)
a=1
Note that the property R;6 = Ad(g~')8 (9 € G), and we put for G 3 g
(yl; R yr)

s

Ad(g™)Ya=)_ AW)Ys (a=1,...,7). (5.9)
B=1
Then, we have the following.
Lemma 5.3 Put 0%(z) := 6%(z,0), and we have
03 (z,y) = ZAﬁ(yB'B ) (i=1,...,n;a=1,...,1), (5.10)
pB=1
where Aj(y) satisfies
0AY

8y5 = - ANC AL with AF(0) =43, (5.11)

and accordingly

By’Y = —ZAﬂcﬁn . (5.12)

Proof. By virtue of the property:

o (- = Ad(g™)65 (5

5 )

we get (5.10). The equations (5.11) is obtained by differentiate the formula
Ad(g(t) ™ )Ya = Y AS(y(1)Ys
B=1

with respect to t for g(t) = g - exp(tY5). a
From (5.8) we see that the horizontal space Hy in TuP (v = (z,y)) is
generated by the vectors

X¥(z,y) = (:cy)aﬁ (i=1,...,n).
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The Kaluza-Klein metric m on P is defined by
x#, xF)=my, XFEYD)=0, (YJ,Y5)=dap,

and is represented by

~ o 0

s = (g —ax,.) =i+ 3008 2,005 @10, \
- 0

Mie = (Baﬂ " Oy

Map = (6y ’8y’3) ZM W)A5()

) ze’ 2,ALW), >

7

As a consequence, we get the Hamiltonian system (TP, Qp, | H) with

Qp =) d&Ada' +)  dna Ady®,

T, Y; é’ Z m* fz&] -2 Z m” (.’L‘ (L‘ y)F,@ (y)&na
+ ZF"‘ 6] (=, y)mﬂ(m)eﬂx,y)rf(y)nanﬁ
+ 3 T2 (W) ars-

(5.13)

(5.14)

(5.15)

The Hamiltonian flow (the geodesic flow) on T*P is governed by the canonical

equation

B =2y mg ~ 23 mIeTgn.,
g =-2) mifef?rggi +2 Z‘ Te0Ymii0rTens + 2y TSThng,

b=-> > om” —— bt +2Z 57 (107 ) T &na

\ (5.16)

ZP‘Y[) - 97m]k9k)Fﬁnang,
—QZm 3 —(07T8) &imp — 2Zm“ (T265)0; Tmpn,y
-2 Z 5&5 Lingmy- )

We can directly see that the momentum map J(z,y;&,n) is invariant under the

flow governed by this equation, i.e.,

2 5(a(0),9(0:60,m(0) = 5 (L TAWEms(0) 8Y*) =0

by virtue of Lemmas 5.2 and 5.3.
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5.3 Reduced system (P,,Q,, H,)

Now we consider the reduced system (P,,Q,,H,). Note that Ad*(g9)p =
p(p=> p.Y* € g*) for Vg € G, and we have the following.

Lemma 5.4 Ifl1<a<r r+1<p8<r, then

> 4, Cly =0. (5.17)

r=1

Proof. Put g(t) = exp(tYy') (Y5 € gu). Then for VX € g we have
(1, Ad(g(1)) X) = (1, X). D1fferent1ate this equation with respect to ¢, and we
get (u, [Y4,X]) =0, Wthh derives (5.17). ]

Jf (z,y:6,m) = (z,y',y";€,m',n'") belongs to J~*(p), then it follows from
(5.2) that

DLW =t (@=1,.007), (5.18)

and accordingly

o= AWy (@=1,...,7). (5.19)

Thus, we can take (z,v;€) = (z,y',y"; ) as local coordinates of J~Y(u) in the
neighborhood W of py = (0,0, 0; o, &', ') From (5.19) we have

OAY
Z g - (5-20)

Therefore we have

oAy OA}

i, Qp dei/\d:ci—l—%Zuy[Z(gﬁ—%f—) dyﬂ/\dy"‘]
Zd& Adat + = Z (32 mApCuAL)dy™ Ay

Y, K,V

Il

on J~1(u) by virtue of (5.7). Here notice Lemmas 5.1 and 5.4, and we get
(i:9p)(z,y',y",€)

= Zd& A dz? + % Z ( Z Z A5 (y)CY, AL (y))dy'“ Ady'®.

a,f=1 kw=1lv=1

Two points (a:l,yl,yl ;&) and (22,95, 94 &2) are in the same Gy -orbit if and
only if 21 = o, 7} = v, & = &. Hence we take (z,y';§)(= (=, v, O £)) as local
coordinates of P,, and have the following.
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Proposition 5.5 The symplectic form Q, on P, is locally expressed as

u(@y56) = Zd{,/\dx

+§ Z ( Z Z“’YAS(Z/I,O CZVAZ,(y',O))dy""/\dy’ﬁ. (5.21)

a,f=1 k,v=1~vy=1

Remark. For a fixed p € T*U we have the bijection x4 : O, — <I>;1(q)(C
P,) given by r4(q) := ¥u(q,v) (v € O,) (see §3). Then, the two form £3Q, is
just the symplectic form on O, called the Kirillov-Kostant form(cf. [6]). The
coadjoint orbit O, is locally parameterized by the coordinates (y' Loy,
and the second term in (5.21) is just the Kirillov-Kostant form.

By plugging (5.18) into (5.15) we have

Hy(z,y';6) = }: m¥ ()¢5 — 2 Z Zm HERTR)ITS

13,j=1 i,j=1v=1
+ Z Z 07(z,y, 0>m”( )05 (2,1, 0) iyt + Y (1y)*
1,j=17v,k=1 y=1

(5.22)

As a consequence, we get the equation of the motion in the reduced Hamiltonian
system (P,,Q,,H,).

Proposition 5.6 The Hamiltonian flow on the reduced phase space P, is gov-
erned by

=2 )" @) - 3o mI @5, O

4,j=1 v=1

Z [am ]fkfj Z B m*07) & pay

+2 Z m]k07 0k/1'7/JN]

a~
I!
~~

v,6=1
* =2 Z [meraeﬁg, szﬂr 0000 m| (a=1,...,m).
i,j=1 p=1 B=1~=1

),
(5.23)

Proof. The Hamiltonian vector field Xg, = Y.(X'8/9z° + E'0/0&; +
Y*8/8y*) corresponding to H, is defined by the equation i(Xp, ) = —dH,,
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which directly derives the first and second equations of (5.23) and

z ZﬂvApC" ALY ™ =2 Z [Zm ,ﬁfzuy Z mb 0 u7ua]

a,k,v=1y=1 ij=1 ~v=1

By virtue of (5.12) we get

n (8] r
S Smpenaiy =2 [ 3 3 miAm,CLee

a,k,v=1~v=1 i,j=1 k,w=1~v=1

- Z Z mI A, C, 0567 1o |

k,w=1~v,0=1

Here, we notice that the r; x r; matrices Ay = (Af) and C = (Cw) =
(>, uyCl,) are non-singular, and we get the last equation of (5.23). O

5.4 Gauge field and Wong’s equation

Finally, we treat the system (1M, Q,L, H .), in which the curvature © of the
connection V appears explicitly in the equation of the motion of the charged
particle. The curvature form © of V is defined by
1
O(X,Y) = df(X,Y) + 5[0(X),6(Y)]

for X,Y € TuP (u € P) (see [8] for example). From (5.8) we have the local
expression

6 = Z[ Z@ xy)dxi/\dxj]@)Ya
=1 < ij=1
BRI Losmerelen

(5.24)
by noticing (5.7) and (5.12). Moreover since © satisfies R;0 = Ad(g™1)0, we
have

o5 (z,y) E Aﬁ
3B .— OF
for ©y;(z) := ©y;(=,0), where

Z[ z@ (a:dm /\dx’]@Y = s*0@

a=1 1,j=1
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is a g-valued two-form on U C M (the so-called gauge field) pulled-back by the
local section s : U 3 z +— (z,0) € U x G =2« 1(U).
For p € g we define the R-valued two-form ©, on P by

0,(X,Y) = (1,0(X,Y)) (X,Y € T,P).

By virtue of the following lemma we can regard ©, as a two-form (globally
defined) on M,,.

Lemma 5.7 ©,(AF, X) = 0 holds for any A € g, and X € T,P.

Proof. Note Lemma 3.2, and we see that {(u, [#(AF),0(X)]) = 0. In fact,
we have
(1, [6(AF),80(X)]) = {1, [A,0(X)]) = (p,ad(A)(6(X))) =0
because (u, Ad(exp(tA))(-)) = (p,-) (t € R). a

The one-form 6, on P is given by

Ou(z,y) = Z(Zua (z,y)ds’ +ZuaAgy)dy)

a=1 i=1

and we can directly check that ,Cyup 6, =0 for Y" € g,, which means that 6,
is G,-invariant. We can take (z',...,z™,¢'",...,y'™) as coordinates of M.
Then the two forms df,, and ©, on M,, are represented as

db,(z,y') = diu(z,y',0)
T, 007  06)

= _ZZ“'Y(&U@ )d A dz?

i,j=1~v=1

+Z Z Z pyAECT,0Y dat A dy'™

i= lanu—l'y—

py AECT Y dy'® A dy'®,
v B8

aﬁnv-l’y 1

—t

I\D

Oua,y) = 3 Z S 1,67 (@, y')dzt Adat (0 (z,) = O} (2,4',0)
z] 1~v=1
by means of (5.7), (5.12) and (5.24). Let (z,y'; &) = (2, ..., 2™yt Y™
&, ,fn,nl, ., 7, ) be canonical coordinates of T*M Then we have

n 71
Qu = d&Ade' + ) dila Ady'* +db,(z,y").

i=1 a=1
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The metric m,, is defined by
XF, X)) =my, XFYD)=0, 1Y) =/dus,

for1<i4,j<n,1<a,pB<r with

71

0 " 08%(2. 4" 0) 2
= > LA, 005y, 0505

i
Oz et

XF(z,y) =

and is represented by

r1 \
(mu)ij =mij + Y 03(z,9',0)05 (2,4, 0),
a=1
!
(m,u,)ia = 20?(337:’/170)Az(y/)0):
=1
1
(Mu)as = Y ALY, 0)A}(Y',0).
y=1 ),

Hence, we get
ﬁ# (IL’, yI) E) "_]) = Z mijéiéj -2 Z mijag]:‘ggiﬁa
+ > Le0YmI O T fiails + _ T5T 5 lalp-

(5.25)

(5.26)

By straightforward calculations we see that the flow (z(t),y'(t); £(t),7(t)) of

T M, ,{~2 ,I? satisfies the equation in the form
po¥eps Hp

d

’ Zﬁﬁa = %:Faﬁ(zay’ag)ﬁﬁ (1 <a< rl)

for some functions F*#. Hence, we restrict the flow on the submanifold: 7 = 0,

(which is invariant under the flow). Then, we have the following.

Theorem 5.8 (1) The flow of (T*M#,ﬁ#,l?[“) restricted on the submanifold:

7 = 0 is governed by the equation

i=23 mi@)§,

== ag;k & -2 Z Zm”“ (@) (2, y)Er,

3k=1 Jk=1v=1

iz $?J)Fg( & (a=1,...,71).

v (5.27)
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(2) The map T*P — T*M,, defined by
(wla‘--’mn,yla"'7yr;€17"‘;£n)nla"':777‘)

— (zla'*')xnyylla"')y’rl;gla“-76_11)771)"'7771‘1)
with
Yy =y" (a=1,...,m1), )
r
E_i =& - 207(:3’3!)“7 (= L,...,n),
ol \ (5.28)

7_701:770:_21\31(:’/)/1'7 '(0‘:1;---;7'1)
y=1

induces the map x, : P, = T*M,, under which the canonical equation (5.28)
on P, is transformed to the equation (5.27).

Proof. We get the assertion by straightforward calculations. O

The equation (5.27) is (essentially same as) Wong’s equation (see [14]),
which describes the motion of a particle with charge p € g* in the gauge field
© with the potential §. From (5.27) we get the following.

Corollary 5.9 The motion of the particle with charge p in the gauge field ©
is governed by the following equation in M, :

at:+ZI"2 (z)2z* —2ZZm”(z,u7 xy)x =0,

Jk= ln . 7 k=1~v=1 (529)
@ =SS B,y TEW)E (a=1,...,m),
j=1p=1

where I‘j- . (z) denotes the Christoffel symbol defined from the Riemannian struc-
ture m on M.

6 An example - Sp(1)-gauge fields associated to
the Hopf bundles

Let H be the division algebra of quaternions, i.e.,
H={qg=s+zi+yj+2k|szyz€eR,i’=j5"=k"=ijk=-1}

Consider the product space H™*' = {gq = (g0, @1, - - -,qn)} With the Hermitian
inner product:

(a,q' Z G0, = D (s — @56 — y;d — 2k)(s) + 256 + y35 + 7k),
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and the real inner product:

n

(q,q)r =Re(q,q') =Y _(s;} + 22 +y;9; + 22})-
j=0

Note that H™t! with (-, -)g is identified with R*"*%. Let

S48 = {q|1aP (= T9) = laof? + -+ + lan[? = 4} C HMP! = R

be the (4n-+3)-dimensional sphere with radius 2, and let 7o be the Riemannian
metric on it induced from (-, -)r.
A quaternion X acts on H™*! from right:

g2 =(g0,---n) - A= (q0As- -+, gn ).

Then, the Hermitian product (-,-) is left invariant under this action by every
unit quaternions, that is, every elements of

Sp(1) ={X e H[|A| =1}
which is a three-dimensional Lie group called the symplectic group (= SU(2) =
S3). Thus Sp(1) acts freely and isometrically on S[42'}‘+3, and we get the Hopf
fiber bundle:

Sp(1) = Spt° - HP" (6.1)

over the quaternionic projective space. The tangent bundle of 5[42’]*3 is given

by
TSt = {(q,u) | g € S ™%, u € H', (g, u)w = 0}
For ¢ € 5 [427]L+3’ let Vg = (dr)~1(0) C TqS[‘;’]’H, and it is easy to see that

Vq ={(g,qv) | v € H,Re(v) = 0}.

Let H, be the orthogonal compliment of Vg in Tqﬁv’?z']”'3 with respect to the

metric mg, and we have

TSiy ™ = Ha ® Vg. (6.2)

Then, we have
Hy ={(q,u) | v € H"*' (g, u) = 0}.

We can easily check that the horizontal space Hy is invariant under the Sp(1)

action on 5[421]&3’ and accordingly, the decomposition (6.2) defines the connec-
tion V on the principal Sp(1)-bundle 7 : 5[42’]”"3 — HP™. Furthermore, HP™
endowed with the Riemannian metric mg such that 7 is a Riemannian submer-

sion.
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Let sp(1) denote the Lie algebra of Sp(1). Then, sp(1) consists of pure
imaginary quaternions, i.e.,

sp(1) = {v € H| Re(v) =0} = {v = v1% + v2J + v3k | v1,v3,v3 € R} = R3.

Note that we have the natural correspondence between the vertical space Vj
and sp(1).

Proposition 6.1 The connection form 0 of V (which is a sp(1)-valued one-
form on S4"+3) is given by

1 ' n
o) = 7(q,u) € 5p(1) ((a,) € TyS5™°). (6.3)
Here, note that (q,u) beylongs to sp(1l) because (q,u)r = 0. By using the
coordinates (qo, ..., qn) in H*! we have
R 1
6= 2> (7de; — di; ¢;) = 5(@-dg — dq - q). (6.4)
Jj=0

Proof. Put v = 64(u) € sp(1). Then, u — qu is a horizontal vector, hence

0= (q,u—qv) =(q,u) — (q,qv) = (q,u) — (g, q)v = (g,u) -

Therefore, we obtain (6.3). a

Let us introduce a local coordinate of HP™ as follows. For a point ¢ =
(90,91, ---19n) € Sf5*°, denote [a] = 90,1, - -, qn] = 7(0, 91, - qn) € HP™.
Put Uy = {[q] = [g0,---,qn] € HP™ | go # 0}, which is a open subset of HP™.

Then,
®o - UO_)IHI [QO)qu aqn]*—)(P17p2a-~->17n):(‘11‘10—1,%‘10_17---7(171(10—1)

gives a local coordinate of HP™. Take a local section

2, 2pn )

U_)S4n+3) PR o 7 MR N
L (f T+ PP VI PP VI PP

The connection form 6y, = s*0 on Uy C HP™ is given by

i 1
; Dj — = (p-dp—dp-p). (65

Let © be the curvature form of V, which is sp(1)-valued two-form on 54"+3,
and let Oy, := s*0 = dfy, + 0u, A by, (a gauge field on Up). Then, we have
the following.
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Proposition 6.2

1

T+ P2 -

dp; A dp;. (6.6)
1

Oy, =

n

The dual space sp(1)* of the Lie algebra sp(1) is identified with sp(1) by the
correspondence sp(1) 3 v ¢ v* € sp(1)* with v*(w) = (v,w)r = Re(vw) (w €
sp(1)). Thus we have

sp(1)* = {n1i* + 12" + vsk™ | v1,vp,v3 € R} = R3.
Similarly, we have

TSt = {(g,u")| (q,u) € TS}
= {(qgu")|ge Syt ue ™", (g u)r =0}

through the inner product (-, -)r.
Proposition 6.3 The momentum map J : T*Sé’]*H — sp(1)* is given by

J(g,u") = (g, u)". (6.7)

Proof. Note that the vector field on SE%‘H associated to v € sp(1) is given

by (g, qv). Hence, by the definition of J we have

(J(Q7U‘*)7v> = ((q,u*)aqv) = <u7 qv)R :
= Re[Zﬂjqjv] = Re[(z qjuj) -v] = (Zﬁjuj,v )R-
Therefore, J(q,u*) = (), ﬁjuj)* =(q,u)*. » a

Next, we consider the (co-)adjoint action of Sp(1) on sp(1) (or sp(1)*) and
its orbit. It is easy to see that

Ad*(\)o* = (Ad(\)v)* (A € Sp(1), v € sp(1)).

Take A = zo+21i+72j +z3k € Sp(1). Then, [Ad(A71)i, Ad(A1)7, Ad(A"1)E]
= [4,4,k]Rx with Ry being a 3 x 3 matrix:

w2+ 3 —z—15 2zoxs +T122)  2(—ToT2 + T1%3)
Ry = 2(—-1‘0.’1}3 + 1'11122) ZII% - 1’% + IB% - ﬂ?% 2(Z0.’L‘1 + 232$3)
2UzoTs + T173)  2(—Toz1 +T2m3) TG —of — 23+ z3
Here, Ry is an element of SO(3), and A — R, gives a homomorphism from
Sp(1) onto SO(3). More precisely, if A = cos(¢/2) + sin(¢/2)(v1t +v2J + vsk),
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then R, is the rotation about the axis v = (v;,vs,vs) through the angle —¢.
Therefore, we see that the co-adjoint orbit O, through p € sp(1)* is the sphere
in sp(1)* = R3 with the center being the origin and the radius |u|. The isotropy
subgroup G, for p = 3" + paj” + psk™ is given by

1 . .
Gu={cosy + prsiny (i + i +pk) |0 < ¥ <20} 2U(W)
if p # 0, and G, = Sp(1) if p = 0. Suppose pu = ck® (c > 0). Then,
G, = {costp + singpk = e¥* | 0 < ¢ < 2r} and g, = Rk. Take {3,7,k}
as a orthonormal basis of sp(1), and we have local coordinates (¢1,¢z2,%) of
g € Sp(1) given by

g = exp(¢1i+ d25)exp(yk)
= {coswqbf+¢%+sin\/¢%+¢§(\/¢f:—¢2i+\/d)fiqsz)}
¢1 + P2 1+¢;

x(cos1,1) +sinz/1k).

Thus we have local coordinates (pi,...,Pn,$1,P2) of M, = Sé’]’JrS/G#, and
can explicitely represent the equation (5.29) (or (5.27)) of the motion.
Finally, we give some remarks on the case n = 1, that is, the Hopf bundle

7 : 87 — HP'. Note that HP! is diffeomorphic with the unit sphere S* =
{(p,a) € H x R||p|? + a® = 1} in R® = H x R by the stereographic projection

2p lp|2 1 4
HP! D> Up(=H) 3 p —> e SY\{(0,1)}.

Furthermore, the Riemannian metric mq previously introduced on HP?! is noth-
ing but the canonical metric on S%. The connection given by (6.3) (or the gauge
field (6.6)) is an anti-self-dual Yang-Mills connection, i.e., *@y, = —Oy, holds
for Hodge’s * operator, and is called the Belavin-Polyakov-Schwartz- Tyupkin

anti-instanton (cf. [2], [7]).
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